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Checklist for dS:
 Backreaction of ingredients

 Stability

 Viable Range of Parameters

 Correct set of moduli

 Higher Dimensional Consistency

Quality Control

 Higher Dimensional Consistency
This Talk

The dS
Factory?
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• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

୫୧୬

ఘ೔ ୫୧୬

o Backreaction: 4-d EFT can often hide backreaction effects.

Bena, Grana, Halmagyi, ’09; Dymarsky, ’11; Bena, Giecold, Grana, Halmagyi, Massai, ’11;
Bena, Grana, Kuperstein, Massai, ’14; Michel, Mintun, Polchinski, Puhm, Saad, ’14;
Cohen-Maldonado, Diaz, Van Riet, Vercnocke, ’15; Armas, Nguyen, Niarchos, Obers, Van Riet, ’18;

Moritz, Retolaza, Westphal, ’17, ’19
Hamada, Hebecker, Shiu, Soler, ’18
Gautason, Van Hemelryck, Van Riet, ’18
Bena, Dudas, Graña, Lüst, ‘18
Carta, Moritz, Westphal, ’19; Gautason, Van Hemelryck, Van Riet, 19; Hamada, Hebecker, Shiu, Soler, ’19
Bena, Graña, Kovensky, Retolaza, ’19
Bena, Buchel, Lüst, ’19

+ everyone at this conference…?

A short selection…



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

୫୧୬

ఘ೔ ୫୧୬

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.

Ex: Volume Modulus in Warped (GKP) Backgrounds 

𝑑𝑠ଵ଴
ଶ = 𝐿(𝑥)ି଺ 𝑒ଶ஺బ ௬  𝜂̂ఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝐿(𝑥)ଶ  𝑒ିଶ஺బ ௬ 𝑔෤௠௡ 𝑑𝑦௠𝑑𝑦௡

10-d EOM: 𝐺ఓ௠  − 𝜅ଵ଴
ଶ  𝑇ఓ௠ = −2 𝜕ఓ𝐿  𝜕௠𝑒ିସ஺బ = 0 Either: ൝

modulus is trivial                𝜕ఓ𝐿 = 0

warp factor is trivial  𝜕௠𝑒ିସ஺బ = 0 

Correct form for the volume modulus is 𝑐 𝑥 ∼ 𝐿ସ:

Giddings, Maharana, ’05
Frey, Torroba, Underwood, Douglas, ’08

Koerber, Martucci, ’07; Martucci, ‘09, ‘14

GKP, ‘01

𝑑𝑠ଵ଴
ଶ = 𝑒ଶஐ ௫ 𝑒ିସ஺బ ௬ + 𝑐 𝑥

ିଵ/ଶ
 𝜂̂ఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑒ିସ஺బ ௬ + 𝑐 𝑥

ଵ/ଶ
𝑔෤௠௡ 𝑑𝑦௠𝑑𝑦௡

𝑒ିଶஐ ௫ = 𝑐 𝑥 +
1

𝑉෨
∫ 𝑔෤   𝑒ିସ஺బ

− 2 𝑒ିସ஺బ ௬ + 𝑐 𝑥
ିଵ/ଶ

𝑒ଶஐ 𝜕ఓ𝑐  𝜕௠ 𝐾 𝑦  𝑑𝑥ఓ𝑑𝑦௠



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

୫୧୬

ఘ೔ ୫୧୬

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.
→ 4-d EFT must know dependence on correct 4d degrees of freedom.

