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de Sitter vacua in string theory

Three-step procedure [Kachru, Kallosh, Linde, Trivedi ’03]:

1. warped IIB with CS-moduli stabilized by three-form fluxes including a

region with strong warping [Giddings, Kachru, Polchinski ’01]

described by the Klebanov Strassler throat [Klebanov, Strassler ’00]

→ large hierarchy of scales

2. Stabilize Kähler moduli by non-perturbative effects

→ supersymmetric AdS-vacuum

3. Supersymmetry breaking by an D3-brane at the bottom of the throat

→ exponentially suppressed uplift to dS due to strong warping
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Warped CY
• Metric: ds2

10 = e2Ads2
4 + e−2Ads2

CY3

• Fluxes fix the sizes of the 3-cycles:

∫
AI

F3 = M I ,

∫
B I

H3 = KI

• Choose a configuration such that one cycle is exponentially large.

→ Klebanov-Strassler throat.
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Deformed conifold
• In the region of high warping, the six-dimensional geometry is given

by the deformed conifold.

• embedding of the deformed conifold into C4:

4∑
a=1

z4
a = S .

• Replace the singularity of the conifold (S = 0) by a S3 of size |S |
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can be described by a quadric in C4,

~ (w~ = o. (1.1)

It is not hard to show, as we shall do presently, that this quadric describes a cone
whose base is S

2 >< S3. The singularity at the apex can be repaired in two different
ways. The first is by deformation: eq. (1.1) is deformed to

E(wA)2=e2, (1.2)

with e a nonzero constant. This yields a smooth manifold ~ and has the effect
of replacing the node by an S3. The other consists of first making a linear change
of variables so as to write (1.1) in the form

XY—UV=O, (1.3)
and then making a small resolution by replacing eq. (1.3) by the pair of equations(~~‘)=~, (1.4)

in which (A
1, A2) are not both zero. Eqs. (1.4) therefore obtain in C4 X C~.The

resulting manifold ~ is smooth, the node having been replaced by a = 52• J~is
less apparent but nevertheless true, if global issues are properly attended to, that
the resulting manifolds are Kähler and have vanishing first Chern class. Thus it is
possible to pass continuously from one Calabi—Yau manifold to another,

(1.5)

even though .A and ,d’~’ are topologically distinct (see fig. 1).

/S~\ ~

Fig. 1. Local neighborhoods of the node .~ C.A’~, its small resolution ~ c.~, and its deformation
~ c.I’~.~ is singular while both .~#and .#~ are smooth.

→

[Candelas, Ossa ’89]

• S is a complex structure modulus of the deformed conifold.
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Potential for S
• Fluxes M and K along the two three-cycles of the conifold generate

a potential VKS(S) [Douglas, Shelton, Torroba ’07, ’08]:

S

V(S)

(dotted without warping effects)

• (Supersymmetric) minimum at sKS = Λ3
0 exp

(
−2πK

gsM

)
.

• Relative warp factor: Λ0/ΛIR ∼ |sKS |
1
3 .

→ Large hierarchy for suitable values of K , M, and gs [Giddings et al. ’01].
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Mass of S

• The mass of S at the minimum sKS can be computed by

m2
S ≡

1

M2
pl

GSS̄∂S∂S̄V
∣∣∣
S=sKS

• Including the effects of the warping we find:

m2
S ∼

s
2/3
KS

α′2

→ If sKS is exponentially small, S becomes exponentially light.

→ S cannot be integrated out before uplifting with an anti-brane.

Comparison with Kähler moduli masses: [Blumenhagen, Kläwer, Schlechter ’19]
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D3-brane in the KS throat

• Place an anti-D3 brane at the bottom of the throat

• Positive contribution to the energy → uplift to de Sitter
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D3-brane in the KS throat
• The D3-brane gives a contribution to the potential:

VD3(S) ∝ e4A ∝ |S |4/3

gs(α′M)2

with e4A the warp factor of the Klebanov-Strassler solution.

• Plot of the potential:

S

V(S)

(dotted lines represent the KS potential and their superposition)
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Stability with one D3-brane
• A stable minimum of VKS + VD3 with S > 0 exists iff

gsM
2 > M2

min with Mmin =
8

3

√
πc ′c ′′ ≈ 6.8 .

(see also [Blumenhagen et al. ’19])

• Superposition of the potentials:

gs M = 7

gs M = 5

gs M = 12

S

V(S)

8 / 18



Klebanov-Strassler black holes
• Recently: Numerical construction of a KS black hole [A. Buchel ’18]

• Holographically dual to a theory with spontaneously broken chiral
symmetry at finite temperature.

• Exists only if its energy density is below a critical value:

E < EχSB

• For higher energies there exist only Klebanov-Tseytlin black holes on
the singular conifold with S = 0 and no chiral symmetry breaking.

