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The main result:

In M-theory/string theory inspired d=4 N=1 supergravity including
a nilpotent multiplet (representing pseudo-calibrated anti-Dp-
branes) we found a relatively simple regular procedure to
construct stable de Sitter minima in theories with many moduli
and many different Kahler potentials and superpotentials
associated with M-theory, type IIA and type lIB string theory.



The necessary conditions are:

1) The model requires a progenitor: a supersymmetric Minkowski minimum without flat
directions. This happens if 3iW = 0 and W = 0 at a finite point (or a series of disconnected
points) in the moduli space, W being the superpotential of the model.

2) The progenitor model has to be deformed: first, a downshift to a supersymmetric AdS
minimum, via a parametrically small deformation of W. This can be achieved by adding a
small constant (or a small function) AW to W .

3) Anilpotent chiral multiplet has to be added to the original model to uplift AdS to a dS
minimum. If the supersymmetry breaking scale is parametrically small, then the resulting
potential inherits the shape of the original potential in the vicinity of the Minkowski
minimum, i.e. the final dS state is also a minimum.



The main difference with many recent attempts to find dS minima in
4d ‘N=1 string theory motivated supergravity: We are not randomly

scanning around for dS solutions, but we simply construct them via
the mass production mechanism, with the guaranteed outcome

example
de Carlosa, Guarino, Moreno, 0911.2876
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Susy breaking Minkowski vacua in 3-moduli isotropic STU
geometric flux models, mostly tachyons

Danielsson, Van Riet 1804.01120

With geometric fluxes, with an increased
number of free parameters, it turns out to
be possible to find metastable dS-vacua.
They are scarce, but they exist.

Typically the dS vacua hide in very small
corners in the landscape of allowed fluxes

Damian et al. 2013

In all our new models we start with Minkowski susy minima, there are no tachyons! Flat
directions (might lead to instability after the uplift) are easy to avoid. All our new 7-moduli
non-isotropic S T, Uy models originating from type IlA, type IIB string theory start with
Minkowski susy minima without flat directions and lead to dS minima, as predicted, no fine

tunig required!

We also found dS minima in 4d, N=1, 7-moduli supergravity
directly originating from M-theory



KKLT 2003, 2014

K=-3ln(—i(T-T))+XX
or K:—?)ln(—i(T—T)—XX)
W =Wy + Ae*! + 42X

KKLT anti-D3-uplift of AdS
generates dS minimum

Only after | have run a Mathematica nb, | saw
the minimum in AdS and in dS after uplifting

It was not predicted, but was one of our many attempts to find a relevant K and W.
It gave us a dS minimum in 4d supergravity.

It was our first attempt to address the observational fact that 4d General Relativity
with a positive extremely small CC fits the data.



Not much new (KL, LVC, ...) till very recently 2018-2019:
mass production of dS vacua in type IIA and type |IB

dS minima in multiple moduli models are predicted analytically,
for specific choices of Kand W, in a 3 step procedure.

The goal of Mathematica nb’s is to check and illustrate the predictions.

. Maximal supersymmetry
My favorite example: spontaneously broken to the

minimal supersymmetry

Seven-moduli [SL(2,R)]” model

M-theory (11d supergravity with local sources), string theory (10d supergravity with
local sources), N=8 supergravity with duality symmetry

E77)(R) D [SL(2,R)]

Perturbative UV finiteness? 7 benchmarks for future primordial
gravitational wave detection, LiteBIRD



4d Mass Production of dS vacua

ds .
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In our examples
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1) Progenitor model quiqf? =V, 1-973” > 0
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Type IIA motivated
4d Seven-moduli [SL(2,R)]” model

7
K =— Zlog (—i(®" — @"))

(I)i — {S7 T17 T27 T37 U17 UQ? UB}

7 | o
W — f6 _|_ Z(Aieiaiq)z . Bielbiq)l)