𝐷3 tension∼ 2 𝑇ଷ 𝑒ସ஺ 𝑒ସஐ = య்

௖ା
ೇ෩ೈ

ೇ෩

మ

ଵ

௘షరಲబା௖
 

reproduces ∼ ൞

య்

௖య                  for weak warping

య்௘షరಲబ

௖మ          for strong warping

For the correct metric:

𝑑𝑠ଵ଴
ଶ = 𝑒ଶஐ ௫ 𝑒ିସ஺బ ௬ + 𝑐 𝑥

ିଵ/ଶ
 𝜂̂ఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑒ିସ஺బ ௬ + 𝑐 𝑥

ଵ/ଶ
𝑔෤௠௡ 𝑑𝑦௠𝑑𝑦௡

𝑒ିଶஐ ௫ = 𝑐 𝑥 +
1

𝑉෨
∫ 𝑔෤   𝑒ିସ஺బ

− 2 𝑒ିସ஺బ ௬ + 𝑐 𝑥
ିଵ/ଶ

𝑒ଶஐ 𝜕ఓ𝑐  𝜕௠ 𝐾 𝑦  𝑑𝑥ఓ𝑑𝑦௠

Giddings, Maharana, ’05
Frey, Torroba, Underwood, Douglas, ’08

Koerber, Martucci, ’07; Martucci, ‘09, ‘14



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

୫୧୬

ఘ೔ ୫୧୬

10-d Trace-Reversed

𝑅ெே = 𝑇ெே −
1

8
𝑔ெே𝑇௅

௅

Dimensional Reduction of Action

𝑆ଵ଴ = ∫ 𝑔ଵ଴
   𝑅ଵ଴ −

1

2
𝐹௣

ଶ

𝑉௘௙௙ ቚ
୫୧୬

𝑉௘௙௙ 𝜎௜ ∼ + 𝐹௣
ଶ

“off-shell”: 
good if you know full moduli dependence
could be misleading if you don’t!

“on-shell”: 
gives value of cc at minimum
can’t tell you about stability
doesn’t need moduli dependence

Gautason, Van Hemelryck, Van Riet, ‘18

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.
→ 4-d EFT must know dependence on correct 4d degrees of freedom.
→ 10-d analysis insensitive to precise moduli dependence → “On-shell”



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

୫୧୬

ఘ೔ ୫୧୬

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.
→ 4-d EFT must know dependence on correct 4d degrees of freedom.
→ 10-d analysis insensitive to precise moduli dependence → “On-shell”

o Model-building: 
10-d analysis can point towards new sources & mechanisms to getting dS.

→ Negative Curvature

→ Gaugino Condensation (4-fermion)

→ Quantum Corrections

Douglas, Kallosh, ‘10

Dasgupta, Gwyn, McDonough, Mia, Tatar, ‘14
Dasgupta, Emelin, Faruk, Tatar, ’18, ’19 x 2, 

Hamada, Hebecker, Shiu, Soler, ’18; Kallosh, ’19 Carta, Moritz, Westphal, ’19; 
Gautason, Van Hemelryck, Van Riet, 19; 
Hamada, Hebecker, Shiu, Soler, ’19
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• Gibbons/Maldacena-Nunez (GMN)

஽
ଶ 𝟐

ఓఔ
ఓ ఔ

௠௡
௠ ௡

𝑅෠ସ 𝒱෨ =
1

𝐷 − 2
න 𝑔෤   𝛻෨ ଶΩ஽ିଶ

 

 

−
1

𝐷 − 2
න 𝑔෤   Ω஽  𝑇෨ ୫ୟ୲୲

 

 

,          𝑇෨ ୫ୟ୲୲ = 4 𝑇௠
௠ − 𝐷 − 6  𝑇ఓ

ఓ

Takeaways

1.   To get dS, matter must satisfy ~∫ Ω஽ 𝑇෨ ୫ୟ୲୲ < 0  ⇒    ∫ Ω஽ 𝐷 − 6 𝑇ఓ
ఓ

− 4 𝑇௠
௠ > 0

∫ Ω஽ 𝑇ఓ
ఓ

 − 𝑇௠
௠ > 0O -planes

𝑇ை௣
ఓ
ఓ

 − 𝑇ை௣
௠
௠ ∼ |T୓୮| > 0 O3-planes can evade this constraint. (GKP has O3)

Gibbons ‘84
Malacena, Nunez ‘00

2.   Negative Curvature needed?
𝑅෠ସ𝒱෨  = −2𝑅෨௣ − 𝑇෠ସ + warping

Advantages:
• Not specific to a background
• Simple!