• Translate E into D3-units [Bena, Buchel, SL ’19]:

gsM
2 > γ2

BHND3 with γBH ≈ 4.16

→ Same functional form as our analytic bound.
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Implications on the maximal hierarchy
• Warping creates a hierarchy of scales

h = ln
Λ0

ΛIR
=

2πK

3gSM

• Tadpole cancellation:

M IKI + Q loc
3 = 0 ,

where Q loc
3 is the D3-charge of localized sources.

• Stability of the KS throat + tadpole cancellation:

h =
2π

3

MK

gsM2
<

2π

3

∣∣Q loc
3

∣∣
M2

min

≈ 0.045×
∣∣Q loc

3

∣∣
• KKLT requires h & 20 ⇒

∣∣Q loc
3

∣∣ & 500
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Tadpole cancellation in IIB

• For CY orientifolds with O3-planes and D3-branes:

Q loc
3 = ND3 −

1

4
N03

• Largest number of O3-planes: T 6/Z2: Q loc
3 ≤ 32

→ No large hierarchy possible.

• O7-planes and D7-branes:

Q loc
3 =

1

24
χ(D7) +

1

6
χ(O7)− (gauge)

• χ : Euler number of the 4-cycles wrapped by the D7s/O7s.

→ Large tadpole possible, but D7-moduli need to be stabilized.
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Tadpole cancellation in F-theory
• Tadpole cancelation for F-theory on a Calabi-Yau four-fold CY4 with

four-form flux G :

ND3 +
1

2

∫
G ∧ G =

χ(CY4)

24

• χ(CY4): Euler number of the CY → can be very large
(largest know example [Klemm et al. ’97]: χ = 1 820 448 = 24 · 75 852)

• But: Large χ implies a lot of moduli:

χ(CY4) = 6(8 + h1,1 + h3,1 − h2,1)

• h3,1: complex structure of CY4 → must be stabilized by flux:∫
G ∧ G = O(h3,1) ?
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The Tadpole Conjecture

• Any choice of four-form flux which stabilizes all h3,1 complex
structure moduli satisfies

1

2

∫
G ∧ G ≥ αh3,1

with α ∼ O(1).

• Implications (for h1,1 small):

• α <
1

4
: Moduli stabilization generically possible.

• α =
1

4
: Moduli stabilization possible but no large hierarchies.

• α >
1

4
: Moduli stabilization not possible in the large h3,1 regime.
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Can this be true?

• Generic four-form flux G : F-term condition:

DiW = 0

→ h3,1 equations to stabilize h3,1 moduli.

• But: Are these conditions always all independent,

in particular when

∫
G ∧ G � h3,1 ?

• Very difficult to answer (in the large h3,1 regime).

→ Explicit example: K3× K3.
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K3× K3 as a toy model

• [Aspinwall, Kallosh ’05]:
All complex structure moduli can be stabilized within the tadpole
bound (and all Kähler moduli by instanton effects).

• Moreover:
χ(K3× K3)

24
= 24

too small for our purposes.

• [Braun et al. ’08]:
All (Kähler + complex structure) moduli can be stabilized by fluxes
(“114 equations to stabilize 114 moduli”).

• Here: Can we stabilize all moduli within the tadpole bound?
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Moduli stabilization on K3× K̃3
• Flux matrix: expand G ∈ H2(K3,Z)× H2(K̃3,Z):

G = G IJαI ∧ α̃J , αI ∈ H2(K3,Z) , α̃J ∈ H2(K̃3,Z)

• [Braun et al. ’08]: Moduli stabilization can be described in terms of

N I
J = G IKdKLG

MLd̃LI , with dIJ =

∫
αI ∧ αJ

• Minkowski vacuum: N I
J is diagonalizable with non-negative

eigenvalues {a1, a2, a3, b1, . . . , b19}
(ai : positive-norm eigenvectors, bi : negative-norm eigenvectors)

• No flat directions: The sets {a1, a2, a3} and {b1, . . . , b19} are
pair-wise distinct.

• bi = 0: either flat direction or singularity.

• Tadpole:

∫
G ∧ G = tr(N)
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Moduli stabilization on K3× K̃3

• Use genetic algorithms to search for integer matrices G IJ which
minimize tr(GdGTd).

• See Johan’s talk for more details on the search ...

• Our result:
1

2

∫
G ∧ G ≥ 30

unless the potential has flat directions or K3×K3 becomes singular.

→ No moduli stabilization for smooth K3× K3.
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Conclusions

• With a large hierarchy the KS-modulus becomes exponentially light.

• One D3 makes a Klebanov-Strassler throat unstable unless

gsM
2 > γ2ND3

• Tadpole-cancellation: Constraints on the hierarchy.

• Moduli stabilization with fluxes for many moduli?

Thank You!
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