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The main result:

In M-theory/string theory inspired d=4 N=1 supergravity including 
a nilpotent multiplet (representing pseudo-calibrated anti-Dp-
branes) we found a relatively simple regular procedure to 
construct stable de Sitter minima in theories with many moduli 
and many different Kahler potentials and superpotentials
associated with M-theory, type IIA and type IIB string theory. 



1) The model requires a progenitor: a supersymmetric Minkowski minimum without flat 
directions. This happens if ∂iW = 0 and W = 0 at a finite point (or a series of disconnected 
points) in the moduli space, W being the superpotential of the model. 

3)  A nilpotent chiral multiplet has to be added to the original model to uplift AdS to a dS
minimum. If the supersymmetry breaking scale is parametrically small, then the resulting 
potential inherits the shape of the original potential in the vicinity of the Minkowski
minimum, i.e. the final dS state is also a minimum. 

2) The progenitor model has to be deformed: first, a downshift to a supersymmetric AdS
minimum, via a parametrically small deformation of W. This can be achieved by adding a 
small constant (or a small function) ∆W to W . 

The necessary conditions are:



The main difference with many recent attempts to find dS minima in 
4d N=1 string theory motivated supergravity:  We are not randomly 
scanning around for dS solutions, but we simply construct them via 

the mass production mechanism, with the guaranteed outcome

Susy breaking Minkowski vacua in 3-moduli isotropic STU  
geometric flux models, mostly tachyons 

de Carlosa, Guarino, Moreno, 0911.2876

The so(3, 1) models

The last, but not least, Supergravity model based on a semisimple B-field reduction is so(3, 1) .

This model is defined in eqs (2.1) by the superpotential

W = |�|3/2 [�3 T (Z3 + Z) + S (✏2 + 3 ✏1Z � 3 ✏2Z
2
� ✏1Z

3)�

� ⇠3 (✏1 � 3 ✏1Z
2
� 3 ✏2Z + ✏2Z

3) + 3 ⇠7 (1 + Z
2)] .

(4.16)

The most interesting feature of this model is that it contains stable, Minkowski vacua

within a certain region of the parameter space as well as unstable Mkw solutions, like those of

the previously analysed models, in a di↵erent one. Another property of this model is that any
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Figure 4: Left: location of the Mkw solutions within the parameter space for the Supergravity

models based on the so(3, 1) B-field reduction, highlighting the singular points. Right: set

of VEVs of the modulus Z . Notice that, up to discrete transformations, the Mkw extrema

describe closed curves in both plots.

point in the parameter space has a g = so(3, 1)2 Supergravity algebra underlying it. Therefore,

any singularity in the moduli VEVs is a dynamical singularity. The entire set of Minkowski

solutions are shown in figure 4.

With respect to the highlighted points in the figure, let us divide the parameter space in

three pieces: the DD’ line going through the points C and C’; the EE’ line going through the

point B; and the DE & D’E’ lines, containing the stable Mkw vacua:

i) At the points D, D’, E and E’, the Mkw extrema have a flat direction associated to volume

directions 5. This direction is, roughly, 58% ImS and 42% ImT at the D and D’ points,

whereas it becomes 72% ImS, 25% ImT and 3% ImZ at the E and E’ points.

5At these points, the 2⇥ 2 reduced Hessian built from V(Z) in eq. (3.7), becomes degenerate.
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Danielsson, Van Riet 1804.01120

With geometric fluxes, with an increased 
number of free parameters, it turns out to 
be possible to find metastable dS-vacua. 
They are scarce, but they exist.

Typically the dS vacua hide in very small 
corners in the landscape of allowed fluxes

In all our new models we start with Minkowski susy minima, there are no tachyons! Flat
directions (might lead to instability after the uplift) are easy to avoid.  All our new 7-moduli
non-isotropic S TI UK models originating from type IIA, type IIB string theory start with 
Minkowski susy minima without flat directions and lead to dS minima, as predicted, no fine 
tunig required!

We also found dS minima in 4d, N=1, 7-moduli supergravity 
directly originating from M-theory

example

Damian et al. 2013



KKLT anti-D3-uplift of AdS
generates dS minimum

KKLT 2003, 2014

K = �3 ln
�
�i(T � T̄ )

�
+XX̄

K = �3 ln
�
�i(T � T̄ )�XX̄

�
or

W = W0 +AeiaT + µ2X

Only after I have run a Mathematica nb, I saw 
the minimum in AdS and in dS after uplifting

It was not predicted, but was one of our many attempts to find a relevant K and W. 
It gave us a dS minimum in 4d supergravity. 

It was our first attempt to address the observational fact that 4d General Relativity 
with a positive extremely small CC fits the data. 



Not much new (KL, LVC, …) till very recently 2018-2019: 
mass production of dS vacua in type IIA and type IIB

dS minima in multiple moduli models are predicted analytically, 
for specific choices of K and W, in a 3 step procedure.

The goal of Mathematica nb’s is to check and illustrate the predictions.

4.1 Seven-moduli [SL(2,R)]7 model

The interest to a seven-moduli model in M-theory and type IIA string theory and in d = 4,
N = 8 supergravity was renewed recently, in the context of the future B-mode detection
[21, 22]. Indeed, such a seven-moduli model revisited in these works, was described originally
a long time ago, in [23, 24]. There, the effective d = 4 supergravity for the seven main moduli
of type IIA D6/O6 orientifolds was derived, starting with d = 10 supergravity compactified
on T 6

Z2⇥Z2
in the presence of general fluxes. The seven moduli include one axio-dilaton S,

three complex-structure T -moduli, {T1, T2, T3} and three Kähler U -moduli, {U1, U2, U3}.
For convenience, we collect all of them in

�i = {S, T1, T2, T3, U1, U2, U3}. (4.1)

The Kähler potential for this seven-moduli model is associated with a [SL(2,R)]7

symmetry, where the seven complex moduli are the coordinates of the
⇣
SL(2,R)
U(1)

⌘7
coset

space,

K = �
7X

i

log
�
�i(�i � �̄ı̄)

�
. (4.2)

As motivated in the Introduction, the superpotential which we will use in the present work
is of the racetrack type, where the constant part f6 comes from the six-flux, similarly to [5],

W = f6 +
7X

i

�
Aie

iai�i �Bie
ibi�i�

. (4.3)

The origin of these seven complex fields from the d = 10 geometry compactified on
T 6

Z2⇥Z2
can be found in [23, 24]. In [21], it is shown also how to get the same model from

M-theory/d = 11 supergravity compactified on a particular G2 manifold, as well as from
d = 4 maximal N = 8 supergravity with duality symmetry

E7(7)(R) � [SL(2,R)]7. (4.4)

The kinetic term for the seven scalars has an [SL(2,R)]7 symmetry

Lkin =
7X

i

@�i
@�̄ı̄

(�i � �̄ı̄)2
. (4.5)

Note that the non-perturbative terms in the superpotential, namely the exponential terms
in (4.3), break this symmetry. The kinetic term for each of the seven scalars corresponds to
a unit size Poincaré disk, with squared radius 3↵ = 1, after a Cayley transform

3↵
@�@�̄

(�� �̄)2
) 3↵

@Z@Z̄

(1� ZZ̄)2
. (4.6)

This is why the seven moduli problem is relevant for observational cosmology and ↵-attractor
models of inflation [21, 22]. Here, however, we are only interested is using this type IIA
string theory model for an example of the moduli stabilization, as predicted in [1].
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My favorite example:

M-theory (11d supergravity with local sources), string theory (10d supergravity with 
local sources), N=8 supergravity with duality symmetry 

E7(7)(R) � [SL(2,R)]7

Perturbative UV finiteness? 7 benchmarks for future primordial 
gravitational wave  detection, LiteBIRD

Maximal supersymmetry
spontaneously broken to the 
minimal supersymmetry



4d Mass Production of dS vacua

Thus, for any set of 2nm free parameters (for each i = 1, ...,m one can take various
values of �i

0 = �
i
0, n coefficients a

k
i , and the first n � 1 coefficients A

k
i ), one can always

find m+ 1 remaining parameters A
n
i and W0 such that the theory has a supersymmetric

vacuum state at �i = �i
0. Alternatively, instead of calculating W0, one can fix it from the

very beginning (e.g. take W0 = 0 or any other desired value), and calculate the value of ani ,
or A

n�1
i , required for satisfying the conditions W = 0, @iW = 0 at some point �0i.

The general conclusion is that in a theory with any number m of fields �i with racetrack
potentials containing n exponents, with n � 2 for each of the fields, one can always find
a large number of supersymmetric Minkowski vacua depending on 2mn free parameters.
Since the values of the parameters A

k
i depend on the properties of compactification, one

may expect that the total number of different supersymmetric Minkowski vacua can be
extremely large.

Each of these vacua can be downshifted to a supersymmetric AdS and uplifted to a
stable dS vacuum in many different ways. In particular, in most of the examples to be
considered in this paper we will make a downshift by adding a small constant �W to the
superpotential, but the main results will not be qualitatively affected if instead of that we
add any sufficiently small function �W (�i).

3 Properties of the mass matrix at the dS minimum

In this section, we review some general properties of the mass matrix which are important
in order to study the stability of vacua configurations. We refer the reader to Sec. 5 of
[1] for a more detailed discussion. Then, we focus our analysis to specific examples of dS
vacua in type IIA and type IIB theory. We inspect the corresponding mass matrices and we
compare their properties.

3.1 General properties of the mass matrix at the dS minimum

In the class of models we are going to consider, the moduli space is made up of complex
scalar fields {�i

, �̄ı̄}, living inside chiral and antichiral multiplets respectively. To this set
up, we add then a nilpotent chiral multiplet X, which can be conveniently used to describe
the uplifting contribution to the scalar potential given by an anti-Dp-brane in string theory.
Indeed, thanks to the nilpotent constraint on X, the total scalar potential, including the
uplift, can be given by the standard supergravity formula

V
dS = e

KdS
(|DIW

dS |2 � 3|W dS |2) , (3.1)

where the index I runs over all the chiral multiplets �I = {�i
, X} and where we define

K
dS = K(�, �̄) +KX,X̄(�, �̄)XX̄ , W

dS = W (�) + µ
2
X , (3.2)

with X
2 = 0.

– 9 –

Thus, for any set of 2nm free parameters (for each i = 1, ...,m one can take various
values of �i

0 = �
i
0, n coefficients a

k
i , and the first n � 1 coefficients A

k
i ), one can always

find m+ 1 remaining parameters A
n
i and W0 such that the theory has a supersymmetric

vacuum state at �i = �i
0. Alternatively, instead of calculating W0, one can fix it from the

very beginning (e.g. take W0 = 0 or any other desired value), and calculate the value of ani ,
or A

n�1
i , required for satisfying the conditions W = 0, @iW = 0 at some point �0i.

The general conclusion is that in a theory with any number m of fields �i with racetrack
potentials containing n exponents, with n � 2 for each of the fields, one can always find
a large number of supersymmetric Minkowski vacua depending on 2mn free parameters.
Since the values of the parameters A

k
i depend on the properties of compactification, one

may expect that the total number of different supersymmetric Minkowski vacua can be
extremely large.

Each of these vacua can be downshifted to a supersymmetric AdS and uplifted to a
stable dS vacuum in many different ways. In particular, in most of the examples to be
considered in this paper we will make a downshift by adding a small constant �W to the
superpotential, but the main results will not be qualitatively affected if instead of that we
add any sufficiently small function �W (�i).

3 Properties of the mass matrix at the dS minimum

In this section, we review some general properties of the mass matrix which are important
in order to study the stability of vacua configurations. We refer the reader to Sec. 5 of
[1] for a more detailed discussion. Then, we focus our analysis to specific examples of dS
vacua in type IIA and type IIB theory. We inspect the corresponding mass matrices and we
compare their properties.

3.1 General properties of the mass matrix at the dS minimum

In the class of models we are going to consider, the moduli space is made up of complex
scalar fields {�i

, �̄ı̄}, living inside chiral and antichiral multiplets respectively. To this set
up, we add then a nilpotent chiral multiplet X, which can be conveniently used to describe
the uplifting contribution to the scalar potential given by an anti-Dp-brane in string theory.
Indeed, thanks to the nilpotent constraint on X, the total scalar potential, including the
uplift, can be given by the standard supergravity formula

V
dS = e

KdS
(|DIW

dS |2 � 3|W dS |2) , (3.1)

where the index I runs over all the chiral multiplets �I = {�i
, X} and where we define

K
dS = K(�, �̄) +KX,X̄(�, �̄)XX̄ , W

dS = W (�) + µ
2
X , (3.2)

with X
2 = 0.