Disadvantages:
• Assumes Einstein Equations
• Integrated Constraint: no singularities or 

boundaries in internal dims

Some Constraints on dS

Douglas, Kallosh ‘10

Total derivative?



• GKP Tadpole Constraint

஽
ଶ ଶ஺ ௬

ఓఔ
ఓ ఔ ିଶ ஺ ௬

௠௡
௠ ௡

𝑅෠ସ = − න 𝑔෤   
𝑒ଶ஺

Im 𝜏
𝐺ଷ

ି ଶ + 𝑒ି଺ 𝑑Φି
ଶ +

𝑒ଶ஺

2𝜋
 Δ

 

 

,      Δ =
1

4
𝑇௠

௠ − 𝑇ఓ
ఓ

 − 4𝜇ଷ𝜌ଷ

Takeaways

1.   To get dS, matter must satisfy                   ∫ 𝑒ଶ஺ 𝑇ఓ
ఓ

−  𝑇௠
௠ + 4 𝜇ଷ𝜌ଷ > 0

(Compare to (GMN) ∫ Ω஽ 𝑇ఓ
ఓ

 − 𝑇௠
௠ > 0)

O3-planes no longer evade this constraint.

GKP, ’01
de Alwis, ‘03

Advantages:
• Also uses 𝐹෨ହ Bianchi Identity
• Simple constraint on matter

Disadvantages:
• Assumes EEs & IIB SUGRA
• Integrated Constraint: no singularities or 

boundaries in internal dims

𝐺ଷ
ି = 𝐺ଷ − 𝑖 ⋆෤  𝐺ଷ,     Φି = 𝑒ସ஺ − 𝛼

Some Constraints on dS



• Raychaudhuri Null Energy Condition

஽
ଶ ଶ ଶ ଶ ଶ

௠௡
௠ ௡

ଶ ௠ ଶ ଶ ଶ ଶ ଶ
௠௡

௠ ௡

ଶ ଶ஺ ଶ ଶ ଶ ିଶ ଶ ଶ
௠௡

௠ ௡

Similar to “warped throat” form

(We will relax this structure later)

Das, Haque, Underwood, ‘19

Some Constraints on dS



• Raychaudhuri Null Energy Condition

ଶ
ெே

ெே
ெே

ெ ே

Raychaudhuri equation for null vectors ெ

Expansion 𝜃 =
ଵ

ି௚ವ
   𝜕஺ −𝑔஽

   𝑁஺ = Ωିଶ 3 H  + 𝜕ఞ log Ω஽ିଶ 𝑓௡ିଵ 𝜒

Shear Tensor 𝜎ெே =
ଵ

ଶ
 𝛻ெ𝑁ே + 𝛻ே𝑁ெ  −

ଵ

஽ିଶ
 ℎ෠ெே 𝜃

Null, affine vector: ெ ିଶ

𝑡,  𝑥⃗, 𝜒,  𝑦⃗

ଶ
ఞఞ ఞ

ଶ
ఞ
ଶ ସ

ெே
ெ ே

Let’s examine the consequences of this expression.

Das, Haque, Underwood, ‘19

Some Constraints on dS

஽
ଶ ଶ ଶ ଶ ଶ

௠௡
௠ ௡

ଶ ௠ ଶ ଶ ଶ ଶ ଶ
௠௡

௠ ௡

Expansion 𝜃:
Rate of change of area 
perpendicular to bundle



• Raychaudhuri Null Energy Condition Das, Haque, Underwood, ‘19

஽
ଶ ଶ ௠ ଶ ଶ ଶ ଶ ଶ

௠௡
௠ ௡

Let’s examine the consequences of this expression:
௠௡

Takeaways

Must be 
+

for dS

• for dS: LHS is positive  RHS is positive

Must also be + for dS

Some Constraints on dS

ଶ
ఞఞ ఞ

ଶ
ఞ
ଶ ସ

ெே
ெ ே



• Raychaudhuri Null Energy Condition

஽
ଶ ଶ ௠ ଶ ଶ ଶ ଶ ଶ

௠௡
௠ ௡

ଶ
ఞఞ ఞ

ଶ
ఞ
ଶ ସ

ெே
ெ ே

Let’s examine the consequences of this expression:

