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Checklist for dS:
 Backreaction of ingredients

 Stability

 Viable Range of Parameters

 Correct set of moduli

 Higher Dimensional Consistency

Quality Control

 Higher Dimensional Consistency
This Talk

The dS
Factory?
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• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

o Backreaction: 4-d EFT can often hide backreaction effects.

Bena, Grana, Halmagyi, ’09; Dymarsky, ’11; Bena, Giecold, Grana, Halmagyi, Massai, ’11;
Bena, Grana, Kuperstein, Massai, ’14; Michel, Mintun, Polchinski, Puhm, Saad, ’14;
Cohen-Maldonado, Diaz, Van Riet, Vercnocke, ’15; Armas, Nguyen, Niarchos, Obers, Van Riet, ’18;

Moritz, Retolaza, Westphal, ’17, ’19
Hamada, Hebecker, Shiu, Soler, ’18
Gautason, Van Hemelryck, Van Riet, ’18
Bena, Dudas, Graña, Lüst, ‘18
Carta, Moritz, Westphal, ’19; Gautason, Van Hemelryck, Van Riet, 19; Hamada, Hebecker, Shiu, Soler, ’19
Bena, Graña, Kovensky, Retolaza, ’19
Bena, Buchel, Lüst, ’19

+ everyone at this conference…?

A short selection…



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.

Ex: Volume Modulus in Warped (GKP) Backgrounds 

𝑑𝑠 = 𝐿(𝑥)  𝑒  �̂�  𝑑𝑥 𝑑𝑥 + 𝐿(𝑥)   𝑒 𝑔  𝑑𝑦 𝑑𝑦

10-d EOM: 𝐺  − 𝜅  𝑇 = −2 𝜕 𝐿  𝜕 𝑒 = 0 Either: 
modulus is trivial                𝜕 𝐿 = 0

warp factor is trivial  𝜕 𝑒 = 0 

Correct form for the volume modulus is 𝑐 𝑥 ∼ 𝐿 :

Giddings, Maharana, ’05
Frey, Torroba, Underwood, Douglas, ’08

Koerber, Martucci, ’07; Martucci, ‘09, ‘14

GKP, ‘01

𝑑𝑠 = 𝑒 𝑒 + 𝑐 𝑥
/

 �̂�  𝑑𝑥 𝑑𝑥 + 𝑒 + 𝑐 𝑥
/

𝑔  𝑑𝑦 𝑑𝑦

𝑒 = 𝑐 𝑥 +
1

𝑉
∫ 𝑔   𝑒

− 2 𝑒 + 𝑐 𝑥
/

𝑒  𝜕 𝑐  𝜕  𝐾 𝑦  𝑑𝑥 𝑑𝑦



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.
→ 4-d EFT must know dependence on correct 4d degrees of freedom.

𝐷3 tension∼ 2 𝑇  𝑒  𝑒 =  

reproduces ∼
                 for weak warping

         for strong warping

For the correct metric:

𝑑𝑠 = 𝑒 𝑒 + 𝑐 𝑥
/

 �̂�  𝑑𝑥 𝑑𝑥 + 𝑒 + 𝑐 𝑥
/

𝑔  𝑑𝑦 𝑑𝑦

𝑒 = 𝑐 𝑥 +
1

𝑉
∫ 𝑔   𝑒

− 2 𝑒 + 𝑐 𝑥
/

𝑒  𝜕 𝑐  𝜕  𝐾 𝑦  𝑑𝑥 𝑑𝑦

Giddings, Maharana, ’05
Frey, Torroba, Underwood, Douglas, ’08

Koerber, Martucci, ’07; Martucci, ‘09, ‘14



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

10-d Trace-Reversed

𝑅 = 𝑇 −
1

8
𝑔 𝑇

Dimensional Reduction of Action

𝑆 = ∫ 𝑔   𝑅 −
1

2
𝐹

𝑉𝑉 𝜎 ∼ + 𝐹

“off-shell”: 
good if you know full moduli dependence
could be misleading if you don’t!

