
Introduction GCG compactifications NP effects The P2 example Outlook

Kähler moduli stabilization from 10d

Nicolas Kovensky - Southampton U. & IPhT (CEA,Saclay)

dS constructions in String Theory - 10 Dec 2019

Based on ArXiv:1908.01785 (JHEP),
in collaboration with I. Bena, M. Graña and A. Retolaza.



Introduction GCG compactifications NP effects The P2 example Outlook

Plan for the talk

1 Introduction

2 GCG compactifications

3 NP effects

4 The P2 example

5 Outlook



Introduction GCG compactifications NP effects The P2 example Outlook

Intro: the three-step KKLT1. proposal for de Sitter in IIB

1 Start with a GKP N = 1 compactification:

Geometry: Mink4× conf. CY3.

3-form fluxes fix the complex structure moduli.

2 Include (NP) gaugino condensation on a stack of D7-branes
wrapping internal 4-cycle.

In the 4d EFT, this leads to a SUSY AdS4 solution.

All moduli fixed + small (< 0) cosmological constant.

3 Lift this Λ to (small) positive values by some source of
positive energy:

D3-branes at the bottom of some throat.

1[Kachru, Kallosh, Linde & Trivedi ’03]
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Main motivation

Step 2: non-perturbative effects

Fix Kähler moduli (ρ = iσ) + get N = 1 AdS4

Usually, this is described in the 4d EFT...

Wtotal = W0 +WNP ≈W0 +A exp (iaρ) ,

with W0 from fluxes. Assuming K = −3 log [−i(ρ− ρ̄)] one gets a
susy AdS4 solution with

W0 = −Ae−aσ∗
(

1 +
2

3
aσ∗

)
.
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Main motivation

Step 2: non-perturbative effects

Fix Kähler moduli (ρ = iσ) + get N = 1 AdS4

Usually, this is described in the 4d EFT...

Can we understand this from 10 dimensions ?

How does the internal geometry look like ?

Is there a geometrization of the gaugino condensate ?

Is this a particular case of a more general procedure ?

Can this help for describing the uplift to dS ? (*)
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Other recent papers with related goals

[Moritz, Retolaza & Westphal ’17].

[Hamada, Hebecker, Shiu & Soler ’18 (x2) and ’19].

[Kallosh ’19].

[Gautason, Van Hemelryck, Van Riet & Venken ’19].

[Carta, Moritz & Westphal ’19].

[Kachru, Kim, McAllister & Zimet ’19].
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GCG for type II susy compactifications

Consider a compactification with

ds2
10 = e2A(y)gµν(x)dxµdxν + hmn(y)dymdyn.

Then,

such that the susy generators are

ε1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− , ε2 = ζ+ ⊗ η2
∓ + ζ− ⊗ η2

±

where the upper (lower) sign is for type IIA (IIB), and

2∇νζ− = ±µγνζ+ , Λ4d = −3|µ|2.
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GCG for type II susy compactifications

In general: SU(3)×SU(3) structure, described by the polyforms2

Ψ± ≡ −
8i

||η||2
∑
p

1

p!
η2†
± Γm1...mpη

1
+ dy

m1 ∧ · · · ∧ dymp .

The susy conditions (zero δψM and δλ) read (SF)

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1

dH

(
e2A−φIm Ψ1

)
= 0

dH

(
e4A−φRe Ψ1

)
= 3e3A−φRe (µ̄Ψ2) + e4A ∗6 F

Here
dH = d−H∧ , Ψ1 = Ψ∓ , Ψ2 = Ψ±.

2[Hitchin ’02, Gualtieri ’04, Graña et al ’05-’06]
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GCG: the 10d superpotential

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 (∗)

dH

(
e2A−φIm Ψ1

)
= 0

dH

(
e4A−φRe Ψ1

)
= 3e3A−φRe (µ̄Ψ2) + e4A ∗6 F

These can be obtained as F- and D-flatness for3

W10d =

∫
M6

〈Z, d T 〉,

with µ ∼ 〈W10d〉. The holomorphic fields are

Z = e3A−φeBΨ2 , T = eB(C + ie−φRe Ψ1).