Takeaways

Null Energy Condition 
𝑅ெே 𝑁ெ𝑁ே = 𝑇ெே𝑁ெ𝑁ே ≥ 0

• No dS if Must violate
at least one 

of these 
conditions to 

get dS

• Curvature is non-positive 𝑅തఞఞ ≤ 0

• Warping Ω ∼ const
• Null Convergence Condition/NEC satisfied 𝑅ெே𝑁ெ𝑁ே ≥ 0

Negative 
curvature 

doesn’t help
Trivial Warping?

• for dS: LHS is positive  RHS is positive

Das, Haque, Underwood, ‘19

Some Constraints on dS

௠௡



• Raychaudhuri Null Energy Condition

஽
ଶ ଶ ௠ ଶ ଶ ଶ ଶ ଶ

௠௡
௠ ௡

ଶ
ఞఞ ఞ

ଶ
ఞ
ଶ ସ

ெே
ெ ே

Let’s examine the consequences of this expression:

Takeaways

Independent 
of 

𝜒, 𝑦௠

• for dS: LHS is positive  RHS is positive

• LHS is independent of ௠ , so RHS must be independent of ௠

Das, Haque, Underwood, ‘19

• No dS if Must violate
at least one 

of these 
conditions to 

get dS

• Curvature is non-positive 𝑅തఞఞ ≤ 0

• Warping Ω ∼ const
• Null Convergence Condition/NEC satisfied 𝑅ெே𝑁ெ𝑁ே ≥ 0

Must also be independent of
𝜒, 𝑦௠

If source of dS is NEC violation, it must violate NEC 
homogeneously pointwise throughout the extra dimensions. Douglas, Kallosh, ‘10

Some Constraints on dS

௠௡



• Raychaudhuri Null Energy Condition - Generalized

஽
ଶ ଶ ௠ ଶ ଶ ଶ

௠௡
௠ ௡

3 𝐻̇ + 𝐻ଶ = 𝑅෨௠௡𝑛෤௠𝑛෤௡ + 𝐷 − 2  𝑛෤௠𝑛෤௡ 𝜕௡ log Ω 𝜕௠ log Ω − 𝛻෨௠𝜕௡ log Ω  − Ωସ 𝑅ெே 𝑁ெ𝑁ே

Takeaways
• for dS: LHS is positive  RHS is positive

• LHS is independent of ௠ , so RHS must be independent of ௠

Das, Haque, Underwood, ‘19

• No dS if Must violate
at least one 

of these 
conditions to 

get dS

• Curvature is non-positive 𝑅തఞఞ ≤ 0

• Warping Ω ∼ const
• Null Convergence Condition/NEC satisfied 𝑅ெே𝑁ெ𝑁ே ≥ 0

If source of dS is NEC violation, it must violate NEC 
homogeneously pointwise throughout the extra dimensions. Douglas, Kallosh, ‘10

Null, affine vector: ெ ିଶ ௠

𝑡,  𝑥⃗,  𝑦⃗

௠ spacelike affine unit vector

3 𝐻̇ + 𝐻ଶ =           𝑅തఞఞ +             𝐷 − 2 𝜕ఞ log Ω
ଶ

 − 𝜕ఞ
ଶ log Ω                           − Ωସ 𝑅ெே 𝑁ெ𝑁ே

Previous Case

Pick your favorite direction!