“on-shell”: 
gives value of cc at minimum
can’t tell you about stability
doesn’t need moduli dependence

Gautason, Van Hemelryck, Van Riet, ‘18

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.
→ 4-d EFT must know dependence on correct 4d degrees of freedom.
→ 10-d analysis insensitive to precise moduli dependence → “On-shell”



• “10-d Einstein Equations are identical to the 
4-d effective potential minimization conditions
Why not just work with 4-d effective potential?”

Why 10-d?

o Backreaction: 4-d EFT can often hide backreaction effects.

o Moduli: 
→ Need to be sure 4d degrees of freedom are correct.
→ 4-d EFT must know dependence on correct 4d degrees of freedom.
→ 10-d analysis insensitive to precise moduli dependence → “On-shell”

o Model-building: 
10-d analysis can point towards new sources & mechanisms to getting dS.

→ Negative Curvature

→ Gaugino Condensation (4-fermion)

→ Quantum Corrections

Douglas, Kallosh, ‘10

Dasgupta, Gwyn, McDonough, Mia, Tatar, ‘14
Dasgupta, Emelin, Faruk, Tatar, ’18, ’19 x 2, 

Hamada, Hebecker, Shiu, Soler, ’18; Kallosh, ’19 Carta, Moritz, Westphal, ’19; 
Gautason, Van Hemelryck, Van Riet, 19; 
Hamada, Hebecker, Shiu, Soler, ’19
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• Gibbons/Maldacena-Nunez (GMN)
𝟐

𝑅  𝒱 =
1

𝐷 − 2
𝑔   𝛻 Ω

 

 

−
1

𝐷 − 2
𝑔   Ω   𝑇

 

 

,          𝑇 = 4 𝑇 − 𝐷 − 6  𝑇

Takeaways

1.   To get dS, matter must satisfy ~∫ Ω  𝑇 < 0  ⇒    ∫ Ω  𝐷 − 6 𝑇 − 4 𝑇 > 0

∫ Ω  𝑇  − 𝑇 > 0O -planes
𝑇  − 𝑇 ∼ |T | > 0 O3-planes can evade this constraint. (GKP has O3)

Gibbons ‘84
Malacena, Nunez ‘00

2.   Negative Curvature needed?
𝑅 𝒱  = −2𝑅 − 𝑇 + warping

Advantages:
• Not specific to a background
• Simple!

Disadvantages:
• Assumes Einstein Equations
• Integrated Constraint: no singularities or 

boundaries in internal dims

Some Constraints on dS

Douglas, Kallosh ‘10

Total derivative?



• GKP Tadpole Constraint

 

𝑅 = − 𝑔   
𝑒

Im 𝜏
𝐺 + 𝑒 𝑑Φ +

𝑒

2𝜋
 Δ

 

 

,      Δ =
1

4
𝑇 − 𝑇  − 4𝜇 𝜌

Takeaways

1.   To get dS, matter must satisfy                   ∫ 𝑒  𝑇 −  𝑇 + 4 𝜇 𝜌 > 0

(Compare to (GMN) ∫ Ω  𝑇  − 𝑇 > 0)

O3-planes no longer evade this constraint.

GKP, ’01
de Alwis, ‘03

Advantages:
• Also uses 𝐹 Bianchi Identity
• Simple constraint on matter

Disadvantages:
• Assumes EEs & IIB SUGRA
• Integrated Constraint: no singularities or 

boundaries in internal dims

𝐺 = 𝐺 − 𝑖 ⋆  𝐺 ,     Φ = 𝑒 − 𝛼

Some Constraints on dS



• Raychaudhuri Null Energy Condition

Similar to “warped throat” form

(We will relax this structure later)

Das, Haque, Underwood, ‘19

Some Constraints on dS



• Raychaudhuri Null Energy Condition

Raychaudhuri equation for null vectors 

Expansion 𝜃 =    𝜕 −𝑔   𝑁 = Ω  3 H  + 𝜕 log Ω  𝑓 𝜒

Shear Tensor 𝜎 =  𝛻 𝑁 + 𝛻 𝑁  −  ℎ  𝜃

Null, affine vector:
𝑡,  �⃗�, 𝜒,  �⃗�

Let’s examine the consequences of this expression.