– 9 –

Thus, for any set of 2nm free parameters (for each i = 1, ...,m one can take various
values of �i

0 = �
i
0, n coefficients a

k
i , and the first n � 1 coefficients A

k
i ), one can always

find m+ 1 remaining parameters A
n
i and W0 such that the theory has a supersymmetric

vacuum state at �i = �i
0. Alternatively, instead of calculating W0, one can fix it from the

very beginning (e.g. take W0 = 0 or any other desired value), and calculate the value of ani ,
or A

n�1
i , required for satisfying the conditions W = 0, @iW = 0 at some point �0i.

The general conclusion is that in a theory with any number m of fields �i with racetrack
potentials containing n exponents, with n � 2 for each of the fields, one can always find
a large number of supersymmetric Minkowski vacua depending on 2mn free parameters.
Since the values of the parameters A

k
i depend on the properties of compactification, one

may expect that the total number of different supersymmetric Minkowski vacua can be
extremely large.

Each of these vacua can be downshifted to a supersymmetric AdS and uplifted to a
stable dS vacuum in many different ways. In particular, in most of the examples to be
considered in this paper we will make a downshift by adding a small constant �W to the
superpotential, but the main results will not be qualitatively affected if instead of that we
add any sufficiently small function �W (�i).

3 Properties of the mass matrix at the dS minimum

In this section, we review some general properties of the mass matrix which are important
in order to study the stability of vacua configurations. We refer the reader to Sec. 5 of
[1] for a more detailed discussion. Then, we focus our analysis to specific examples of dS
vacua in type IIA and type IIB theory. We inspect the corresponding mass matrices and we
compare their properties.

3.1 General properties of the mass matrix at the dS minimum

In the class of models we are going to consider, the moduli space is made up of complex
scalar fields {�i

, �̄ı̄}, living inside chiral and antichiral multiplets respectively. To this set
up, we add then a nilpotent chiral multiplet X, which can be conveniently used to describe
the uplifting contribution to the scalar potential given by an anti-Dp-brane in string theory.
Indeed, thanks to the nilpotent constraint on X, the total scalar potential, including the
uplift, can be given by the standard supergravity formula

V
dS = e

KdS
(|DIW

dS |2 � 3|W dS |2) , (3.1)

where the index I runs over all the chiral multiplets �I = {�i
, X} and where we define

K
dS = K(�, �̄) +KX,X̄(�, �̄)XX̄ , W

dS = W (�) + µ
2
X , (3.2)

with X
2 = 0.

– 9 –

Thus, for any set of 2nm free parameters (for each i = 1, ...,m one can take various
values of �i

0 = �
i
0, n coefficients a

k
i , and the first n � 1 coefficients A

k
i ), one can always

find m+ 1 remaining parameters A
n
i and W0 such that the theory has a supersymmetric

vacuum state at �i = �i
0. Alternatively, instead of calculating W0, one can fix it from the

very beginning (e.g. take W0 = 0 or any other desired value), and calculate the value of ani ,
or A

n�1
i , required for satisfying the conditions W = 0, @iW = 0 at some point �0i.

The general conclusion is that in a theory with any number m of fields �i with racetrack
potentials containing n exponents, with n � 2 for each of the fields, one can always find
a large number of supersymmetric Minkowski vacua depending on 2mn free parameters.
Since the values of the parameters A

k
i depend on the properties of compactification, one

may expect that the total number of different supersymmetric Minkowski vacua can be
extremely large.

Each of these vacua can be downshifted to a supersymmetric AdS and uplifted to a
stable dS vacuum in many different ways. In particular, in most of the examples to be
considered in this paper we will make a downshift by adding a small constant �W to the
superpotential, but the main results will not be qualitatively affected if instead of that we
add any sufficiently small function �W (�i).

3 Properties of the mass matrix at the dS minimum

In this section, we review some general properties of the mass matrix which are important
in order to study the stability of vacua configurations. We refer the reader to Sec. 5 of
[1] for a more detailed discussion. Then, we focus our analysis to specific examples of dS
vacua in type IIA and type IIB theory. We inspect the corresponding mass matrices and we
compare their properties.

3.1 General properties of the mass matrix at the dS minimum

In the class of models we are going to consider, the moduli space is made up of complex
scalar fields {�i

, �̄ı̄}, living inside chiral and antichiral multiplets respectively. To this set
up, we add then a nilpotent chiral multiplet X, which can be conveniently used to describe
the uplifting contribution to the scalar potential given by an anti-Dp-brane in string theory.
Indeed, thanks to the nilpotent constraint on X, the total scalar potential, including the
uplift, can be given by the standard supergravity formula

V
dS = e

KdS
(|DIW

dS |2 � 3|W dS |2) , (3.1)

where the index I runs over all the chiral multiplets �I = {�i
, X} and where we define

K
dS = K(�, �̄) +KX,X̄(�, �̄)XX̄ , W

dS = W (�) + µ
2
X , (3.2)

with X
2 = 0.

– 9 –

At the extremum, @iV = 0, the scalar mass matrix in supergravity takes the following
form

M2 =

 
Vi|̄ Vij

Vı̄|̄ Vı̄j

!
. (3.3)

In particular, the upper left corner gives the holomorphic-anti-holomorphic part of the
second derivative of the potential at the minimum, Vi|̄ = @i@|̄V , the upper right corner has
the holomorphic-holomorphic part of the second derivative of the potential at the minimum,
Vij = @i@jV , and so on. The exact expressions for each entry as a function of K and W

were derived in [18].

To analyze the vacua in supergravity, we find it convenient to use the notation introduced
in [19] and used in [1]. We define the covariantly holomorphic gravitino mass m(�, �̄) ⌘
e

K
2 W , together with its Kähler covariant derivative mi ⌘ Dim = @im+ 1

2(@iK)m = e
K
2 DiW .

In a supersymmetric Minkowski vacuum, which is one of the cases of interest in our discussion,
the explicit expression for the mass matrix can be considerably simplified. At a Minkowski
minimum, the conditions W = 0 and DiW = 0 imply respectively m = 0 and mi = 0 and
the quantities in (3.3) reduce to
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Mink
ij

����
m=0
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where we define the chiral fermion mass matrix mij ⌘ DiDjm. This, in turn, can be read
directly from the fermionic bilinear term in the action,

e
�1L � �1

2
mij�̄

i
PL�

j + h.c., (3.6)

see for example [20].

An important consequence of having unbroken supersymmetry in a Minkowski vacuum
is that, within each chiral multiplet, there is a mass degeneracy between scalars and
pseudoscalars. Indeed, by switching to the real basis, �i = �

i + i✓
i, it follows from (3.5)
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ReV Mink
ij = Re @i@jV
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V
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This means that, at the supersymmetric Minkowski minimum, the masses of the scalars �
i

are equal to the masses of the pseudoscalars ✓
i.

Another configuration of interest in the present work is a supersymmetric AdS vacuum.
It corresponds to the second step of the procedure outlined in the Introduction and is

1
We recall that, when passing from the complex basis {�i, �̄ı̄} to the real basis {�i, ✓i}, the derivatives

change as
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1
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@
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i
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Second derivative of the potential

In our examples
this matrix is 
block-diagonal in 
the real basis

where W0, Ai, ai, Bi, bi and Ni are real parameters. In [1], section 3.1, it was shown that for
this class of models the Minkowski mass matrix in the basis of real fields {�i

, ✓
i} is diagonal

 
V�i�j V�i✓j

V✓i�j V✓i✓j

!�����
Mink

=

 
m

2
�i�i 0

0 m
2
✓i✓i

!
. (3.18)

In particular, along each direction in moduli space, we observe the mass degeneracy between
scalars and pseudoscalars, as explained above

m
2
�i�i = m

2
✓i✓i . (3.19)

For example, in the case with seven moduli

V
Mink
�i�j = V

Mink
✓i✓j =

0

BBBBBBBBBB@

m
2
1 0 0 0 0 0 0

0 m
2
2 0 0 0 0 0

0 0 m
2
3 0 0 0 0

0 0 0 m
2
4 0 0 0

0 0 0 0 m
2
5 0 0

0 0 0 0 0 m
2
6 0

0 0 0 0 0 0 m
2
7

1

CCCCCCCCCCA

. (3.20)

When perturbing the Minkowski solution with a parametrically small �W , in order
to find a supersymmetric AdS vacuum, the mass matrix in the real basis remains block
diagonal, at least for the class of models given by (3.17). Therefore, we have

 
V�i�j V�i✓j

V✓i�j V✓i✓j

!�����
AdS

=

 
V

Mink
�i�j +��i�j 0

0 V
Mink
✓i✓j +�✓i✓j

!
. (3.21)

We notice the possible appearance of non-diagonal terms in ��i�j and �✓i✓j which, however,
are parametrically smaller than the terms on the diagonal i = j.

Finally, when uplifting this supersymmetric AdS vacuum to dS, we introduce additional
terms in the potential of the form

V
uplift = V

uplift
�
�i(�i � �̄i)

�
. (3.22)

In particular, these terms do not depend on �
i and therefore cannot generate off-diagonal

blocks in the mass matrix. Eventually, the mass matrix takes the form
 
V�i�j V�i✓j

V✓i�j V✓i✓j

!�����
dS

=

 
V

Mink
�i�j +��i�j + �̃�i�j 0

0 V
Mink
✓i✓j +�✓i✓j + �̃✓i✓j

!
. (3.23)

The new all diagonal and non-diagonal terms in in �̃�i�j and �̃✓i✓j are parametrically
smaller than the terms on the diagonal i = j. Therefore, the mass eigenvalues in the dS
vacuum are approximately equal to the original Minkowski masses of the progenitor model
and the masses of the scalars and pseudoscalars are approximately equal to each other.
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V Mink
�i�j = V Mink

✓i✓j > 01) Progenitor model

2) Corrections are parametrically 
small (downshift to supersymmetric AdS)

��i�j 6= �✓i✓j

3)  Corrections are parametrically 
small (uplift to dS) �̃�i�j 6= �̃✓i✓j

V dS
i|̄ ⇡ mijg

jk̄ m̄k̄ |̄ > 0 Prediction



4.1 Seven-moduli [SL(2,R)]7 model

The interest in a seven-moduli model in M-theory and type IIA string theory and in d = 4,
N = 8 supergravity was renewed recently, in the context of the future B-mode detection
[21, 22]. Indeed, such a seven-moduli model revisited in these works, was described originally
a long time ago, in [23, 24]. There, the effective d = 4 supergravity for the seven main moduli
of type IIA D6/O6 orientifolds was derived, starting with d = 10 supergravity compactified
on T 6

Z2⇥Z2
in the presence of general fluxes. The seven moduli include one axio-dilaton S,

three complex-structure T -moduli, {T1, T2, T3} and three Kähler U -moduli, {U1, U2, U3}.
For convenience, we collect all of them in

�i = {S, T1, T2, T3, U1, U2, U3}. (4.1)

The Kähler potential for this seven-moduli model is associated with a [SL(2,R)]7

symmetry, where the seven complex moduli are the coordinates of the
⇣
SL(2,R)
U(1)

⌘7
coset

space,

K = �
7X

i

log
�
�i(�i � �̄ı̄)

�
. (4.2)

As motivated in the Introduction, the superpotential which we will use in the present work
is of the racetrack type, where the constant part f6 comes from the six-flux, similarly to [5],

W = f6 +
7X

i

�
Aie

iai�i �Bie
ibi�i�

. (4.3)

The origin of these seven complex fields from the d = 10 geometry compactified on
T 6

Z2⇥Z2
can be found in [23, 24]. In [21], it is shown also how to get the same model from

M-theory/d = 11 supergravity compactified on a particular G2 manifold, as well as from
d = 4 maximal N = 8 supergravity with duality symmetry

E7(7)(R) � [SL(2,R)]7. (4.4)

The kinetic term for the seven scalars has an [SL(2,R)]7 symmetry

Lkin =
7X

i

@�i
@�̄ı̄

(�i � �̄ı̄)2
. (4.5)

Note that the non-perturbative terms in the superpotential, namely the exponential terms
in (4.3), break this symmetry. The kinetic term for each of the seven scalars corresponds to
a unit size Poincaré disk, with squared radius 3↵ = 1, after a Cayley transform

3↵
@�@�̄

(�� �̄)2
) 3↵

@Z@Z̄

(1� ZZ̄)2
. (4.6)

This is why the seven moduli problem is relevant for observational cosmology and ↵-attractor
models of inflation [21, 22]. Here, however, we are only interested is using this type IIA
string theory model for an example of the moduli stabilization, as predicted in [1].
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∂iW = 0 and W = 0 

It is worth mentioning that one of the recent studies of the minima of the [SL(2,R)]7
model was performed in [25]. The authors there used the same Kähler potential as the one
in (4.2), however, they did not include non-perturbative exponents in the superpotential,
but only polynomial terms in the moduli, as suggested in [24]. Within this set up, they
stabilized all of the moduli at the origin of the moduli space, �i = �̄i = 1, and then used a
numerical optimization procedure. In particular, the superpotential contains 26 parameters
and the authors of [25] were able to find a de Sitter extremum which was fully metastable up
to one single flat direction. They also noted that the classical flat direction of their solution
could in principle receive corrections from quantum or non-pertubative effects.