Some Constraints on dS



• Raychaudhuri Null Energy Condition - Generalized

஽
ଶ ଶ ௠ ଶ ଶ ଶ

௠௡
௠ ௡

3 𝐻̇ + 𝐻ଶ = 𝑅෨௠௡𝑛෤௠𝑛෤௡ + 𝐷 − 2  𝑛෤௠𝑛෤௡ 𝜕௡ log Ω 𝜕௠ log Ω − 𝛻෨௠𝜕௡ log Ω  − Ωସ 𝑅ெே 𝑁ெ𝑁ே

Das, Haque, Underwood, ‘19

Null, affine vector: ெ ିଶ ௠

𝑡, 𝑥⃗, 𝑦⃗

௠ spacelike affine unit vector

Pick your favorite direction!

Advantages:
• Not specific to a particular background
• Does not assume Einstein Equations
• Multiple conditions: one for each choice 

of direction 𝒏෥𝒎 in extra dimensions

Disadvantages:
• Not so simple anymore?

Some Constraints on dS



• Comparing to GMN & GKP Energy Conditions

GMN
𝑇෨ ∼ 𝑇௠

௠  − 𝑇ఓ
ఓ

< 0?

GKP
Δ ∼ 𝑇௠

௠  − 𝑇ఓ
ఓ

− 4𝜇ଷ𝜌ଷ < 0?

Raychaud. NEC
𝑇ெே𝑁ெ𝑁ே < 0?

-form 
Fluxes

O -planes

-dim CC
𝑇ெே

ஃ = −Λୈ g୑୒

Does this source 
evade the dS
constraint?

NO

YES

YES

NO NO

NO NO
(pointwise)

YES NO

𝑇ఓఔ
ை௣

= 𝑇ை௣  𝑔ఓఔ 𝛿 Σ

𝑇ெே
௣

= 2 𝑝 𝐹ெ௔మ…௔೛
𝐹ே

௔మ…௔೛

−𝑔ெே 𝐹ଶ

𝑇௠௡
ை௣

= 𝑇ை௣  Π௠௡
ஊ  𝛿 Σ

஽ ஽ ெே
ஃ ெ ே

Some Constraints on dS
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Some Examples of dS
Let’s examine some existing dS solutions through this lens…

• Freund-Rubin + Bulk CC

𝑑𝑠଺
ଶ = 𝐿ିଶ 𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝐿ଶ 𝑑𝜒ଶ + sinଶ 𝜒  𝑑𝜙ଶ

ସ
ଶ

𝑆଺ = ∫ 𝑑଺𝑥 −𝑔଺
   𝑀଺

ସ 𝑅଺ − Λ଺ −
1

4
 𝐹ଶ

ଶ

Ingredients:
• Positive curvature Sଶ

• 2-form flux along sphere
• 6-D CC

𝟐 𝟐 𝟐

ଶ
ఞఞ ఞ

ଶ
ఞ
ଶ ସ

ெே
ெ ே

Trivial Warping Null Energy Condition 

𝑅ெே 𝑁ெ𝑁ே = 𝑇ெே𝑁ெ𝑁ே =
1

2 𝑀଺
ସ

𝑓ଶ
ଶ

𝐿଺
≥ 0

Positive 
curvature

ଶ ଶ

ସ
଺
ସ

ଶ
ଶ

଺

Puzzle: 
We know that Λ଺ = 0 gives AdS. 

But Λ଺ doesn’t appear in the constraint equation. 
How does it “uplift” in this perspective? Turning on Λ଺ shifts the minimum 

to larger 𝐿, changing the balance 
of terms in the constraint.

Lesson:
• Positive, not negative, 

curvature is a way to get bulk 
solutions with dSସ

[Shiu’s Talk?]