6-flux and KL Double exp W

Free parameters

As=1] Ap, =31 A, =32 | Ap, =33 | Ay, =11 | Ay, =12 | Ay, =13
ag = ar, =21 | ar, =22 | ar, =23 | ay, =041 | ay, =042 | ay; = 0.43
bs = by, =31 | by, =32 | byy =33 | by, =11 | by, =12 | by, =1.3
So=1|Tio=11|Tho=12|T30=13| U 0=51|Uso=52 | Us =53
7 B,
solve 7+1egs. OW=0andW=0 . i
f Stage 1, Minkowski, done
Afe = ~107° Stage 2, AdS, done
4 4
Vit - G ’““T o e EL;, TET A contribution from the nilpotent
m({Ti)m(To)m(Ts) - Im(S)Im(T2)Im(Ts multiplet X
43 1 = %
T T (S)Im(T)Tm(Ty) | Tm(S)Tm(T)Im(Ts)’ K+ Kyg(®,0)XX
Anti-D6 wrapped on various 3-cycles W + MQX

pi = py = py = pg = 5.49028 - 10719

Stage 3, dS, done



7 X 7 mass matrix V¢i¢j in dS

1.89809 - 10° —6.19837 - 1010 —5.36624 - 10710 —4.56280 10710 —1.30375-10"? —1.52470-10"° —1.74268-10""°
—6.19837-107 10  1.30911-10"% —7.38721-10"'0 —6.46383-10"10 —1.24516-10"° —1.44398-10"° —1.64104-10°
—5.36624 - 10710 —7.38721.1071% 9.41667-10"° —5.68241-10"10 —1.13520-107? —1.31758-10"9 —1.49834.10"°
—4.56280 - 10710 —6.46383 10710 —5.68241-1071° 6.37888-107° —1.04022-10"° —1.20871-10"9 —1.37571-10"9°
—1.30475-1079 —1.24516-10"2 —1.13520-10"2 —1.04022-10"2 9.96472-10"% —5.36645 1010 —5.74900 - 10710
—1.52470 - 1079 —1.44398 -107°? —1.31758 -10" 2 —1.20871-10"? —5.36646-10"'0 1.37262-1073 —6.10079 1010

—1.74268 - 10792  —1.64104-10"9 —1.49834-10"9 —1.37571-10"° —5.74900-10"10 _6.10079- 1010 1.80465 1023

The diagonal values are very close to the ones in Minkowski and in AdS minima,
with values of order 10-3- 10-. All of the off-diagonal terms are many orders smaller,
ranging from 109 to 10-°,

It is therefore not surprising that all mass square eigenvalues in dS
are positive, as predicted!

dS . K
Vi~ = mizg’" my ;>0




Mink dS
m{ | 1.80473-107° | 1.80465 1073
ms | 1.80473-107° | 1.80465 1073
ms | 1.37269-107% | 1.37262-107°
mji | 1.37269-107° | 1.37262 1073
m2 | 9.96519-10~% | 9.96472-1074
mé | 9.96519-107% | 9.96471-1074
m# | 1.30924-10~* | 1.30911-10~*
mé | 1.30924-10~* | 1.30911-10~*
mé | 9.41773-107° | 9.41667 - 10~°
m?, | 9.41773-107° | 9.41660-10~°
m? | 6.37973-107° | 6.37888-107°
m?, | 6.37973-107° | 6.37883-107°
m#, | 1.89843-107° | 1.89809 -107°
m?, | 1.89843-107° | 1.89806-107°

The 2d and 3d plots of the potentials
at all 3 stages and in all possible slices
in multimodule space we have in the
Notebooks. We show them in a simper
case of the STU model.

The eigenvalues of the mass matrix for the seven-moduli type example. The mass shift is
small, but noticeable, when going from Minkowski to dS. One can also notice, as predicted

by the mass production procedure, that in dS the masses of scalars and pseudoscalars are

not exactly equal anymore, as was the case in Minkowski.



K

W =

Type IIB models with KL double exponents in W

:—1og</Q/\Q> log (~i(r — 7)) - 2log (Vi)

/Gg/\Q.

volumes of the two-cycles

:—/J/\J/\J

complexified Kahler moduli space

dwkt Litk,

T% = T; + ZXZ?
o MNVg
Ot

volumes of the four-cycles

We study stabilization of the Kahler moduli
with 2- 3-moduli examples

K = —2log (Vs(73))

Ve(Ti) = %\/7'_1 (7'2 - gﬁ) :
Vo(r) = a (v (2 = Br) —9m3%)

1 1/2
V(j(Ti) = (ﬁ71[67-2_71”27'3_7'1]> N

1

VG(Ti) == 3—\/5

(2[7‘1 + 7+ 27‘3]3/2 — [ + 27'3]3/2 —

)