Das, Haque, Underwood, ‘19

Some Constraints on dS

Expansion 𝜃:
Rate of change of area 
perpendicular to bundle



• Raychaudhuri Null Energy Condition Das, Haque, Underwood, ‘19

Let’s examine the consequences of this expression:

Takeaways

Must be 
+

for dS

• for dS: LHS is positive  RHS is positive

Must also be + for dS

Some Constraints on dS



• Raychaudhuri Null Energy Condition

Let’s examine the consequences of this expression:

Takeaways

Null Energy Condition 
𝑅  𝑁 𝑁 = 𝑇 𝑁 𝑁 ≥ 0

• No dS if Must violate
at least one 

of these 
conditions to 

get dS

• Curvature is non-positive 𝑅 ≤ 0

• Warping Ω ∼ const
• Null Convergence Condition/NEC satisfied 𝑅 𝑁 𝑁 ≥ 0

Negative 
curvature 

doesn’t help
Trivial Warping?

• for dS: LHS is positive  RHS is positive

Das, Haque, Underwood, ‘19

Some Constraints on dS



• Raychaudhuri Null Energy Condition

Let’s examine the consequences of this expression:

Takeaways

Independent 
of 

𝜒, 𝑦

• for dS: LHS is positive  RHS is positive

• LHS is independent of , so RHS must be independent of 

Das, Haque, Underwood, ‘19

• No dS if Must violate
at least one 

of these 
conditions to 

get dS

• Curvature is non-positive 𝑅 ≤ 0

• Warping Ω ∼ const
• Null Convergence Condition/NEC satisfied 𝑅 𝑁 𝑁 ≥ 0

Must also be independent of
𝜒, 𝑦

If source of dS is NEC violation, it must violate NEC 
homogeneously pointwise throughout the extra dimensions. Douglas, Kallosh, ‘10

Some Constraints on dS



• Raychaudhuri Null Energy Condition - Generalized

3 �̇� + 𝐻 = 𝑅 𝑛 𝑛 + 𝐷 − 2  𝑛 𝑛 𝜕 log Ω 𝜕 log Ω − 𝛻 𝜕 log Ω  − Ω  𝑅  𝑁 𝑁

Takeaways
• for dS: LHS is positive  RHS is positive

• LHS is independent of , so RHS must be independent of 

Das, Haque, Underwood, ‘19

• No dS if Must violate
at least one 

of these 
conditions to 

get dS

• Curvature is non-positive 𝑅 ≤ 0

• Warping Ω ∼ const
• Null Convergence Condition/NEC satisfied 𝑅 𝑁 𝑁 ≥ 0

If source of dS is NEC violation, it must violate NEC 
homogeneously pointwise throughout the extra dimensions. Douglas, Kallosh, ‘10

Null, affine vector:
𝑡,  �⃗�,  �⃗�

spacelike affine unit vector

3 �̇� + 𝐻 =           𝑅 +             𝐷 − 2 𝜕 log Ω  − 𝜕 log Ω                           − Ω  𝑅  𝑁 𝑁

Previous Case

Pick your favorite direction!

Some Constraints on dS



• Raychaudhuri Null Energy Condition - Generalized

3 �̇� + 𝐻 = 𝑅 𝑛 𝑛 + 𝐷 − 2  𝑛 𝑛 𝜕 log Ω 𝜕 log Ω − 𝛻 𝜕 log Ω  − Ω  𝑅  𝑁 𝑁

Das, Haque, Underwood, ‘19

Null, affine vector:

𝑡, �⃗�, �⃗�

spacelike affine unit vector

Pick your favorite direction!