Let’s examine some existing dS solutions through this lens…

• dS in RS (Randall-Sundrum)

𝑑𝑠ோௌ
ଶ = 𝑒ଶ஺ ௭ 𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑑𝑧ଶIngredients:

• Warping
• Localized branes
• 5-D CC (negative)

ଶ
ఞఞ ఞ

ଶ
ఞ
ଶ ସ

ெே
ெ ே

Zero 
curvature

= 𝑒ଶ஺ ఞ 𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑑𝜒ଶ

ହ

ଵଶ

ଶ஺

• RS warp factor, 𝑒஺ ఞ = 𝜒/𝐿

𝜕ఞ log Ω
ଶ

 − 𝜕ఞ
ଶ log Ω = 0       ⇒        3 𝐻ଶ = 0

“Tuned” 
𝜆ଵ = −𝜆ଶ = 𝐿 𝑀ହ Λହ

• 𝜆ଵ, 𝜆ଶ localized, 𝑇ெே𝑁ெ𝑁ே ∼ 𝛿(𝑧)
• Bulk CC saturates NEC 𝑇ெே

ஃ 𝑁ெ𝑁ே = 0

• De-tuned warp factor, 𝑒஺ ௭ = Λସ
   𝐿 sinh

௭∗ି௭

௅

𝜕ఞ log Ω
ଶ

 − 𝜕ఞ
ଶ log Ω = Λସ        ⇒        3 𝐻ଶ = 3 Λସ

“De-Tuned” 

𝜆ଵ = 6
ெఱ

య

௅
coth

௭∗

௅

𝜆ଶ = −6
ெఱ

య

௅
coth

௭∗ି௭బ

௅

dS comes from warping!

Using RS warp factor, 
get 4d Minkowski!

Lesson:
• “Uplift” of bulk solutions to dSସ

with local objects (e.g. branes) 
requires global backreaction on 
warp factor.

Some Examples of dS

Kaloper, ’99; DeWolfe et al, ’99; Kim, Kim, ’99; 
Tye, Wasserman, ’00; Karch, Randall, ‘00

[Randall’s Talk]



Let’s examine some existing dS solutions through this lens…

• “Classical” dS Solutions* in Massive IIA with ±

𝑑𝑠ଵ଴
ଶ = 𝑒ଶௐ ௭ 𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑒ିଶௐ ௭ 𝑑𝑧ଶ + 𝑒ଶఒ ௭  𝑑𝑠ெఱ

ଶ

Ingredients:
• Warping
• Negative curvature 𝑀ହ

• Localized branes O8±

• Romans Mass 𝐹଴

• Dilaton 𝜙

Cordova et al, ’18
Cordova et al, ‘19

3 𝐻ଶ = 𝑅෨௠௡𝑛෤௠𝑛෤௡ + 𝐷 − 2  𝑛෤௠𝑛෤௡ 𝜕௡ log Ω 𝜕௠ log Ω − 𝛻෨௠𝜕௡ log Ω  − Ωସ 𝑇ெே 𝑁ெ𝑁ே

ெ ିଶ ௠ ௠ spacelike affine unit vector

Numerical Solutions (near O8ା @ 𝑧 = 0):

𝑒ିସௐ = 𝑐ଵ +
𝐹଴

𝑐ଶ
 

 𝑧 − 2 𝑐ଵ
ଶ Λସ 𝑧ଶ +  𝒪 𝑧ଷ

Etc… for 𝜙 𝑧 , 𝜆 𝑧

Lesson:
• “Uplift” of bulk solutions to dSସ

requires global backreaction on 
warp factor.

• Warp factor gains explicit dependence on Λସ

• Dependence on Λସ not necessarily localized

*Still some uncertainty about boundary 
conditions of fields at location of O8ି

Cribiori, Junghans, ‘19

Some Examples of dS



𝑑𝑠ଵ଴
ଶ = 𝑒ଶ஺ ௬ 𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑒ିଶ ௬ 𝑔෤௠௡𝑑𝑦௠𝑑𝑦௡

Ingredients:
• Warping
• Ricci flat 𝑅෨଺

• Fluxes 𝐺ଷ, 𝐹෨ହ

• Localized branes O3, D3, D7
• Gaugino cond. on D7

GKP, ‘01
KKLT, ‘03

Questions:
• Where will homogeneous (not localized) violation of NEC come from?