As one can see from (4.3), in our example of the [SL(2,R)]7 model we use only one
perturbative term, namely the six-flux f6, while the remaining terms in W include two
exponents for each modulus, resulting in 1 + 4⇥ 7 = 29 parameters: Ai, ai,Bi, bi. We will
choose them to be real. In particular, 21 of these parameters are free, while 8 are obtained
by solving 8 equations W = @iW = 0 to guarantee the desired properties in the progenitor
model. According to [1], performing the three-steps procedure with starting point (4.2) and
(4.3), leads to stable dS minima. While in some examples analized [5] it occurs that the
interplay between non-perturbative terms and fluxes does not seem to give simple solutions,
it might be possible that a combination of our approach with the one of [25], if applied for
example to this [SL(2,R)]7 model, may yield interesting results.

4.2 Specific example of the 7-moduli IIA model

In this subsection, we present some details of the analysis we performed on the seven-
moduli [SL(2,R)]7 model. The progenitor model is defined by the Kähler potential and
superpotential given respectively in (4.2) and (4.3). Our choice for the parameters are listed
in Table 1.

AS = 1 AT1 = 3.1 AT2 = 3.2 AT3 = 3.3 AU1 = 11 AU2 = 12 AU3 = 13

aS = 2 aT1 = 2.1 aT2 = 2.2 aT3 = 2.3 aU1 = 0.41 aU2 = 0.42 aU3 = 0.43

bS = 3 bT1 = 3.1 bT2 = 3.2 bT3 = 3.3 bU1 = 1.1 bU2 = 1.2 bU3 = 1.3

S0 = 1 T1, 0 = 1.1 T2, 0 = 1.2 T3, 0 = 1.3 U1, 0 = 5.1 U2, 0 = 5.2 U3, 0 = 5.3

Table 1: The choice for the parameters in the seven-moduli model.

In particular, we are taking the values of the U moduli at the minimum to be close to 5,
so that the volume of the compact manifold is not small, whereas the values of the S and T

moduli are close to the origin of the moduli space. Moreover, the values reported in Table 1
are referred to the imaginary parts of the moduli, since we set the real parts (axions) to
zero at the minimum. In other words, unless specified otherwise, in our examples the vacua
will be at

S ⌘ iS0, T ⌘ iT0, U ⌘ iU0, (4.7)

with S0, U0 and T0 real parameters. When we impose the 8 equations DiW = 0 and W = 0,
which yield a supersymmetric Minkowski vacuum, we solve for the parameters Bi and the
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Free parameters

7 Bi solve 7+1 eqs.
Stage 1, Minkowski, done

flux parameter f6. This allows us to freely choose the Ai, ai and bi, as well as the position
of the Minkowski vacuum, given by S0, T0 and U0. With this solution, we find that the
Minkowski mass matrix has the form predicted in (3.20).

Before proceeding with the discussion, we would like to remark that the choice of the
parameters is not fine-tuned. In fact, a wide range of values is possible. To confirm this, we
studied examples with different parameters where the deviation from Minkowski is small. In
all of these cases, a de Sitter minimum was produced. Furthermore, in section 6 we discuss
the complementary case in which the deviation from the progenitor Minkowski model is not
small.

Resuming our analysis, the next step, namely the downshift, is implemented by substi-
tuting f6 ! f6 +�f6, which gives a supersymmetric AdS minimum at a slightly shifted
position, with respect to the Minkowski one. In particular, the masses of the fields change
only minutely and the AdS mass matrix takes the form predicted in (3.21). In order to go
to de Sitter we introduce anti-D6-branes, which contribute to the scalar potential via a term
of the type:

V
uplift
D6

=
µ
4
1

Im(T1)Im(T2)Im(T3)
+

µ
4
2

Im(S)Im(T2)Im(T3)

+
µ
4
3

Im(S)Im(T1)Im(T3)
+

µ
4
4

Im(S)Im(T1)Im(T2)
. (4.8)

This can be generated in supergravity by using a nilpotent chiral superfield X and by
including appropriate terms in K and W , as explained in [4, 5]. For what concerns the
parameters, in our example the downshift is

�f6 = �10�5 (4.9)

and the uplift was chosen to be

µ
4
1 = µ

4
2 = µ

4
3 = µ

4
4 = 5.49028 · 10�15

. (4.10)

The mass matrix is diagonal before the downshift and remains block diagonal afterwards,
with the diagonal entries changing only slightly.

As an example, we present below the upper left corner of the 7⇥ 7 mass matrix V�i�j

(3.23) in the dS case. It shows the masses of scalars after the dS uplift. The diagonal values
are very close to the ones in Minkowski and in AdS minima, with values of order 10�3�10�5.
All of the off-diagonal terms are many orders smaller, ranging from 10�9 to 10�10.
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Stage 2, AdS, done

Stage 3, dS, done

flux parameter f6. This allows us to freely choose the Ai, ai and bi, as well as the position
of the Minkowski vacuum, given by S0, T0 and U0. With this solution, we find that the
Minkowski mass matrix has the form predicted in (3.20).

Before proceeding with the discussion, we would like to remark that the choice of the
parameters is not fine-tuned. In fact, a wide range of values is possible. To confirm this, we
studied examples with different parameters where the deviation from Minkowski is small. In
all of these cases, a de Sitter minimum was produced. Furthermore, in section 6 we discuss
the complementary case in which the deviation from the progenitor Minkowski model is not
small.

Resuming our analysis, the next step, namely the downshift, is implemented by substi-
tuting f6 ! f6 +�f6, which gives a supersymmetric AdS minimum at a slightly shifted
position, with respect to the Minkowski one. In particular, the masses of the fields change
only minutely and the AdS mass matrix takes the form predicted in (3.21). In order to go
to de Sitter we introduce anti-D6-branes, which contribute to the scalar potential via a term
of the type:

V
uplift
D6

=
µ
4
1

Im(T1)Im(T2)Im(T3)
+

µ
4
2

Im(S)Im(T2)Im(T3)

+
µ
4
3

Im(S)Im(T1)Im(T3)
+

µ
4
4

Im(S)Im(T1)Im(T2)
. (4.8)

This can be generated in supergravity by using a nilpotent chiral superfield X and by
including appropriate terms in K and W , as explained in [4, 5]. For what concerns the
parameters, in our example the downshift is

�f6 = �10�5 (4.9)

and the uplift was chosen to be

µ
4
1 = µ

4
2 = µ

4
3 = µ

4
4 = 5.49028 · 10�15

. (4.10)

The mass matrix is diagonal before the downshift and remains block diagonal afterwards,
with the diagonal entries changing only slightly.

As an example, we present below the upper left corner of the 7⇥ 7 mass matrix V�i�j

(3.23) in the dS case. It shows the masses of scalars after the dS uplift. The diagonal values
are very close to the ones in Minkowski and in AdS minima, with values of order 10�3�10�5.
All of the off-diagonal terms are many orders smaller, ranging from 10�9 to 10�10.
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Anti-D6 wrapped on various 3-cycles

A contribution from the nilpotent
multiplet X

K +KXX̄(�, �̄)XX̄
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flux parameter f6. This allows us to freely choose the Ai, ai and bi, as well as the position
of the Minkowski vacuum, given by S0, T0 and U0. With this solution, we find that the
Minkowski mass matrix has the form predicted in (3.20).

Before proceeding with the discussion, we would like to remark that the choice of the
parameters is not fine-tuned. In fact, a wide range of values is possible. To confirm this, we
studied examples with different parameters where the deviation from Minkowski is small. In
all of these cases, a de Sitter minimum was produced. Furthermore, in section 6 we discuss
the complementary case in which the deviation from the progenitor Minkowski model is not
small.

Resuming our analysis, the next step, namely the downshift, is implemented by substi-
tuting f6 ! f6 +�f6, which gives a supersymmetric AdS minimum at a slightly shifted
position, with respect to the Minkowski one. In particular, the masses of the fields change
only minutely and the AdS mass matrix takes the form predicted in (3.21). In order to go
to de Sitter we introduce anti-D6-branes, which contribute to the scalar potential via a term
of the type:

V
uplift
D6

=
µ
4
1

Im(T1)Im(T2)Im(T3)
+

µ
4
2

Im(S)Im(T2)Im(T3)

+
µ
4
3

Im(S)Im(T1)Im(T3)
+

µ
4
4

Im(S)Im(T1)Im(T2)
. (4.8)

This can be generated in supergravity by using a nilpotent chiral superfield X and by
including appropriate terms in K and W , as explained in [4, 5]. For what concerns the
parameters, in our example the downshift is

�f6 = �10�5 (4.9)

and the uplift was chosen to be

µ
4
1 = µ

4
2 = µ

4
3 = µ

4
4 = 5.49028 · 10�15

. (4.10)

The mass matrix is diagonal before the downshift and remains block diagonal afterwards,
with the diagonal entries changing only slightly.

As an example, we present below the upper left corner of the 7⇥ 7 mass matrix V�i�j

(3.23) in the dS case. It shows the masses of scalars after the dS uplift. The diagonal values
are very close to the ones in Minkowski and in AdS minima, with values of order 10�3�10�5.
All of the off-diagonal terms are many orders smaller, ranging from 10�9 to 10�10.
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W + µ2X
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flux parameter f6. This allows us to freely choose the Ai, ai and bi, as well as the position
of the Minkowski vacuum, given by S0, T0 and U0. With this solution, we find that the
Minkowski mass matrix has the form predicted in (3.20).

Before proceeding with the discussion, we would like to remark that the choice of the
parameters is not fine-tuned. In fact, a wide range of values is possible. To confirm this, we
studied examples with different parameters where the deviation from Minkowski is small. In
all of these cases, a de Sitter minimum was produced. Furthermore, in section 6 we discuss
the complementary case in which the deviation from the progenitor Minkowski model is not
small.

Resuming our analysis, the next step, namely the downshift, is implemented by substi-
tuting f6 ! f6 +�f6, which gives a supersymmetric AdS minimum at a slightly shifted
position, with respect to the Minkowski one. In particular, the masses of the fields change
only minutely and the AdS mass matrix takes the form predicted in (3.21). In order to go
to de Sitter we introduce anti-D6-branes, which contribute to the scalar potential via a term
of the type:

V
uplift
D6

=
µ
4
1

Im(T1)Im(T2)Im(T3)
+

µ
4
2

Im(S)Im(T2)Im(T3)

+
µ
4
3

Im(S)Im(T1)Im(T3)
+

µ
4
4

Im(S)Im(T1)Im(T2)
. (4.8)

This can be generated in supergravity by using a nilpotent chiral superfield X and by
including appropriate terms in K and W , as explained in [4, 5]. For what concerns the
parameters, in our example the downshift is

�f6 = �10�5 (4.9)

and the uplift was chosen to be

µ
4
1 = µ

4
2 = µ

4
3 = µ

4
4 = 5.49028 · 10�15

. (4.10)

The mass matrix is diagonal before the downshift and remains block diagonal afterwards,
with the diagonal entries changing only slightly.