3[Koerber & Martucci ’07-’08]
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GCG: examples with SU(3) structure

Here η2
+ = −ieiθη1

+ and in type IIB

Ψ2 = Ψ− = ie−iθΩ , Ψ1 = Ψ+ = e−iθ exp(−iJ).

For D3/D7 susy: θ = 0 , For D5 susy: θ = π/2.

while for type IIA (D6 susy) Ψ1 and Ψ2 exchange roles. Also,

WD3/D7 = −
∫
M6

Ω ∧G3,

WD5 = −
∫
M6

Ω ∧
(
F3 + ie−φdJ

)
WD6 =

∫
M6

(J − iB) ∧
(
F4 + id[e−φRe Ω]

)
.

These describe the usual CY and conformal CY compactifications.
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Including NP effects4

Let us add a D-brane wrapping an internal cycle Σ.

Calibrated cycle ⇒ susy WV theory ≈ N = 1 SYM ⇒ we
assume 〈λλ〉 6= 0 in the IR from strong coupling effects.

But

SDp|F2 = − 1

8π

∫
Σ
e−φRe Ψ1

∫
d4x
√
−gTrF2 + WZ term,

giving a holomorphic coupling

τ =

∫
Σ

(C + ie−φRe Ψ1)|Σ =

∫
M6

〈T, δ9−p[Σ]〉.

Take W10d →W
(0)
10d +WNP ∼W (0)

10d +A exp [−aτ(T )].

⇒ This will modify (at least) the 1st susy condition.

4[Koerber & Martucci ’07, Dymarsky & Martucci ’10]
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Including NP effects: consequences

The new susy condition is

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 + 2i〈S〉δ9−p[Σ].

Consequences for gµν ≡ Mink4

We see that δ9−p(Σ) – the Poincaré-dual of the cycle Σ –
becomes trivial in co-homology.

⇒ Σ becomes trivial itself: it shrinks!a

This is a geometric transition, where the localized source
disappears, leaving only flux.

a[Garćıa-Valdecasas Tenreiro & Uranga ’17]
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Including NP effects: consequences

The new susy condition is

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 + 2i〈S〉δ9−p[Σ].

Consequences for gµν ≡ AdS4

For µ 6= 0,

0-form comp: Im Ψ1 = 0 restricts the relative phase
of η1,2. For SU(3) structure this only leaves D3/D7
susy or ”static SU(2)”.

(9-p)-form comp: Due to the CC term δ9−p(Σ) is not
trivial anymore

⇒ this stops the cycle from shrinking!

⇒ we find a 10d qualitative manifestation of σ stabilization.
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Including NP effects: consequences

The new susy condition is

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 + 2i〈S〉δ9−p[Σ].

Consequences for gµν ≡ AdS4

For D7-branes ⇒ 9− p = 2 (and Im Ψ1 not localized)

⇒ We need a 1-form in Ψ2

⇒ SU(3) structure can not be enough (*). We need a more
general structure (geometry) ⊂ SU(3)×SU(3).

We propose a dynamical SU(2) structure in order to

distinguish ‖ and ⊥ directions w.r.t to Σ4.

re-obtain the conf. CY geometry at long distances.
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Including NP effects: an observation

By defining the generalized flux5

G = F + ie−4AdH

(
e4A−φRe Ψ1

)
the 3rd susy Eq. for µ = 0 can be recast as an ISD condition

∗̃6G = iG

SU(3) str. and D3/D7 susy: the usual for G3 = F3 + ie−φH3.

the CC term and (probably) also the 〈λλ〉 give new
contributions

⇒ IASD ”flux”.

5[Lüst, Marchesano, Martucci & Tsimpis ’08]
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Including NP effects: an observation

By defining the generalized flux5

G = F + ie−4AdH

(
e4A−φRe Ψ1

)
the 3rd susy Eq. for µ = 0 can be recast as an ISD condition

∗̃6G = iG

SU(3) str. and D3/D7 susy: the usual for G3 = F3 + ie−φH3.

the CC term and (probably) also the 〈λλ〉 give new
contributions

⇒ IASD ”flux”6.