• If warp factor plays a role in this constraint, then expect global backreaction
on warp factor 𝑒஺ ∼ 𝑒஺బାு ௥ ? (c.f. dS in RS)

Figure adapted from Baumann et al, ‘08

𝑑𝑠ଵ଴
ଶ =

𝑟ଶ

𝐿ଶ
 𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ +

𝐿ଶ

𝑟ଶ
𝑑𝑟ଶ + 𝑟ଶ𝑑𝑆ହ

ଶ

• Deep in throat ( AdS throat)

=
𝐿ଶ

𝜒ଶ
𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑑𝜒ଶ + 𝜒ଶ𝑑𝑆ହ

ଶ

ଶ
ఞఞ ఞ

ଶ
ఞ
ଶ ସ

ெே
ெ ே

𝜕ఞ log Ω
ଶ

− 𝜕ఞ
ଶ log Ω = 0

Ricci-flat No warp factor contribution in 
warped throat

Homogeneous NEC Violation?
• 〈𝜆𝜆〉: localized on/near D7-branes
• 𝐷3: localized in warped throat (NEC)
• 𝐺ଷ = 𝐺ଷ

௙௟௨௫
+ 𝛿𝐺ଷ [Shiu’s Talk] (NEC)

KKLT, ‘03

KKLT

Carta, Moritz, Westphal, ’19 
Gautason, Van Hemelryck, Van Riet, 19 

Hamada, Hebecker, Shiu, Soler, ’19



KKLT

𝑑𝑠ଵ଴
ଶ = 𝑒ଶ஺ ௬ 𝑔ොఓఔ 𝑑𝑥ఓ𝑑𝑥ఔ + 𝑒ିଶ஺ ௬ 𝑔෤௠௡𝑑𝑦௠𝑑𝑦௡ GKP, ‘01

KKLT, ‘03

3 𝐻ଶ = 𝑅෨௠௡𝑛෤௠𝑛෤௡ + 2 𝑒ସ஺ 𝛻෨ଶ𝐴 − 8 𝑛෤௠𝑛෤௡ 𝜕௡𝐴  𝜕௠𝐴  − 𝑒ସ஺ 𝑇ெே 𝑁ெ𝑁ே

Fixed (at high scale?) by fluxes and O-
planes, does not contribute to dSସ?

Ricci-flat Homogeneous NEC Violation?
• 〈𝜆𝜆〉: localized on/near D7-branes
• 𝐷3: localized in warped throat
• “Non-local” contributions from gauginos?

Figure adapted from Baumann et al, ‘08

• More generally…

KKLT, ‘03

Questions:
• Where will homogeneous (not localized) violation of NEC come from?

• If warp factor plays a role in this constraint, then expect global backreaction
on warp factor 𝑒஺ ∼ 𝑒஺బାு ௥ ? (c.f. dS in RS)

Ingredients:
• Warping
• Ricci flat 𝑅෨଺

• Fluxes 𝐺ଷ, 𝐹෨ହ

• Localized branes O3, D3, D7
• Gaugino cond. on D7



Summary
• Several different constraints on dS from higher dimensions

o GMN, GKP
o Raychaudhuri NEC: Non-positive curvature + trivial warping + NEC = no dS

3𝐻ଶ = 𝑅തఞఞ + 𝐷 − 2 𝜕ఞ log Ω
ଶ

 − 𝜕ఞ
ଶ log Ω  − Ωସ 𝑇ெே 𝑁ெ𝑁ே

• Raychaudhuri NEC has advantages:
o Not specific to particular background
o Local, not integrated: Must satisfy at every point
o Does not assume Einstein Equations
o Multiple Conditions: one for each choice of internal null vector
o Strong: Matter which “passes” other dS constraints doesn’t pass Raychaud. NEC

• Application of Raychaudhuri NEC to dS solutions gives some 
Take-Home Lessons:
o Positive, not negative, curvature is a way to get bulk solutions with dSସ

o “Uplift” of bulk solutions to dSସ with local objects (e.g. branes) requires global 
backreaction of warp factor.