As an example, we present below the upper left corner of the 7⇥ 7 mass matrix V�i�j

(3.23) in the dS case. It shows the masses of scalars after the dS uplift. The diagonal values
are very close to the ones in Minkowski and in AdS minima, with values of order 10�3�10�5.
All of the off-diagonal terms are many orders smaller, ranging from 10�9 to 10�10.
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in dS

flux parameter f6. This allows us to freely choose the Ai, ai and bi, as well as the position
of the Minkowski vacuum, given by S0, T0 and U0. With this solution, we find that the
Minkowski mass matrix has the form predicted in (3.20).

Before proceeding with the discussion, we would like to remark that the choice of the
parameters is not fine-tuned. In fact, a wide range of values is possible. To confirm this, we
studied examples with different parameters where the deviation from Minkowski is small. In
all of these cases, a de Sitter minimum was produced. Furthermore, in section 6 we discuss
the complementary case in which the deviation from the progenitor Minkowski model is not
small.

Resuming our analysis, the next step, namely the downshift, is implemented by substi-
tuting f6 ! f6 +�f6, which gives a supersymmetric AdS minimum at a slightly shifted
position, with respect to the Minkowski one. In particular, the masses of the fields change
only minutely and the AdS mass matrix takes the form predicted in (3.21). In order to go
to de Sitter we introduce anti-D6-branes, which contribute to the scalar potential via a term
of the type:

V
uplift
D6

=
µ
4
1

Im(T1)Im(T2)Im(T3)
+

µ
4
2

Im(S)Im(T2)Im(T3)

+
µ
4
3

Im(S)Im(T1)Im(T3)
+

µ
4
4

Im(S)Im(T1)Im(T2)
. (4.8)

This can be generated in supergravity by using a nilpotent chiral superfield X and by
including appropriate terms in K and W , as explained in [4, 5]. For what concerns the
parameters, in our example the downshift is

�f6 = �10�5 (4.9)

and the uplift was chosen to be

µ
4
1 = µ

4
2 = µ

4
3 = µ

4
4 = 5.49028 · 10�15

. (4.10)

The mass matrix is diagonal before the downshift and remains block diagonal afterwards,
with the diagonal entries changing only slightly.

As an example, we present below the upper left corner of the 7⇥ 7 mass matrix V�i�j

(3.23) in the dS case. It shows the masses of scalars after the dS uplift. The diagonal values
are very close to the ones in Minkowski and in AdS minima, with values of order 10�3�10�5.
All of the off-diagonal terms are many orders smaller, ranging from 10�9 to 10�10.
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The diagonal values are very close to the ones in Minkowski and in AdS minima, 
with values of order 10-3- 10-5. All of the off-diagonal terms are many orders smaller, 
ranging from 10-9 to 10-10.

It is therefore not surprising that all mass square eigenvalues in dS
are positive, as predicted!

V dS
i|̄ ⇡ mijg

jk̄ m̄k̄ |̄ > 0



The values of this matrix match exactly with what has been predicted from the mass
production procedure. The mass production mechanism explains in this example why all
eigenvalues of the mass matrix are positive in dS, as in the progenitor Minkowski stage: the
off-diagonal entries, which where absent at the Minkowski and appeared in AdS and dS
stages, and which we named ��i�j + �̃�i�j in (3.23), are too small to affect the positivity
of the original eigenvalues.

In table 2, we present the eigenvalues of Minkowski and dS mass squares (second
derivatives of the potential), both for the scalars and the pseudoscalars. As one can see,
the difference between Minkowski masses and dS masses is very small. In addition, in
the Minkowski case, as predicted, all scalar masses coincide with the pseudoscalar ones.
However, in dS, already at the order of the digits we kept in the table, some of the scalar
and pseudoscalar masses are slightly different, as expected.

Mink dS
m

2
1 1.80473 · 10�3 1.80465 · 10�3

m
2
2 1.80473 · 10�3 1.80465 · 10�3

m
2
3 1.37269 · 10�3 1.37262 · 10�3

m
2
4 1.37269 · 10�3 1.37262 · 10�3

m
2
5 9.96519 · 10�4 9.96472 · 10�4

m
2
6 9.96519 · 10�4 9.96471 · 10�4

m
2
7 1.30924 · 10�4 1.30911 · 10�4

m
2
8 1.30924 · 10�4 1.30911 · 10�4

m
2
9 9.41773 · 10�5 9.41667 · 10�5

m
2
10 9.41773 · 10�5 9.41660 · 10�5

m
2
11 6.37973 · 10�5 6.37888 · 10�5

m
2
12 6.37973 · 10�5 6.37883 · 10�5

m
2
13 1.89843 · 10�5 1.89809 · 10�5

m
2
14 1.89843 · 10�5 1.89806 · 10�5

Table 2: The eigenvalues of the mass matrix for the seven-moduli type example. The
mass shift is small, but noticeable, when going from Minkowski to dS. One can also notice,
as predicted by the mass production procedure, that in dS the masses of scalars and
pseudoscalars are not exactly equal anymore, as was the case in Minkowski.

At this point, we decided not to present the plots of the potential that we produced
for this seven-moduli example (mainly for convenience, since there are many of them).
Instead, we will show them in the next subsection, for a simpler version of the model. As
we mentioned before, this is an STU model constructed by identifying T1 = T2 = T3 ⌘ T

and U1 = U2 = U3 ⌘ U .
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The eigenvalues of the mass matrix for the seven-moduli type example. The mass shift is 
small, but noticeable, when going from Minkowski to dS. One can also notice, as predicted 
by the mass production procedure, that in dS the masses of scalars and pseudoscalars are 
not exactly equal anymore, as was the case in Minkowski. 

The 2d and 3d plots of the potentials
at all 3 stages and in all possible slices
in multimodule space we have in the 
Notebooks. We show them in a simper 
case of the STU model.



Type IIB models with KL double exponents in W

AS = 1 AT = 3 AU = 11

aS = 2 aT = 2.1 aU = 1

bS = 3 bT = 3.1 bU = 1.2

S0 = 1 T0 = 1 U0 = 5

Table 4: Our choice of parameters for the 3 moduli IIA example.

The downshift to AdS was chosen to be

�f6 = �10�5
, (4.14)

and, subsequently, the uplift as

µ
4
1 = µ

4
2 = 1.93752 · 10�14

, (4.15)

for illustrative purposes.

As explained previously, no particular care is necessary when choosing these values.

This suggests that the examples are rather robust and they possess a considerably large

parameter space, which can potentially accommodate string theory restrictions as well. The

only conscious choice that was made is U0 = 5 in order to have a large volume for the

compact manifold. In some type IIA examples, in section 6, we will consider other values of

the parameters, including larger values of the volume modulus.

5 Type IIB models

In this section we present examples of string theory inspired models in the type IIB case.

In particular, the Kähler potentials associated with Calabi-Yau three-folds that we will

discuss, have been already used before, in [29–33], for cosmological applications. However,

in these works, stabilization of the volumes of the four-cycles was performed either using

the LVS, or some versions of KKLT stabilization. Instead, as motivated in the Introduction,

the choice of the superpotential in the present work will be di↵erent from the examples in

[29–33], since we will be using a double set of exponentials for each modulus.

Before entering the details of the analysis, we would like to recall some basic facts of

flux compactification in IIB string theory. Type IIB string theory flux compactifications

on Calabi-Yau three-folds, when dimensionally reduced to d = 4, N = 1 supergravity are

described by a Kähler potential and a superpotential of the form [34]

K = � log

✓
i

ˆ
⌦ ^ ⌦̄

◆
� log (�i(⌧ � ⌧̄))� 2 log (V6) , (5.1)

W =

ˆ
G3 ^ ⌦. (5.2)
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Here, ⌦ is a function of the CS moduli, ⌧ is the axion-dilaton and G3 is the complex

three-form flux. The six-dimensional volume is defined as a cubic polynomial

V6 =
1

3!

ˆ
J ^ J ^ J =

1

3!
dijktitjtk, (5.3)

where dijk are CY intersection numbers and ti’s are the volumes of the two-cycles. One can

switch to a complexified Kähler moduli space, using holomorphic coordinates

Ti = ⌧i + i�i, (5.4)

where the

⌧i =
@V6

@ti
(5.5)

are the volumes of the four-cycles, which are quadratic in the volumes of the two-cycles.

This allows us to rewrite the six-dimensional volume as a function of the four-cycle volumes

⌧i. As a result of the procedure of replacing the regular expression that is cubic in two-cycles,

V6 =
1
3!dijktitjtk, via a function of the four-cycle volumes ⌧i satisfying (5.5), one typically

finds somewhat complicated expressions for the Kähler potential as a functional of the

volumes of the four-cycles

V6 =
1

3!
dijktitjtk = V6(⌧i) . (5.6)

For this reason, as explained in subsection 3.3, the analysis of the stability of the vacuum

configuration will be generally more complicated in our type IIB examples than the one we

performed in the type IIA case. In particular, we will study only stabilization of the Kähler

moduli Ti. The complex structure moduli in ⌦ and the axion-dilaton ⌧ in (5.1), (5.2) are

fixed at an earlier stage by fluxes, as it is usually the case in type IIB.

The Kähler potential for the Kähler moduli will depend on the four-cycle volumes

ReTi = ⌧i and, additionally, on the nilpotent chiral multiplet X. In particular, the uplift

in these IIB models will be realized with anti-D3-branes 3. We recall that two di↵erent

possibilities can occur [35]: one where stabilization is in the bulk, the other when it is

within a warped throat. In d = 4 language, one can associate to these di↵erent regimes the

following Kähler potentials:

Kbulk = �2 log (V6(⌧i)) +XX̄ , (5.7)

Kthroat = �3 log

✓
V2/3
6 (⌧i)�

1

3
XX̄

◆
. (5.8)

We will stabilize the Kähler moduli as suggested in the mass production method.

Namely, we will use the KL type double exponents and follow the three-steps procedure

to get dS minima. We recall once more the form of the superpotential in a three-moduli

problem, namely

W = W0 +
X

�=S,T,U

A�e
ia�� �B�e

ib�� + µ
2
X, (5.9)

3
For convenience we will label the di↵erent Kähler moduli as S, T and U , when discussing explicit models

in the following sections. These should not be confused with the S, T , U moduli in type IIA.
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volumes of the four-cycles 

We study stabilization of the Kahler moduli
with 2- 3-moduli examples

We also studied the isotropic version of this model, in which the fields were identified

as T1 = T2 = T3 ⌘ T and U1 = U2 = U3 ⌘ U . This is in fact a STU model for which, in

addition to masses in table 3, we have also presented various 2D and 3D plots. We also

produced plots describing the seven-moduli model, but we do not present them here as

they do no contain any substantial novelty with respect to their simpler version in the STU

model. Indeed, we believe that the latter represents the situation in the IIA case quite well.

In our investigation of dS vacua in type IIB theory in section 5 we noticed that, in

models associated with typical Calabi-Yau compactifications, some features of the mass

matrix, and hence the analysis of the stability, become more complicated than in type

IIA examples. For example, the mass matrix (3.25) is still block diagonal, but the matrix

V�i�j in (3.26) has the o↵ diagonal entries which are not small even in the supersymmetric

Minkowski vacuum, see for example eq. (5.30). Nevertheless, the prediction made in

[1] concerning the existence of dS minima, under the conditions 1-3 specified here in the

Introduction, remains valid.

We have studied models with Kähler potentials of the form K = �2 log (V6(⌧i)) where

for the internal volume V6(⌧i) we had the following 4 examples in section 5:

V6(⌧i) =
1

2

p
⌧1

✓
⌧2 �

2

3
⌧1

◆
,

V6(⌧i) = ↵

⇣p
⌧1 (⌧2 � �⌧1)� �⌧

3/2
3

⌘
,

V6(⌧i) =
⇣ 1

108
⌧1[6⌧2 � ⌧1][2⌧3 � ⌧1]

⌘1/2
,

V6(⌧i) =
1

3
p
2

⇣
2[⌧1 + ⌧2 + 2⌧3]

3/2 � [⌧2 + 2⌧3]
3/2 � ⌧

3/2
2

⌘
. (7.4)

Details on dS vacua in these models with the corresponding superpotentials and with an

uplifting anti-D3 brane, in accordance with the procedure outlined in the conditions 1-3 in

the Introduction, are presented in section 5. We have found a complete agreement of our

numerical examples with the predictions in [1] and in sections 2 and 3 of this paper.