5[Lüst, Marchesano, Martucci & Tsimpis ’08]
6[Baumann et al ’10, Dymarsky & Martucci ’10]
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Including NP effects: remarks and questions

At least w.r.t. to this equation, the procedure is very general:
it is not restricted to the KKLT scenario and
D7-branes/E3-instantons. Can we find other examples?

Can we say something at the quantitative level?

For a KKLT-like situation, can we recover the critical value
σ∗?

We will try to answer some of these questions by studying a
particular (somewhat simple) example.
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Including NP effects: remarks and questions

At least w.r.t. to this equation, the procedure is very general:
it is not restricted to the KKLT scenario and
D7-branes/E3-instantons. Can we find other examples?

Can we say something at the quantitative level?

For a KKLT-like situation, can we recover the critical value
σ∗?

We will try to answer some of these questions by studying a
particular (somewhat simple) example7.

7[Heidenreich , McAllister & Torroba ’ 10]
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Dynamic SU(2) structure...

One generalizes the set of inv. tensors

{J,Ω} −→ {Θ, J2,Ω2}

Here
η2 †

+ η1
+ = i cosϕ , η2 †

− γmη
1
+ = i sinϕΘm.

The angle ϕ is position-dependent and characterizes the angle
between η1 and η2: the deviation from SU(3). Thus,

Ψ+ = e
1
2

Θ∧Θ̄ ∧
[
cosϕ

(
1− 1

2
J2

2

)
+ sinϕ Im Ω2 − iJ2

]
,

Ψ− = Θ ∧
[
sinϕ

(
1− 1

2
J2

2

)
− cosϕ Im Ω2 + iRe Ω2

]
.
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... and P2-cone geometry

We take a non-compact example: the Σ4 at the bottom of the
resolution of

C3/Z3 : zi ∼ e2πi/3zi , u1,2 =
z1,2

z3
, z =

1

3
(z3)2,

with radial coordinate

ρ2 = (3|z|)2/3
(
1 + |u1|2 + |u2|2

)
, r = ρ3/3→near Σ4 rz.

The cycle is at z=0,

and we have the susy conditions

d
[
e3A−φ sinϕΘ

]
= 2iµe2A−φ (cosϕJ1 + J2)−2i〈S〉δ2[z],

d
[
e2A−φ (cosϕJ1 + J2)

]
= 0.

[Loc. term missing before]
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Solution: regimes and Matching

Near-Σ4 region:

everything depends on r ≈ |z|.
at first order the δ-term wins: we can approximate µ = 0.

Θ = F (r)
dz

z
and susy cond.⇒ F (r) sinϕ = c = 〈λλ〉

Now extend the definition far away:

Θ = r
dz

z
→ ∂r2

r
.

Then d [sinϕΘ] = 2iµ (cosϕJ1 + J2) implies

F (r) sinϕ = µe2L2(r)

Matching: 〈λλ〉 = µe2l2
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Re-interpreting the matching condition

〈λλ〉 = µe2l2

Now we can use

µ = eK/2WKKLT =
W0 +WNP

(2σ)3/2
,

together with8

WNP ∼ 〈λλ〉 ∼ Ae−aσ∗ and e2l2 ∝
√

2σ.

⇒ the matching condition implies

W0 = −Ae−aσ∗ (1 + # a σ∗)

8Constant: e4l2 ∼
∫

Σ4
eφ−4A cosϕJ2

2 . (functions constant along Σ4)
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Conclusions and outlook

By trying to include the 〈λλ〉 superpotential in 10d and studying
its back-reaction we argued that

the presence of the CC term stops the shrinking of the cycle
wrapped by the branes.

for D7’s SU(3) structure is not enough to describe the internal
geometry.

this 10d description of Kähler moduli stabilization can be
made precise by matching solutions near and far away from
the branes.

Can we find a complete solution?

Can we compute the constant #? Is it model dependent?

Can we use this to describe other small susy AdS4 solutions?

Can we use this say something new about the uplift do dS?
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Thank you for your attention! Any questions?
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