Advantages:
• Not specific to a particular background
• Does not assume Einstein Equations
• Multiple conditions: one for each choice 

of direction 𝒏𝒎 in extra dimensions

Disadvantages:
• Not so simple anymore?

Some Constraints on dS



• Comparing to GMN & GKP Energy Conditions

GMN
𝑇 ∼ 𝑇  − 𝑇 < 0?

GKP
Δ ∼ 𝑇  − 𝑇 − 4𝜇 𝜌 < 0?

Raychaud. NEC
𝑇 𝑁 𝑁 < 0?

-form 
Fluxes

O -planes

-dim CC
𝑇 = −Λ  g

Does this source 
evade the dS
constraint?

NO

YES

YES

NO NO

NO NO
(pointwise)

YES NO

𝑇 = 𝑇  𝑔  𝛿 Σ

𝑇 = 2 𝑝 𝐹 … 𝐹
…

−𝑔  𝐹

𝑇 = 𝑇  Π  𝛿 Σ

Some Constraints on dS
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Some Examples of dS
Let’s examine some existing dS solutions through this lens…

• Freund-Rubin + Bulk CC

𝑑𝑠 = 𝐿  𝑔  𝑑𝑥 𝑑𝑥 + 𝐿 𝑑𝜒 + sin 𝜒  𝑑𝜙

𝑆 = ∫ 𝑑 𝑥 −𝑔   𝑀  𝑅 − Λ −
1

4
 𝐹

Ingredients:
• Positive curvature S
• 2-form flux along sphere
• 6-D CC

𝟐 𝟐 𝟐

Trivial Warping Null Energy Condition 

𝑅  𝑁 𝑁 = 𝑇 𝑁 𝑁 =
1

2 𝑀

𝑓

𝐿
≥ 0

Positive 
curvature

Puzzle: 
We know that Λ = 0 gives AdS. 

But Λ doesn’t appear in the constraint equation. 
How does it “uplift” in this perspective? Turning on Λ shifts the minimum 

to larger 𝐿, changing the balance 
of terms in the constraint.

Lesson:
• Positive, not negative, 

curvature is a way to get bulk 
solutions with dS

[Shiu’s Talk?]



Let’s examine some existing dS solutions through this lens…

• dS in RS (Randall-Sundrum)

𝑑𝑠 = 𝑒 𝑔  𝑑𝑥 𝑑𝑥 + 𝑑𝑧Ingredients:
• Warping
• Localized branes
• 5-D CC (negative)

Zero 
curvature

= 𝑒 𝑔  𝑑𝑥 𝑑𝑥 + 𝑑𝜒

• RS warp factor, 𝑒 = 𝜒/𝐿

𝜕 log Ω  − 𝜕 log Ω = 0       ⇒        3 𝐻 = 0
“Tuned” 

𝜆 = −𝜆 = 𝐿 𝑀  Λ

• 𝜆 , 𝜆 localized, 𝑇 𝑁 𝑁 ∼ 𝛿(𝑧)
• Bulk CC saturates NEC 𝑇 𝑁 𝑁 = 0

• De-tuned warp factor, 𝑒 = Λ   𝐿 sinh ∗

𝜕 log Ω  − 𝜕 log Ω = Λ        ⇒        3 𝐻 = 3 Λ
“De-Tuned” 

𝜆 = 6 coth ∗

𝜆 = −6 coth ∗
dS comes from warping!

Using RS warp factor, 
get 4d Minkowski!

Lesson:
• “Uplift” of bulk solutions to dS

with local objects (e.g. branes) 
requires global backreaction on 
warp factor.