We would like to stress the following features of all of the examples studied numerically

in sections 4 and 5:

1) The properties of the dS vacua are in a complete agreement with the predictions

outlined in [1] and in sections 2 and 3 in this paper, including the detailed properties of the

mass matrix both in type the IIA and type IIB models.

2) In this work, we have presented just one set of parameters for each example. However,

we have in fact performed additional investigations of the models with alternative parameters.

In particular, it was easy to change the parameters within the required constraints and get

additional dS minima. Thus, while not irrelevant, the choice of the parameters does not

require fine-tuning in our constructions.

3) All of our examples are based on two exponents in the superpotential for each of the

moduli. Indeed, this is the simplest case where Minkowski progenitor models are available.
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K3 fibration models, a CICY model, 
multi-hole Swiss cheese mode 

Here, ⌦ is a function of the CS moduli, ⌧ is the axion-dilaton and G3 is the complex

three-form flux. The six-dimensional volume is defined as a cubic polynomial

V6 =
1

3!

ˆ
J ^ J ^ J =

1

3!
dijktitjtk, (5.3)

where dijk are CY intersection numbers and ti’s are the volumes of the two-cycles. One can

switch to a complexified Kähler moduli space, using holomorphic coordinates

Ti = ⌧i + i�i, (5.4)

where the

⌧i =
@V6

@ti
(5.5)

are the volumes of the four-cycles, which are quadratic in the volumes of the two-cycles.

This allows us to rewrite the six-dimensional volume as a function of the four-cycle volumes

⌧i. As a result of the procedure of replacing the regular expression that is cubic in two-cycles,

V6 =
1
3!dijktitjtk, via a function of the four-cycle volumes ⌧i satisfying (5.5), one typically

finds somewhat complicated expressions for the Kähler potential as a functional of the

volumes of the four-cycles

V6 =
1

3!
dijktitjtk = V6(⌧i) . (5.6)

For this reason, as explained in subsection 3.3, the analysis of the stability of the vacuum

configuration will be generally more complicated in our type IIB examples than the one we

performed in the type IIA case. In particular, we will study only stabilization of the Kähler

moduli Ti. The complex structure moduli in ⌦ and the axion-dilaton ⌧ in (5.1), (5.2) are

fixed at an earlier stage by fluxes, as it is usually the case in type IIB.

The Kähler potential for the Kähler moduli will depend on the four-cycle volumes

ReTi = ⌧i and, additionally, on the nilpotent chiral multiplet X. In particular, the uplift

in these IIB models will be realized with anti-D3-branes 3. We recall that two di↵erent

possibilities can occur [35]: one where stabilization is in the bulk, the other when it is

within a warped throat. In d = 4 language, one can associate to these di↵erent regimes the

following Kähler potentials:

Kbulk = �2 log (V6(⌧i)) +XX̄ , (5.7)

Kthroat = �3 log

✓
V2/3
6 (⌧i)�

1

3
XX̄

◆
. (5.8)

We will stabilize the Kähler moduli as suggested in the mass production method.

Namely, we will use the KL type double exponents and follow the three-steps procedure

to get dS minima. We recall once more the form of the superpotential in a three-moduli

problem, namely

W = W0 +
X

�=S,T,U

A�e
ia�� �B�e

ib�� + µ
2
X, (5.9)

3
For convenience we will label the di↵erent Kähler moduli as S, T and U , when discussing explicit models

in the following sections. These should not be confused with the S, T , U moduli in type IIA.
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which encompasses all of the examples we will analyze in the following. Given the Kähler

potential K and the superpotential W , one can use the standard rules of N = 1 supergravity

to calculate the scalar potential, including also the contribution of the anti-D3-branes. When

moduli stabilization occurs in the bulk, the uplift potential is

VD3 bulk = e
KbulkDWXK

XX̄
DX̄W |X=0 =

µ
4

(V6)2
, (5.10)

where V6 is the volume of the compactification. Alternatively, we can place the anti-D3-

brane at the bottom of a warped throat, where the uplifting term will scale di↵erently with

the volume [35], giving

VD3warped throat = e
KthroatDWXK

XX̄
DX̄W |X=0 =

µ
4

(V6)4/3
. (5.11)

Before proceeding with the examples, we would like to comment briefly on the di↵erence

between the notation used in [29–33] and the one we adopt in the present work. Indeed,

notice that in (5.4) the fields appearing explicitly in the six-dimensional volume are the real

parts of the chiral multiplets, ⌧i = ReTi. This is in agreement with the notation used in

[29–33]. On the other hand, in the previous sections, we used a slightly di↵erent notation, in

which the volume V6 potential is a function of the imaginary parts of the chiral multiplets,

V6 = V6(ImTi). However, it is easy to show that the di↵erence is merely due to conventions

and does not change the physical results. First, we recall that V6, appearing in (5.1), in

type IIB models is a homogeneous function of degree 3/2 in the ⌧i. As a consequence, a

constant rescaling of the Ti by a multiplicative factor �2i,

⌧i = ReTi ! ⌧i = 2ImTi, (5.12)

will give

logV6(⌧i) ! log(2
3
2V6(⌧i)). (5.13)

Then, the total Kähler potential (5.1) changes only by a constant factor

K ! K � log 8. (5.14)

This di↵erence is not physical, since it can be absorbed in a Kähler transformation, by

rescaling also the superpotential as W ! We
�C , with C = 1

2 log 8. Alternatively, one can

think of such an additional constant term in the Kähler potential as being originated from

� log
�
i
´
⌦ ^ ⌦̄

�
� log (�i(⌧ � ⌧̄)) in (5.1), due to a di↵erent stabilization of the CS moduli

and the axion-dilaton. Therefore, without loss of generality, in the following we will set

⌧1 = �i(S � S̄) , ⌧2 = �i(T � T̄ ) , ⌧3 = �i(U � Ū). (5.15)
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K3-fibration with two moduli Stage 1,2,3

5.1 K3-fibration with two parameters

The first type IIB model we look at is a K3 fibration of CP 4
[1,1,2,2,6], discussed in [29]. As

shown in [29], it occurs that there is no moduli stabilization in this model in the context of

a large volume scenario (LVS) [36]. The volume is given in equation (3.14) of [29], in terms

of the volumes of 4-cycles. In particular, it is a function of ⌧1 and ⌧2 only

V6(⌧i) =
1

2

p
⌧1


⌧2 �

2

3
⌧1

�
, (5.16)

which, in our conventions (5.15), becomes

V6(S, T ) =
1

2

q�
�i(S � S̄)

� �
�i(T � T̄ )

�
� 2

3

�
�i(S � S̄)

��
. (5.17)

The parameters we used in the analysis are given in table 5.

AS = 1.1 AT = 1.2

aS = 2.1 aT = 2.2

bS = 3.1 bT = 3.2

S0 = 1 T0 = ⇡

Table 5: Set of parameters for the K3 fibration of CP 4
[1,1,2,2,6].

The downshift is achieved with the value

�W0 = �10�5
, (5.18)

and the uplifts in the two di↵erent regions, namely bulk and throat, are realized with

parameters
µ

4
bulk =3.61516 · 10�10

,

µ
4
throat =1.56758 · 10�10

.
(5.19)

For what concerns the masses and the plots, we will only give the results for the case in

which the anti-D3 brane is placed in the bulk. Indeed, at least for the choice of parameters

we made, the di↵erence between the uplift with an anti-D3-brane in the bulk or at the

bottom of a throat cannot be really appreciated. Due to the simplicity of the model, we

display also both 2D and 3D plots in figures 5 and 6 respectively.
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Figure 5: All 2D plots for the K3 fibration of CP 4
[1,1,2,2,6]. Notice that the Im(T )-direction is considerably

flatter than the Im(S)-direction.

Figure 6: A complete set of 3D plots of the scalar potential for the K3 fibration of CP 4
[1,1,2,2,6]. On the

top we show the overall shape of the potential, and below a close-up of the minimum in AdS and dS case.
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The eigenvalues of the masses in Minkowski and dS are given in table 6. Since the

model has only two moduli, we give also the complete mass matrices for Minkowski and dS.

MK3fib,Mink =

0

BBB@

5.22544 · 10�2 3.23902 · 10�4 0 0

3.23902 · 10�4 1.58428 · 10�2 0 0

0 0 5.22544 · 10�2 3.23902 · 10�4

0 0 3.23902 · 10�4 1.58428 · 10�2

1

CCCA
,

MK3fib, dS =

0

BBB@

5.21864 · 10�2 3.20421 · 10�4 0 0

3.20421 · 10�4 1.5569 · 10�2 0 0

0 0 5.2155 · 10�2 3.20421 · 10�4

0 0 3.20421 · 10�4 1.55606 · 10�2

1

CCCA
.

(5.20)

Mink dS

m
2
1 5.22564 · 10�2 5.21884 · 10�2

m
2
2 5.22564 · 10�2 5.21875 · 10�2

m
2
3 1.38346 · 10�5 1.36014 · 10�5

m
2
4 1.38346 · 10�5 1.35926 · 10�5

Table 6: Eigenvalues of the mass matrices in Minkowski and dS. In this model and for this

choice of the parameters, the mass splitting between the fields and their axionic partners is

clearly visible, after moving away from Minkowski space.

5.2 K3-fibration with three parameters

This model is a generalization of the previous one, with the inclusion of a blow-up mode ⌧3.

The six-dimensional volume is given in equation (3.28) of [29]

V6(⌧i) = ↵

⇣p
⌧1 (⌧2 � �⌧1)� �⌧

3/2
3

⌘
, (5.21)

and, in our conventions, is

V6(S, T, U) = ↵

✓q�
�i(S � S̄)

� ⇥�
�i(T � T̄ )

�
� �

�
�i(S � S̄)

�⇤
� �

�
�i(U � Ū)

�3/2
◆

.

(5.22)

The parameters ↵, � and � are positive and model dependent. Im(U) is the blow up mode,

that turns the model we investigate here into CP 4
[1,1,2,2,6].

The parameters we use in the analysis are given in table 7.

AS = 1.1 AT = 1.2 AU = 1.3

aS = 2.1 aT = 2.2 aU = 2.3

bS = 3.1 bT = 3.2 bU = 3.3

↵ = 1 � = 1
4 � = 1

2

S0 = 1.1 T0 = 1.2 U0 = 1.3

Table 7: The parameters used in the three-parameters K3 fibration.
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The eigenvalues of the masses in Minkowski and dS are given in table 6. Since the

model has only two moduli, we give also the complete mass matrices for Minkowski and dS.

MK3fib,Mink =

0

BBB@

5.22544 · 10�2 3.23902 · 10�4 0 0

3.23902 · 10�4 1.58428 · 10�2 0 0

0 0 5.22544 · 10�2 3.23902 · 10�4

0 0 3.23902 · 10�4 1.58428 · 10�2

1

CCCA
,

MK3fib, dS =

0

BBB@

5.21864 · 10�2 3.20421 · 10�4 0 0

3.20421 · 10�4 1.5569 · 10�2 0 0

0 0 5.2155 · 10�2 3.20421 · 10�4

0 0 3.20421 · 10�4 1.55606 · 10�2

1

CCCA
.

(5.20)

Mink dS

m
2
1 5.22564 · 10�2 5.21884 · 10�2

m
2
2 5.22564 · 10�2 5.21875 · 10�2

m
2
3 1.38346 · 10�5 1.36014 · 10�5

m
2
4 1.38346 · 10�5 1.35926 · 10�5

Table 6: Eigenvalues of the mass matrices in Minkowski and dS. In this model and for this

choice of the parameters, the mass splitting between the fields and their axionic partners is

clearly visible, after moving away from Minkowski space.

5.2 K3-fibration with three parameters

This model is a generalization of the previous one, with the inclusion of a blow-up mode ⌧3.

The six-dimensional volume is given in equation (3.28) of [29]

V6(⌧i) = ↵

⇣p
⌧1 (⌧2 � �⌧1)� �⌧

3/2
3

⌘
, (5.21)

and, in our conventions, is

V6(S, T, U) = ↵

✓q�
�i(S � S̄)

� ⇥�
�i(T � T̄ )

�
� �

�
�i(S � S̄)

�⇤
� �

�
�i(U � Ū)

�3/2
◆

.