K3 fibration models, a CICY model,
multi-hole Swiss cheese mode

W =Wy + Z A@@ia@@ — Bq)eibq’q)
S=ST.U

7‘1:—1(3—5), TQZ—i(T—T), TgZ—i(U—U)



K3-fibration with two moduli
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Stage 1,2,3

Mink dS

m? | 5.22564-1072 | 5.21884 1072

ms | 5.22564-1072 | 5218751072

m3 | 1.38346 - 107° | 1.36014 -107°

mj2 | 1.38346-107° | 1.35926-107°

Eigenvalues of the mass matrices in
Minkowski and dS. In this model and
for our choice of the parameters, the
mass splitting between the fields and
their axionic partners is clearly visible,
after moving away from Minkowski
space.

Amazing agreement between
theoretical predictions
and Mathematica examples!



A complete set of 3D plots of the scalar potential for the
K3 fibration on CPf ; 5,

On top we show the overall shape of the potential, and
below a close-up of the minimum in AdS and dS case.



In some cases large downshift and uplift may
strengthen stability

Example 1: A single field KL model

Original supersymmetric Minkowski
vacuum

After a very large downshift and uplift,
the barrier is 3 orders of magnitude
higher, SUSY is strongly broken, but dS
is stable

After an extremely large downshift and
uplift, the minimum is strongly shifted,
SUSY is very strongly broken, but the
barrier is even higher, and dS remains
stable



Example 2: KL model and STU model

KL model after a very large
downshift and uplift

STU model after a very large
downshift and uplift

STU model after an additional
large uplift






complex scalars,
are coordinates of
the coset space

SL(Q,R)} 7

(b, by, by, bs) = (1,0,0,7) L3605

We study M-theory compactification on a generalized twisted 7-
torus

X7

T7 Betti numbers

:ZQXZQXZQ

in the presence of a 7-flux, metric fluxes, local sources, like branes and O-planes, and
KK6 monopoles, KKO6-planes and M-anti-M-branes. The effective four-dimensional

supergravity has 7 chiral multiplets whose couplings are specified by the G:-structure
of the internal manifold.

The effective K, W was obtained by Dall’Agata, Prezas, 2005, using the ‘democratic form’ of
11d supergravity pseudo-action where the potentials and the dual curvatures both appear.

7
i ] ]
K= =3 log (<i(@" =) W = g7 + Gy + 5 M;;'®
k=1

M-theory, simple and elegant 7 elements 21 elements
Mz’z’ = 0, V1
TG
Related model of lIA, IIB supergravity with local sources on X6

:ZQXZQ



Derendinger, Adolfo Guarino, 2014 Rederived and generalized Dall’Agata, Prezas, 2005
M-theory beyond twisted with KK6 monopoles (KKO6-planes)
Effective M-theory interpretation for non-geometric type IlA flux vacua
&' = {5, T1, Uy}, I,J=1,2,3.
T Tl T2T3
17

In type IIA ww # 0 = Net charge of KK5 (KKOb5) sources

Wiy = Wriralme=o0 + ¢ + S Tyed®

In M-theory ww#0 = Net charge of KK6 (KKO6) sources

Scherk-Schwarz metric w-flux along the seven-dimensional internal space Xz
3 3

WM—theory = Qag — bO S + Z CéK)TK - Z al(K) UK

3 3 3
Z (&) U1U2U3 Z (1J) Z (K) ]
K=1 I,J= 1 K=1 L 21
3
TTT
- S g e
K=1

In our M-theory examples we use only terms even in moduli, but we add a non-perturbative exp

E Akeiakq)k
1=k



7 .
— Z log (—i(CIDi — 51))
W = gs + M DD +ZA @i’

®' = {8, T, Uy}, I,J=1,2,3

To find a supersymmetric Minkowski minimum we must have W =0 and W’ = 0.
The first condition can be satisfied by a proper choice of g,. The condition W =0

reads
—ia; A;e P = M, ;®7
The solution is A; = iai_le_i“"’q)’iMijCI)j

If we want to have a susy Minkowski minimum at ®J, we just use the parameters
A, given by this equation. The only problem is to avoid flat directions. In the
previous method (double exponents for each moduli) there were no flat
directions by construction. In the new setting one should check it, and we did it.