Some Examples of dS

Kaloper, ’99; DeWolfe et al, ’99; Kim, Kim, ’99; 
Tye, Wasserman, ’00; Karch, Randall, ‘00

[Randall’s Talk]



Let’s examine some existing dS solutions through this lens…

• “Classical” dS Solutions* in Massive IIA with ±

𝑑𝑠 = 𝑒 𝑔  𝑑𝑥 𝑑𝑥 + 𝑒 𝑑𝑧 + 𝑒  𝑑𝑠

Ingredients:
• Warping
• Negative curvature 𝑀
• Localized branes O8±

• Romans Mass 𝐹
• Dilaton 𝜙

Cordova et al, ’18
Cordova et al, ‘19

3 𝐻 = 𝑅 𝑛 𝑛 + 𝐷 − 2  𝑛 𝑛 𝜕 log Ω 𝜕 log Ω − 𝛻 𝜕 log Ω  − Ω  𝑇  𝑁 𝑁

spacelike affine unit vector

Numerical Solutions (near O8 @ 𝑧 = 0):

𝑒 = 𝑐 +
𝐹

𝑐 
 𝑧 − 2 𝑐  Λ  𝑧 +  𝒪 𝑧

Etc… for 𝜙 𝑧 , 𝜆 𝑧

Lesson:
• “Uplift” of bulk solutions to dS

requires global backreaction on 
warp factor.

• Warp factor gains explicit dependence on Λ
• Dependence on Λ not necessarily localized

*Still some uncertainty about boundary 
conditions of fields at location of O8

Cribiori, Junghans, ‘19

Some Examples of dS



𝑑𝑠 = 𝑒 𝑔  𝑑𝑥 𝑑𝑥 + 𝑒 𝑔 𝑑𝑦 𝑑𝑦

Ingredients:
• Warping
• Ricci flat 𝑅
• Fluxes 𝐺 , 𝐹

• Localized branes O3, D3, D7
• Gaugino cond. on D7

GKP, ‘01
KKLT, ‘03

Questions:
• Where will homogeneous (not localized) violation of NEC come from?

• If warp factor plays a role in this constraint, then expect global backreaction
on warp factor 𝑒 ∼ 𝑒  ? (c.f. dS in RS)

Figure adapted from Baumann et al, ‘08

𝑑𝑠 =
𝑟

𝐿
 𝑔  𝑑𝑥 𝑑𝑥 +

𝐿

𝑟
𝑑𝑟 + 𝑟 𝑑𝑆

• Deep in throat ( AdS throat)

=
𝐿

𝜒
𝑔  𝑑𝑥 𝑑𝑥 + 𝑑𝜒 + 𝜒 𝑑𝑆 𝜕 log Ω − 𝜕 log Ω = 0

Ricci-flat No warp factor contribution in 
warped throat

Homogeneous NEC Violation?
• 〈𝜆𝜆〉: localized on/near D7-branes
• 𝐷3: localized in warped throat (NEC)
• 𝐺 = 𝐺 + 𝛿𝐺 [Shiu’s Talk] (NEC)

KKLT, ‘03

KKLT

Carta, Moritz, Westphal, ’19 
Gautason, Van Hemelryck, Van Riet, 19 

Hamada, Hebecker, Shiu, Soler, ’19



KKLT

𝑑𝑠 = 𝑒 𝑔  𝑑𝑥 𝑑𝑥 + 𝑒 𝑔 𝑑𝑦 𝑑𝑦 GKP, ‘01
KKLT, ‘03

3 𝐻 = 𝑅 𝑛 𝑛 + 2 𝑒  𝛻 𝐴 − 8 𝑛 𝑛  𝜕 𝐴  𝜕 𝐴  − 𝑒  𝑇  𝑁 𝑁

Fixed (at high scale?) by fluxes and O-
planes, does not contribute to dS ?

Ricci-flat Homogeneous NEC Violation?
• 〈𝜆𝜆〉: localized on/near D7-branes
• 𝐷3: localized in warped throat
• “Non-local” contributions from gauginos?

Figure adapted from Baumann et al, ‘08

• More generally…

KKLT, ‘03

Questions:
• Where will homogeneous (not localized) violation of NEC come from?