(5.22)

The parameters ↵, � and � are positive and model dependent. Im(U) is the blow up mode,

that turns the model we investigate here into CP 4
[1,1,2,2,6].

The parameters we use in the analysis are given in table 7.

AS = 1.1 AT = 1.2 AU = 1.3

aS = 2.1 aT = 2.2 aU = 2.3

bS = 3.1 bT = 3.2 bU = 3.3

↵ = 1 � = 1
4 � = 1

2

S0 = 1.1 T0 = 1.2 U0 = 1.3

Table 7: The parameters used in the three-parameters K3 fibration.
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Eigenvalues of the mass matrices in 
Minkowski and dS. In this model and 
for our choice of the parameters, the 
mass splitting between the fields and 
their axionic partners is clearly visible, 
after moving away from Minkowski
space. 

Amazing agreement between
theoretical predictions
and Mathematica examples!

Moreover, we take

�W0 = �5 · 10�7 (5.23)

for the downshift, while for the uplift parameters we have

µ
4
bulk = 1.16982 · 10�12 or µ

4
throat = 3.80480 · 10�12

. (5.24)

In figure 7 we show a 3D slice of the scalar potential. We give the eigenvalues of the mass

matrix in table 8.

Figure 7: A 3D slice in the Im(U) and Im(S) direction of the three-parameters K3 fibration model.

Mink dS

m
2
1 2.76956 2.76898

m
2
2 2.76956 2.76898

m
2
3 1.38664 · 10�1 1.38648 · 10�1

m
2
4 1.38664 · 10�1 1.38647 · 10�1

m
2
5 7.64496 · 10�3 7.64471 · 10�3

m
2
6 7.64496 · 10�3 7.64391 · 10�3

Table 8: Masses in three-parameters K3 fibration. The mass splitting between the real

scalar and the pseudoscalar is very small and does not appear within the digits we are

showing explicitly. The dS case represents the anti-D3 brane in the bulk.

5.3 K3 fibered CY model used for fibre inflation

An interesting subcase of the previous model is obtained by taking � = 0 in (5.22). This

results in

V6(⌧i) = ↵

hp
⌧1 ⌧2 � �⌧

3/2
3

i
, (5.25)

or

V6(S, T, U) = ↵

q�
�i(S � S̄)

� �
�i(T � T̄ )

�
� �

�
�i(U � Ū)

�3/2
�
, (5.26)
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Figure 5: All 2D plots for the K3 fibration of CP 4
[1,1,2,2,6]. Notice that the Im(T )-direction is considerably

flatter than the Im(S)-direction.

Figure 6: A complete set of 3D plots of the scalar potential for the K3 fibration of CP 4
[1,1,2,2,6]. On the

top we show the overall shape of the potential, and below a close-up of the minimum in AdS and dS case.
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A complete set of 3D plots of the scalar potential for the 
K3 fibration on
On top we show the overall shape of the potential, and 
below a close-up of the minimum in AdS and dS case. 

Figure 5: All 2D plots for the K3 fibration of CP 4
[1,1,2,2,6]. Notice that the Im(T )-direction is considerably

flatter than the Im(S)-direction.

Figure 6: A complete set of 3D plots of the scalar potential for the K3 fibration of CP 4
[1,1,2,2,6]. On the

top we show the overall shape of the potential, and below a close-up of the minimum in AdS and dS case.
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In some cases large downshift and uplift may 
strengthen stability

Example 1:  A single field KL model

Original supersymmetric Minkowski
vacuum

After a very large downshift and uplift, 
the barrier is 3 orders of magnitude 
higher, SUSY is strongly broken, but dS
is stable

After an extremely large downshift and 
uplift, the minimum is strongly shifted, 
SUSY is very strongly broken, but the 
barrier is even higher, and dS remains 
stable



Example 2:  KL model  and  STU model

KL model after a very large 
downshift and uplift

STU model after a very large 
downshift and uplift

STU model after an additional 
large uplift





We study M-theory compactification on a generalized twisted 7-
torus

in the presence of a 7-flux, metric fluxes, local sources, like branes and O-planes, and 
KK6 monopoles, KKO6-planes and M-anti-M-branes. The effective four-dimensional 
supergravity has 7 chiral multiplets whose couplings are specified by the G2-structure
of the internal manifold.

X7 =
T7

Z2 ⇥ Z2 ⇥ Z2

The effective K, W was obtained by Dall’Agata, Prezas, 2005, using the ‘democratic form’ of 
11d supergravity pseudo-action where the potentials and the dual curvatures both appear. 

Betti numbers

(b0, b1, b2, b3) = (1, 0, 0, 7)

de Sitter Minima from M theory and String theory

Niccolò Cribiori,1, ⇤ Renata Kallosh,2, † Andrei Linde,2, ‡ and Christoph Roupec1, §

1
Institute for Theoretical Physics, TU Wien,

Wiedner Hauptstrasse 8-10/136, A-1040 Vienna, Austria
2
Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305, USA

We study M-theory compactification on T7/Z3
2 in the presence of a seven-flux, metric fluxes and

KK monopoles. The e↵ective four-dimensional supergravity has seven chiral multiplets whose cou-
plings are specified by the G2-structure of the internal manifold. We supplement the corresponding
superpotential by a KKLT type non-perturbative exponential contribution for all, or for some of the
seven moduli, and find a discrete set of supersymmetric Minkowski minima. We also study type IIA
and type IIB string theory compactified on T6/Z2

2. In type IIA, we use a six-flux, geometric fluxes
and non-perturbative exponents. In type IIB theory, we use F and H fluxes, and non-geometric
Q and P fluxes, corresponding to consistently gauged supergravity with certain embedding ten-
sor components, without non-perturbative exponents. Also in these situations, we produce discrete
Minkowski minima. Finally, to construct dS vacua starting from these Minkowski progenitors, we
follow the procedure of mass production of dS vacua.

I. INTRODUCTION

In [1, 2], we introduced a method to construct de Sitter
minima, starting fromMinkowski minima in type IIA and
type IIB string theory. Here, we apply this method in the
context of M-theory and string theory. All of our models
here have seven complex scalars, which are coordinates

of the coset space
h
SL(2,R)
SO(2)

i7
.

We begin with moduli stabilization in M-theory on
a seven-manifold with G2-structure, namely the twisted
seven-torus. The starting point is the compact manifold
with Z2 ⇥ Z2 ⇥ Z2 ⇢ G2 holonomy that is obtained as
the toroidal orbifold of the form X7 = T7/Z2 ⇥ Z2 ⇥ Z2,
[3–6]. In particular, the Betti numbers of X7 are
(b0, b1, b2, b3) = (1, 0, 0, 7). This theory is identified with
the maximal rank reduction on the seven-torus and leads
directly to 4d N = 1 supergravity with seven moduli.
Then, the twisting is introduced and can be interpreted
as a Scherk–Schwarz reduction on the original torus. To
derive the twisted seven-torus model from M-theory, it
was proposed in [3] how to generalize the action of 11d
supergravity to its ‘democratic form’, namely a pseudo-
action where the potentials and the dual curvatures ap-
pear at the same time. In 10d, this type of supergravity
pseudo-action was proposed in [7]. The pseudo-action
allows to identify the superpotentials in 4d supergravity,
originating from M-theory on twisted seven-tori. Follow-
ing [3, 5], below we discuss such superpotentials and use
them to construct dS minima with all moduli stabilized.
Another derivation of an e↵ective 4d supergravity the-
ory could also be done using the duality-symmetric 11d
supergravity action coupled to M-branes [8].

⇤
niccolo.cribiori@tuwien.ac.at

†
kallosh@stanford.edu

‡
alinde@stanford.edu

§
christoph.roupec@tuwien.ac.at

M-theory on a generalized twisted seven-torus was pro-
posed and studied in [5, 9], following the corresponding
beyond twisted tori constructions in 10d, given in [10]. In
particular, the idea in [10] was to introduce Kaluza-Klein
monopoles KK5 and KKO5-planes, which allow to con-
sistently relax some restrictions, known as tadpole con-
ditions. Then, in [5, 9], an analogous construction was
introduced and studied in M-theory. A ‘beyond twisted
tori’ construction was presented, by allowing the presence
of KK6 monopoles and KKO6-planes.

The purpose of this note is to use M-theory on the
generalized twisted seven-torus, to identify some rela-
tively simple discrete supersymmetric Minkowski vacua,
in which all of the 14 real scalars are stabilized. In turn,
these vacua can be used to stabilize all of the 14 moduli in
dS minima, following the mechanism of mass production
of dS vacua [1, 2]. This mechanism is applicable to any
M-theory/string theory motivated superpotential satis-
fying certain conditions. However, all examples given in
[1, 2] were based on the KL-type racetrack superpoten-
tials containing at least two nonperturbative exponential
terms for each of the moduli [11].

In this paper we will show that, by taking into account
polynomial flux terms in superpotentials originating from
M-theory/string theory, one can achieve dS vacuum sta-
bilization in models with a single exponent for each field.
Alternatively, by including additional flux contributions,
we can stabilize dS vacua in models where only some of
the moduli have exponential terms in the superpoten-
tials. Some of these M-theory models have also an in-
terpretation as type IIA models compactified on T6/Z2

2
with fluxes.

Finally, we will present a particular class of models in
type IIB string theory, describing the seven moduli com-
pactified on T6/Z2

2 with fluxes. The origin of one of the
non-geometric fluxes in this model is subtle: it was con-
jectured in [12] to be present, based on S-duality of the
theory, once the geometric flux is introduced. We show
that in this model one can construct stable dS vacua
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complex scalars, 
are coordinates of 
the coset space 

Related model of IIA, IIB  supergravity with local sources on X6 =
T6

Z2 ⇥ Z2

K = �
7X

k=1

log
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21 elementsM-theory, simple and elegant 7 elements



WM = WIIA|mR=0 + cI
T1T2T3

TI
+ S TKdK

Derendinger, Adolfo Guarino, 2014 

M-theory beyond twisted with KK6 monopoles (KKO6-planes) 

Effective M-theory interpretation for non-geometric type IIA flux vacua

context of type IIA orientifold reductions (16 supercharges). The string vacuum of ref. [4]

was reconsidered in ref. [6] and found to actually require the presence of KK5 monopoles

due to a relation of the form [6,7]

! ! 6= 0 ) Net charge of KK5 (KKO5) sources (1.1)

involving the Scherk-Schwarz metric !-flux along the six-dimensional internal spaceX6. This

result indicated the necessity to extend the twisted tori picture of ref. [1], which demands

! ! = 0 as a consistency relation. However, and only after the advent of the embedding

tensor formalism, a thorough study of type IIA orientifold reductions [8] showed that ! ! 6= 0

violates the consistency conditions of N = 4 gauged supergravity [3]. As a consequence, the

string vacuum of ref. [4] is not a solution of N = 4 gauged supergravity although it still is a

perfectly acceptable solution of the N = 1 supergravity specified by the superpotential WIIA.

Nevertheless various type IIA orientifold models actually corresponding to N = 4 gauged

supergravities, i.e. satisfying ! ! = 0 , have been worked out afterwards on the basis of the

ET formalism [8, 9]. In all the cases where full moduli stabilisation occurred, the massive

version [10] of the type IIA theory was needed.

Gauged supergravities related to M-theory reductions to four dimensions have been much

less explored [11–14] than their type IIA relatives2. Ref. [12] investigated in detail Scherk-

Schwarz reductions on G2-manifolds in the presence of background fluxes, derived an N = 1

flux-induced superpotential WM-theory and established the connection to the previous type

IIA orientifold constructions by exploiting their underlying SU(3)-structure. The resulting

STU-models corresponded to (N = 1 truncations of) N = 8 gauged supergravities in-

compatible with full moduli stabilisation. Remarkably the authors identified a mismatch3

between the N = 1 superpotentials of the M-theory models (32 supercharges) and of the

type IIA orientifold models (16 supercharges) which can be summarised as

WM-theory = WIIA|a3=0
� 3 c0

3
T

2 � 3 d0 S T , (1.2)

where a3 is the Romans mass4 and the flux parameters (c0
3
, d0) are metric !-fluxes in

M-theory with no counterpart in the standard type IIA orientifold constructions5. For this

reason, they were set to zero in ref. [12] in order to have a neat SU(3) ⇢ G2 embedding

2Consistent truncations of M-theory beyond the toroidal setup we discuss in this work have been discussed

in refs [15–18].
3See also ref. [19].
4The IIA Romans mass parameter [10] is not generated upon (non-singular [20]) ordinary reductions of

M-theory.
5They would correspond to non-geometric fluxes [9, 19, 21] in a modern approach to type IIA flux com-

pactifications.