• Would be interesting to see how this works for KKLT?
o Where will homogeneous (not localized) violation of NEC come from?
o If warp factor plays a role in the constraint, then expect global backreaction on warp 

factor.



Extra Slides



Apparent Horizons
Oppositely oriented affine null rays    ା

ெ (outgoing)     ି
ெ (ingoing)

Expansion ±
ଵ

ି௚ವ
  ஺ ஽

 
±
஺

Ex:
FRW Cosmology  𝑑𝑠ଶ = −𝑑𝑡ଶ + 𝑎ଶ 𝑡  𝑑𝑟ଶ + 𝑟ଶ𝑑Ωଶ

ଶ

𝑁±
ெ =

1

𝑎
, ±

1

𝑎ଶ
, 0, 0    

                          →      𝜃ା =
2

𝑎
𝐻 +

1

𝑎𝑟
,     𝜃ି =

2

𝑎
𝐻 −

1

𝑎𝑟

• For ିଵ,     ା ି

• For ିଵ,     ା ି “anti-trapped region”

• For ିଵ,     ା ି “apparent horizon”

Expansion 𝜃:
Rate of change of area 
perpendicular to bundle

“normal region”

“Anti-trapped”“normal”

𝐻ିଵ

“apparent horizon”

𝑁ା
ெ𝑁ି

ெ



Expansions in Compact Space

ଶ ଶ ଶ ଶ ଶ ଶ

±
ெ

𝑡, 𝜒,    𝛼

Expansions  ±
𝒄𝒐𝒕 𝝌

𝑹

• Diverge at the poles 
• ା positive for గ

ଶ
, negative for గ

ଶ

(and visa-versa for ି)
• ± on equator

• Simple Example: an ଶ

Integral of the expansion vanishes:

ଶ
 

±

 

 

ଶ
 

± ௠ ଶ
 

±
௠

Expansion is a total derivative 
on compact space

Equal amounts of positive 
and negative expansion.



Expansions in Compact Space

ଶ ଶ ଶ ଶ ଶ ଶ ଶ ଶ

±
ெ

𝑡, 𝑥⃗,    𝜒,    𝛼

Expansions  ±
𝒄𝒐𝒕 𝝌

𝑹

• Extend this example: FLRW ଶ

• Both ା & ି are positive in a narrow band below 
the equator ିଵ

• Similarly, both ା & ି are positive in a narrow 
band above the equator as well.

Anti-trapped region?

• The boundary to these regions has ା and 
ି (and visa-versa)

Apparent horizons?

Since 𝐻 𝑅 ≪ 1, expect 
anti-trapped region to be 
quite “thin”

These apparent horizons are also (inner past) 
trapping horizons when

ℒା𝜃ି > 0  ⇒    3𝐻̇ +
1 + 3𝐻𝑅 ଶ

𝑅ଶ
> 0

Das, Haque, Underwood, ‘19



Horizons in Compact Space

• True more generally – any direct product of 
FLRW with a compact space will develop an 
anti-trapped band

𝑑𝑠ଶ = Ωଶ 𝑦 (−𝑑𝑡ଶ + 𝑎ଶ 𝑡  𝑑𝑥⃗ଶ + 𝑔෤௠௡ 𝑦  𝑑𝑦௠𝑑𝑦௡

• Anti-trapped region arises from shear
→ null rays at fixed co-moving coordinates 𝑥⃗ expand 

due to the expansion of the universe
→ but expansion 𝜃± is a scalar, cannot be decomposed 

into “parallel” and “shear” components.

• Null rays can traverse from one end of compact 
space to the other in finite (affine) time
→ What is the physical significance of the anti-trapped 

regions and apparent horizons?

Das, Haque, Underwood, ‘19