• If warp factor plays a role in this constraint, then expect global backreaction
on warp factor 𝑒 ∼ 𝑒  ? (c.f. dS in RS)

Ingredients:
• Warping
• Ricci flat 𝑅
• Fluxes 𝐺 , 𝐹

• Localized branes O3, D3, D7
• Gaugino cond. on D7



Summary
• Several different constraints on dS from higher dimensions

o GMN, GKP
o Raychaudhuri NEC: Non-positive curvature + trivial warping + NEC = no dS

3𝐻 = 𝑅 + 𝐷 − 2 𝜕 log Ω  − 𝜕 log Ω  − Ω  𝑇  𝑁 𝑁

• Raychaudhuri NEC has advantages:
o Not specific to particular background
o Local, not integrated: Must satisfy at every point
o Does not assume Einstein Equations
o Multiple Conditions: one for each choice of internal null vector
o Strong: Matter which “passes” other dS constraints doesn’t pass Raychaud. NEC

• Application of Raychaudhuri NEC to dS solutions gives some 
Take-Home Lessons:
o Positive, not negative, curvature is a way to get bulk solutions with dS
o “Uplift” of bulk solutions to dS with local objects (e.g. branes) requires global 

backreaction of warp factor.

• Would be interesting to see how this works for KKLT?
o Where will homogeneous (not localized) violation of NEC come from?
o If warp factor plays a role in the constraint, then expect global backreaction on warp 

factor.
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Apparent Horizons
Oppositely oriented affine null rays    (outgoing)     (ingoing)

Expansion ±  
 

±

Ex:
FRW Cosmology  𝑑𝑠 = −𝑑𝑡 + 𝑎 𝑡  𝑑𝑟 + 𝑟 𝑑Ω

𝑁± =
1

𝑎
, ±

1

𝑎
, 0, 0    

                          →      𝜃 =
2

𝑎
𝐻 +

1

𝑎𝑟
,     𝜃 =

2

𝑎
𝐻 −

1

𝑎𝑟

• For ,     

• For ,     “anti-trapped region”

• For ,     “apparent horizon”

Expansion 𝜃:
Rate of change of area 
perpendicular to bundle

“normal region”

“Anti-trapped”“normal”

𝐻

“apparent horizon”

𝑁𝑁



Expansions in Compact Space

±

𝑡, 𝜒,    𝛼

Expansions  ±
𝒄𝒐𝒕 𝝌

𝑹

• Diverge at the poles 
• positive for , negative for 

(and visa-versa for )
• ± on equator

• Simple Example: an 

Integral of the expansion vanishes:
 

±

 

 

 
±

 
±

Expansion is a total derivative 
on compact space

Equal amounts of positive 
and negative expansion.



Expansions in Compact Space

±

𝑡, �⃗�,    𝜒,    𝛼

Expansions  ±
𝒄𝒐𝒕 𝝌

𝑹

• Extend this example: FLRW 

• Both & are positive in a narrow band below 
the equator 

• Similarly, both & are positive in a narrow 
band above the equator as well.

Anti-trapped region?

• The boundary to these regions has and 
(and visa-versa)

Apparent horizons?

Since 𝐻 𝑅 ≪ 1, expect 
anti-trapped region to be 
quite “thin”

These apparent horizons are also (inner past) 
trapping horizons when

ℒ 𝜃 > 0  ⇒    3�̇� +
1 + 3𝐻𝑅

𝑅
> 0

Das, Haque, Underwood, ‘19



Horizons in Compact Space

• True more generally – any direct product of 
FLRW with a compact space will develop an 
anti-trapped band

𝑑𝑠 = Ω 𝑦 (−𝑑𝑡 + 𝑎 𝑡  𝑑�⃗� + 𝑔 𝑦  𝑑𝑦 𝑑𝑦

• Anti-trapped region arises from shear
→ null rays at fixed co-moving coordinates �⃗� expand 

due to the expansion of the universe
→ but expansion 𝜃± is a scalar, cannot be decomposed 

into “parallel” and “shear” components.

• Null rays can traverse from one end of compact 
space to the other in finite (affine) time
→ What is the physical significance of the anti-trapped 

regions and apparent horizons?
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