3

In type IIA

In M-theory

of the internal manifolds (6d vs 7d) underlying the type IIA orientifold and the M-theory

reductions. In this work we will investigate several aspects of these genuine M-theory fluxes.

One of our main results is that full moduli stabilisation can be achieved in M-theory

scenarios provided that the fluxes (c0
3
, d0) are activated. The minimally setup requires

an N = 8 ! N = 4 breaking of supersymmetries (from 32 supercharges to 16) in the

e↵ective STU-models. Using the embedding tensor formalism as an organising principle –

for this we will derive a precise ET/flux dictionary in M-theory – we will show that the

set of N = 4 consistency relations is compatible with a relaxation of the Scherk-Schwarz

conditions ! ! = 0 involving the metric !-flux in M-theory, in contrast to what happened

in the type IIA case. Along the lines of ref. [6], we will introduce the corresponding KK6

monopoles entering the relation

! ! 6= 0 ) Net charge of KK6 (KKO6) sources , (1.3)

which now involves the Scherk-Schwarz metric !-flux along the seven-dimensional internal

space X7, and discuss their compatibility with preserving N = 4 supersymmetry in the

e↵ective action. The aim of this work is to extend the study of type IIA/M-theory reductions

initiated in ref. [12] by exploiting the power of the embedding tensor formalism used to

systematically analyse maximal and half-maximal gauged supergravitites in four dimensions.

The paper is organised as follows. In section 2 we review the reductions of M-theory on

G2-manifolds with fluxes [12] and their interpretation as type IIA orientifold constructions

in order to introduce the e↵ective STU-models considered in the rest of the paper6. In

section 3 we establish the precise correspondence between STU-models and (half-)maximal

gauged supergravities in four dimensions. We present the flux/ET dictionary, discuss the

interplay between supersymmetry and Scherk-Schwarz conditions as well as the relation to

the absence/presence of KK6 monopoles and finally characterise the e↵ective supergravity

in terms of the universal moduli powers appearing in the scalar potential. In section 4 we

exhaustively classify the structure of 4d flux vacua by making a combined use of duality

transformations in the STU-models and algebraic geometry techniques in order to solve

the extremum conditions of the scalar potential and the consistency relations imposed by

supersymmetry. A systematic analysis of the critical points identifying the required sources

6The STU-models we will discuss correspond to consistent SO(3) truncations of the SL(2)⇥SO(6,6)
SO(2)⇥SO(6)⇥SO(6)

coset space spanned by the scalar fields of half-maximal supergravity in four dimensions. The underlying

group theory structure guarantees that we are actually solving the full set of equations of motion and not any

truncated version thereof, even though we are setting most of the scalars to zero. As usual in supergravity

theories (see ref. [22] for a recent discussion), the masses of the fields retained in the truncation are not

necessarily the lightest ones and therefore the analysis of stability requires the knowledge of the full mass

spectrum. We provide the complete spectrum for all vacua discussed in the paper in the appendices.

4

Scherk-Schwarz metric ω-flux along the seven-dimensional internal space X7 

In addition to the gauge fluxes (2.12) and (2.13), there are 21 metric !-fluxes compatible

with the orbifold symmetries. The entire set of M-theory fluxes is summarised in Table 1.

In terms of the basis elements (2.9), the expansion of the complex three-form in (2.3) can

be rewritten as

1

2
(A(3) + i�(3)) =

X

I

UI !I + S ↵0 �
X

I

TI �
I

, (2.14)

where S , TI and UI have the type IIA interpretation of dilaton, complex structure and

Kähler moduli, respectively8. Moreover we also find

1

2
d(A(3) + i�(3)) =

X

I

PI !̃
I + �

0
X

K

⇣
d
(K)

0
TK � b

(K)

1
UK

⌘
+
X

I

Q
I
↵I , (2.15)

where we have defined the quantities9

PI = a
(J)
2

UK + a
(K)

2
UJ + b

(I)
1
S +

X

L

C(IL)
1

TL (I 6= J 6= K) ,

Q
I = �c

0(J)
3

TK � c
0(K)

3
TJ � d

(I)
0
S +

X

L

UL C(LI)
1

(I 6= J 6= K) ,
(2.16)

and where C1 is the flux matrix introduced in ref. [26]

C(IJ)
1

=

0

B@
�c̃

(1)

1
č
(3)

1
ĉ
(2)

1

ĉ
(3)

1
�c̃

(2)

1
č
(1)

1

č
(2)

1
ĉ
(1)

1
�c̃

(3)

1

1

CA . (2.17)

By plugging (2.12)-(2.15) into the flux-induced superpotential (2.6) and using the orthogo-

nality conditions (2.11), one finds the M-theory superpotential

WM-theory = a0 � b0 S +
3X

K=1

c
(K)

0
TK �

3X

K=1

a
(K)

1
UK

+
3X

K=1

a
(K)

2

U1U2U3

UK
+

3X

I,J=1

UI C (IJ)
1

TJ + S

3X

K=1

b
(K)

1
UK

�
3X

K=1

c
0 (K)

3

T1T2T3

TK
� S

3X

K=1

d
(K)

0
TK .

(2.18)

With this we conclude the re-derivation of the e↵ective supergravities coming from twisted

reductions of M-theory on an X7 = T7
/(Z2 ⇥ Z2 ⇥ Z2) orbifold with fluxes and set up the

scenario we will analyse later.

8Notice the somehow unconventional names for the type IIA moduli fields. We have made this choice

in order to exactly reproduce the generalised superpotential of ref. [9] derived in the context of type IIB

compactifications and further connected to the embedding tensor framework for N = 4 supergravity.
9In the expressions (2.16) the I 6= J 6= K assignments have to be understood in a cyclic manner, namely

(I, J,K) = (1, 2, 3) , (2, 3, 1) , (3, 1, 2). For instance one has P1 = a(2)
2

U3 + a(3)
2

U2 + b(1)
1

S +
P

L C(1L)

1
TL and

similarly for the rest.

8

Dall’Agata, Prezas, 2005Rederived and generalized 

In our M-theory examples we use only terms even in moduli, but we add a non-perturbative exp

3

This is one of the central, most unexpected results of this
paper. ***

In the presentation of our examples, we split the seven-
moduli in a type IIA language, as

�i = {S, TI , UJ}, I, J = 1, 2, 3. (8)

For convenience, we keep the same notation also for type
IIB examples in Section V. Following also [5], the 21
non-vanishing terms contained in Mij , in the case of ef-
fective supergravities coming from twisted reductions of
M-theory on a X7 = T7/Z3

2 orbifold with fluxes, can be
represented as:

1

2
Mij�

i�j = SbKUK + UIC
IJTJ

+ aI
U1U2U3

UI

+ cI
T1T2T3

TI

+ SdKTK .
(9)

The 21 entries of Mij are now given in terms of the
parameters aI , bK , cI , dK and CIJ . However, for our
purpose of finding discrete supersymmetric Minkowski
vacua, it is su�cient to use only some of these terms.

Model 1, with S, T and U exponents

In this first class of models, we engage only 12 terms in
Mij and keep one exponent for each of the seven direc-
tions. The resulting superpotential is then

W1 = g7 + bKSUK + CIJUITJ

+ASe
iaSS +

X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

TI . (10)

In the vacuum, we have a total of 19 free parameters:
7 ai, 3 bI and 9 parameters CIJ . The parameters g7
and Ai are taken to solve the equations @iW = 0 and
W = 0. ***Therefore, we are free to choose a point in
moduli space and use the remaining parameters in order
to avoid flat directions. When this is done, we typically
still have remaining free parameters which can be used to
change masses of particles in the minimum, if we want to
increase them to make stabilization stronger, which can
be important e.g in cosmological applications.*** As we
will show in numerical examples, many options are avail-
able. We show one explicit example with unconstrained
parameters, and an other one where the tadpole condi-
tions are satisfied without sources.

Model 2, with T and U exponents

A second class of models we consider is a subcase of
the previous one, in which we set AS = aS = 0 from
the very beginning. In other words, we again use the 12
terms from the Mij matrix and add the exponents in all
of the directions but S. The superpotential in this case
takes the form:

W2 =g7 + bKSUK + CIJUITJ

+
X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

UI . (11)

SolvingW = 0 and @iW = 0, in order to find a supersym-
metric Minkowski solution, will now fix the parameters
g7, ATI , AUI , together with one of the parameters among
bK or CIJ , in (11). As it turns out, this does not pro-
hibit a solution. Indeed, explicit examples of this class
of models are possible. We present one such solution in
Section IV.

Model 3, with S and T exponents

In the third class of models, we consider 15 terms from
the matrix Mij and add the exponents only in four direc-
tions, namely S and TI . In particular, it turns out that
we do not need to add exponents in UK directions. This
is interesting, since in [2, 14] such terms were employed in
order to facilitate stable dS vacua in type IIA supergrav-
ity constructions, in which the only perturbative term in
W was a constant flux. Here we find that, by includ-
ing in W geometric fluxes polynomial in the moduli and
looking first for a supersymmetric Minkowski minimum,
some of the non-perturbative exponential terms are not
required. Therefore, we consider the superpotential

W3 =g7 + aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+ASe
iaSS +ATIe

iaTI
TI . (12)

which has 24 parameters. Again, we have to solve the
equations @iW = 0 and W = 0, which will fix 8 parame-
ters in W . We are then free to choose the remaining pa-
rameters in order to obtain positive masses in Minkowski.
We present an explicit numerical example of this class of
models in section IV.

Model 4, with S exponent

In this fourth class of models, we engage 18 terms from
the matrix Mij and add the exponential contribution
only in one direction, namely S. In particular, in this
case we find that there is no need to add exponents in TI

and UK directions. Therefore, the superpotential is

W4 = g7+aI
U1U2U3
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+ bKSUK + CIJUITJ

+cI
T1T2T3

TI

+ASe
iaSS , (13)

which has 21 parameters. We solve the 8 equations
@iW = 0 and W = 0 once more and fix the remain-
ing free parameters to produce Minkowski vacua without
flat directions. We show a numerical realisation of this
model in section IV.
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The superpotential derived in [3, 5] has the generic form
Wpert = g7 +Gi�i + 1

2Mij�i�j . In the present work, we
will use this superpotential, with two additional modifi-
cations. First, we set Gi = 0, in order to have only con-
stant and quadratic terms in the moduli. Second, we add
to this superpotential a KKLT-type non-perturbative ex-
ponential term. Therefore, the resulting W is
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Here, g7 is a seven-flux contribution, whereas terms
quadratic in the moduli originate from geometric fluxes.1

Here, all parameters in W are real. The matrix Mij is
symmetric and all of its diagonal elements vanish. There-
fore, it has 21 parameters. One could generalize this set-
ting and use racetrack superpotentials, following [1, 2].
In that case, dS vacuum stabilization is possible even in
absence of the term g7 +

1
2Mij�i�j . The goal of this pa-

per is to explore alternative possibilities, using no more
than a single nonperturbative exponential term for each
of the moduli.

To find supersymmetric Minkowski vacua, one has to
solve the equations @iW = 0 and W = 0. The first of
these equations gives

� iaiAie
iai�i = Mij�

j . (3)

which can be solved for the coe�cients Ai of the non-
perturbative terms, resulting in

Ai = ia�1
i

e�iai�iMij�
j . (4)

We split �i = ✓i + i�i and note that the solution is con-
sistent at ✓i = 0. Then, we substitute the parameters Ai
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evaluated at the extremum, �i = �i
0, ✓i = ✓i0 = 0, back

into the superpotential. After that, we subtract from the
expression of W the constant term thus obtained. This
allows us to fix the parameter g7 and to satisfy also the
equation W = 0. This solves the problem of finding a
supersymmetric Minkowski vacuum in the seven-moduli
�i model.