Model 1
Wy = g7 + b8 SUx + CHUT,

_|_AS€1CLSS _|_ Z ATI eiCLTI TI _|_ Z AUI eiaUI T]
parameters ! !

So [1.0]] as | 1.0 ||[C [0.11 || C°?| 0.32
Tio|1l1l||ar, | 1.1 [|[C*]0.12(C*°| 0.33
Too|12]|ar, | 1.1 |[|[C°]0.13 | b" | 0.55
Ts0|1.3 || ar, | 1.1 [|C*"]0.21 (] b° | 0.60
Uol|b1lay, | 0.51(|C**[0.221]| b° | 0.65
Uso| 52| ay, | 0.52 (| C*° [0.23 || Agr|5-107"
Usol| 5.3 av, | 0.53 (| C°" [031 || p* [9-1077

Masses of all 7 moduli before and after a small uplift

(omitting the axion masses, which are similar)

mia mo ms my ms me mr

Mk | 0.6421 | 0.4700 | 0.3216 | 0.1757 | 0.1406 | 0.1129 | 0.08219

dS | 0.6427 | 0.4705 | 0.3218 | 0.1758 | 0.1407 | 0.1130 | 0.08227




Model 1 and tadpole conditions:

o't + b/ =0
CIJCJK + CIchJJ —0
One can satisfy these conditions by taking into account sources, such as KK monopoles,

but one can also satisfy these condition by making a slight modification of the previous
choice of parameters C” withI # J and C!, keeping all other parameters intact.

This changes the masses in our table, but the susy Minkowski stays at the same values
of the moduli, and the mass matrix remains positively definite.

ma mo ms My ms me mr

Mk

0.3006

0.1641

0.1179

0.07467

0.06229

0.03988

0.02517

dS

0.2997

0.1637

0.1176

0.07449

0.06227

0.03976

0.02513




Model 2 without S exponent:
Wy =g7 + b5 SUx + CH U T,

_I_E :ATIelaTITI i E :AUIelaUIUI
I I

Model 3 without U exponents:
I U UxUs
Ur

—I—Aselass _|_ ATI eICL’I“I TI )

W3 =g7 + —I—bKSUK—I-OIJU[TJ

Model 4 without T and U exponents:

CLI U1U2U3
Ur
C[TlTQTS

17

Wy = g7+ + K SUK + CYU T,

i i AS@iaSS ,



Model 5 in type IIB theory without any exponents
o U UxUs
Ur
+ S5 (' Ur + b3 Uy Uz Us)
+ Tk (C'H U — 2 UL UL Us)

— STk (dK — DK —UlUZU?’)
Ur

Wy = ag +

Parameters: same as in Model 1, plus additional ones

vt o055 CH =011 || C?t|] o0.21]|C?t] 0.31]ldt] 5.1
b1 0.60 || C*| 0.12|| C%4|—-0.22|| C??] 0.32]|d?|-5.2
Yl 0.65|| C| 0.13||C*?| 0.23||C°°|-0.331]|d°| 5.3

Masses in Minkowski and in dS

m1 mo ms My mes me mr
Mk| 0.5392 | 0.4551 | 0.1037 | 0.06185 | 0.05355 | 0.02389 | 0.01263
dS | 0.5391 | 0.4552 | 0.1036 | 0.06183 | 0.05357 | 0.02381 | 0.01260




Discussion

Non-geometric fluxes & tadpole conditions ?7??

Top-down/bottom-up ?

Figure showing the parameter space of M-theory. The
different well-understood limits correspond to the 5
string theories and 11-dimensional supergravity.



Conclusions

We developed a simple procedure of constructing stable dS vacua with
many moduli and many different Kahler potentials and superpotentials
associated with M-theory, type IIA and type IIB string theory.

Instead of searching for AdS and checking dS stability with respect to
all moduli after a large uplift, we find supersymmetric Minkowski vacua
without flat directions. In that case, stability of dS vacua after a
parametrically small uplift is guaranteed.

It is easy to find such vacua in many models with nonperturbative
racetrack superpotentials with two or more exponents, independently of
the choice of the Kahler potential. One can also find stable dS in
models with flux superpotentials and a single KKLT-type exponent for
some of the moduli. It works for a broad choice of parameters, no fine
tuning is required.

In the theories with a sufficiently rich structure of flux superpotentials,
as in one of our examples, we may be able to find stable dS even
without using nonperturbative exponents.