Therefore, given a free choice of parameters, following
this path one can obtain a supersymmetric Minkowski
state. We will often find that the number of free parame-
ters is much greater than the number of equations, which
may allow us to omit some of the terms in the super-
potential and still obtain a supersymmetric Minkowski
vacuum. However, if we want to implement the proce-
dure proposed in [1] for producing dS minima, we have
to require additionally that the potential does not have
flat directions, or, equivalently, that it has a positive def-
inite mass matrix in the vacuum, corresponding to its
second derivatives. The mass matrix in a supersymmet-
ric Minkowski vacuum is

V Mink

i|̄
= mikg

kk̄mk̄|̄ = eKWikg
kk̄W̄k̄|̄. (5)

Therefore, in the seven-moduli model we are considering,
flat directions are given by the zero modes of

Wij = @i@jW = Mij � �ijAia
2
i
eiai�i , (6)

evaluated in the vacuum. Notice that, if we have ex-
ponents in all directions, as in (2), the matrix Wij is a
generic symmetric matrix, including non-vanishing diag-
onal terms. Since gi|̄ is positive definite, one or more
zero modes are in fact present in the mass matrix when
detWij = 0. However, as we will show in several exam-
ples, this is actually a quite restrictive condition, which
does not hold in generic models, unless peculiar cancel-
lations occur. Therefore, in general one expects that

detWij 6= 0 (7)

and no flat directions are present in the mass matrix.

In our previous papers [1, 2], where only constant terms
in W were present, a KL-type double exponent was nec-
essary for each direction in the moduli space, in order to
obtain stable solutions. All such models do not have flat
directions, by construction. Meanwhile in the new set of
models discussed in this paper one may encounter flat di-
rections, but one can eliminate them by adding fluxes. In
each of the models to be studied in this paper we found
that the flat directions are absent in Minkowski vacua
for a broad range of parameters, i.e. no fine tuning is
necessary.

Furthermore, by adding more flux contributions, one
can eliminate some of the single exponents, and by adding
extra contributions from S-dual fluxes, as in (15), one can
eliminate all of the exponents, still without flat directions.
This is one of the central, most unexpected results of this
paper.
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ples, this is actually a quite restrictive condition, which
does not hold in generic models, unless peculiar cancel-
lations occur. Therefore, in general one expects that
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and no flat directions are present in the mass matrix.

In our previous papers [1, 2], where only constant terms
in W were present, a KL-type double exponent was nec-
essary for each direction in the moduli space, in order to
obtain stable solutions. All such models do not have flat
directions, by construction. Meanwhile in the new set of
models discussed in this paper one may encounter flat di-
rections, but one can eliminate them by adding fluxes. In
each of the models to be studied in this paper we found
that the flat directions are absent in Minkowski vacua
for a broad range of parameters, i.e. no fine tuning is
necessary.

Furthermore, by adding more flux contributions, one
can eliminate some of the single exponents, and by adding
extra contributions from S-dual fluxes, as in (15), one can
eliminate all of the exponents, still without flat directions.
This is one of the central, most unexpected results of this
paper.
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In the presentation of our examples, we split the seven-
moduli in a type IIA language, as

�i = {S, TI , UJ}, I, J = 1, 2, 3. (8)

For convenience, we keep the same notation also for type
IIB examples in Section V. Following also [5], the 21
non-vanishing terms contained in Mij , in the case of ef-
fective supergravities coming from twisted reductions of
M-theory on a X7 = T7/Z3

2 orbifold with fluxes, can be
represented as:

1
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i�j = SbKUK + UIC
IJTJ

+ aI
U1U2U3

UI

+ cI
T1T2T3

TI

+ SdKTK .
(9)

The 21 entries of Mij are now given in terms of the
parameters aI , bK , cI , dK and CIJ . However, for our
purpose of finding discrete supersymmetric Minkowski
vacua, it is su�cient to use only some of these terms.

Model 1, with S, T and U exponents

In this first class of models, we engage only 12 terms in
Mij and keep one exponent for each of the seven direc-
tions. The resulting superpotential is then

W1 = g7 + bKSUK + CIJUITJ

+ASe
iaSS +

X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

TI . (10)

In the vacuum, we have a total of 19 free parameters: 7
ai, 3 bI and 9 parameters CIJ . Instead of fixing all of
them and looking for the minimum of the potential, one
can use 8 equations @iW = 0 and W = 0 to find 8 param-
eters g7 and Ai such that these equations are satisfied at
a chosen point �i in moduli space, which therefore de-
scribes a supersymmetric Minkowski vacuum. This still
leaves plenty of free parameters to control the values of
masses of all moduli in the vacuum and to ensure that
there are no flat directions. As we will show in numer-
ical examples, many options are available, even if one
does not engage some of the exponents. We show one
explicit example with unconstrained parameters, and an-
other one where the tadpole conditions are satisfied with-
out sources.

Model 2, without S exponent

A second class of models we consider is a subcase of
the previous one, in which we set AS = aS = 0 from
the very beginning. In other words, we again use the 12
terms from the Mij matrix and add the exponents in all
of the directions but S. The superpotential in this case
takes the form:

W2 =g7 + bKSUK + CIJUITJ

+
X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

UI . (11)

SolvingW = 0 and @iW = 0, in order to find a supersym-
metric Minkowski solution, will now fix the parameters
g7, ATI , AUI , together with one of the parameters among
bK or CIJ , in (11). As it turns out, this does not pro-
hibit a solution. Indeed, explicit examples of this class
of models are possible. We present one such solution in
Section IV.

Model 3, without U exponents

In the third class of models, we consider 15 terms from
the matrix Mij and add the exponents only in four direc-
tions, namely S and TI . In particular, it turns out that
we do not need to add exponents in the UK directions.
This is interesting, since in [2, 14] such terms were em-
ployed in order to facilitate stable dS vacua in type IIA
supergravity constructions, in which the only perturba-
tive term in W was a constant flux. Here we find that, by
including inW geometric fluxes polynomial in the moduli
and looking first for a supersymmetric Minkowski min-
imum, some of the non-perturbative exponential terms
are not required. Therefore, we consider the superpoten-
tial

W3 =g7 + aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+ASe
iaSS +ATIe

iaTI
TI . (12)

which has 24 parameters. Again, we have to solve the
equations @iW = 0 and W = 0, which will fix 8 parame-
ters in W . We are then free to choose the remaining pa-
rameters in order to obtain positive masses in Minkowski.
We present an explicit numerical example of this class of
models in section IV.

Model 4, without T and U exponents

In this fourth class of models, we engage 18 terms from
the matrix Mij and add the exponential contribution
only in one direction, namely S. In particular, in this
case we find that there is no need to add exponents in
the TI and UK directions. Therefore, the superpotential
is

W4 = g7+aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+cI
T1T2T3

TI

+ASe
iaSS , (13)

which has 21 parameters. We solve the 8 equations
@iW = 0 and W = 0 once more and fix the remain-
ing free parameters to produce Minkowski vacua without
flat directions. We show a numerical realisation of this
model in section IV.
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Following [5, 9, 10], in type IIA string theory compact-
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one finds that only 15 terms are available,
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The superpotential derived in [3, 5] has the generic form
Wpert = g7 +Gi�i + 1

2Mij�i�j . In the present work, we
will use this superpotential, with two additional modifi-
cations. First, we set Gi = 0, in order to have only con-
stant and quadratic terms in the moduli. Second, we add
to this superpotential a KKLT-type non-perturbative ex-
ponential term. Therefore, the resulting W is
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Here, g7 is a seven-flux contribution, whereas terms
quadratic in the moduli originate from geometric fluxes.1

Here, all parameters in W are real. The matrix Mij is
symmetric and all of its diagonal elements vanish. There-
fore, it has 21 parameters. One could generalize this set-
ting and use racetrack superpotentials, following [1, 2].
In that case, dS vacuum stabilization is possible even in
absence of the term g7 +

1
2Mij�i�j . The goal of this pa-

per is to explore alternative possibilities, using no more
than a single nonperturbative exponential term for each
of the moduli.

To find supersymmetric Minkowski vacua, one has to
solve the equations @iW = 0 and W = 0. The first of
these equations gives

� iaiAie
iai�i = Mij�

j . (3)

which can be solved for the coe�cients Ai of the non-
perturbative terms, resulting in

Ai = ia�1
i

e�iai�iMij�
j . (4)

We split �i = ✓i + i�i and note that the solution is con-
sistent at ✓i = 0. Then, we substitute the parameters Ai
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evaluated at the extremum, �i = �i
0, ✓i = ✓i0 = 0, back

into the superpotential. After that, we subtract from the
expression of W the constant term thus obtained. This
allows us to fix the parameter g7 and to satisfy also the
equation W = 0. This solves the problem of finding a
supersymmetric Minkowski vacuum in the seven-moduli
�i model.

Therefore, given a free choice of parameters, following
this path one can obtain a supersymmetric Minkowski
state. We will often find that the number of free parame-
ters is much greater than the number of equations, which
may allow us to omit some of the terms in the super-
potential and still obtain a supersymmetric Minkowski
vacuum. However, if we want to implement the proce-
dure proposed in [1] for producing dS minima, we have
to require additionally that the potential does not have
flat directions, or, equivalently, that it has a positive def-
inite mass matrix in the vacuum, corresponding to its
second derivatives. The mass matrix in a supersymmet-
ric Minkowski vacuum is

V Mink

i|̄
= mikg

kk̄mk̄|̄ = eKWikg
kk̄W̄k̄|̄. (5)

Therefore, in the seven-moduli model we are considering,
flat directions are given by the zero modes of

Wij = @i@jW = Mij � �ijAia
2
i
eiai�i , (6)

evaluated in the vacuum. Notice that, if we have ex-
ponents in all directions, as in (2), the matrix Wij is a
generic symmetric matrix, including non-vanishing diag-
onal terms. Since gi|̄ is positive definite, one or more
zero modes are in fact present in the mass matrix when
detWij = 0. However, as we will show in several exam-
ples, this is actually a quite restrictive condition, which
does not hold in generic models, unless peculiar cancel-
lations occur. Therefore, in general one expects that

detWij 6= 0 (7)

and no flat directions are present in the mass matrix.

In our previous papers [1, 2], where only constant terms
in W were present, a KL-type double exponent was nec-
essary for each direction in the moduli space, in order to
obtain stable solutions. All such models do not have flat
directions, by construction. Meanwhile in the new set of
models discussed in this paper one may encounter flat di-
rections, but one can eliminate them by adding fluxes. In
each of the models to be studied in this paper we found
that the flat directions are absent in Minkowski vacua
for a broad range of parameters, i.e. no fine tuning is
necessary.

Furthermore, by adding more flux contributions, one
can eliminate some of the single exponents, and by adding
extra contributions from S-dual fluxes, as in (15), one can
eliminate all of the exponents, still without flat directions.
This is one of the central, most unexpected results of this
paper.

To find a supersymmetric Minkowski minimum we must have W = 0 and W’ = 0. 
The first condition can be satisfied by a proper choice of g7. The condition W’ = 0 
reads
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generic symmetric matrix, including non-vanishing diag-
onal terms. Since gi|̄ is positive definite, one or more
zero modes are in fact present in the mass matrix when
detWij = 0. However, as we will show in several exam-
ples, this is actually a quite restrictive condition, which
does not hold in generic models, unless peculiar cancel-
lations occur. Therefore, in general one expects that

detWij 6= 0 (7)

and no flat directions are present in the mass matrix.

In our previous papers [1, 2], where only constant terms
in W were present, a KL-type double exponent was nec-
essary for each direction in the moduli space, in order to
obtain stable solutions. All such models do not have flat
directions, by construction. Meanwhile in the new set of
models discussed in this paper one may encounter flat di-
rections, but one can eliminate them by adding fluxes. In
each of the models to be studied in this paper we found
that the flat directions are absent in Minkowski vacua
for a broad range of parameters, i.e. no fine tuning is
necessary.

Furthermore, by adding more flux contributions, one
can eliminate some of the single exponents, and by adding
extra contributions from S-dual fluxes, as in (15), one can
eliminate all of the exponents, still without flat directions.
This is one of the central, most unexpected results of this
paper.

The solution is

If we want to have a susy Minkowski minimum at  Fj
0 we just use the parameters 

Ai given by this equation. The only problem is to avoid flat directions. In the 
previous method (double exponents for each moduli) there were no flat 
directions by construction. In the new setting one should check it, and we did it. 
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iaTI

TI +
X

I

AUIe
iaUI

TI . (10)

In the vacuum, we have a total of 19 free parameters: 7
ai, 3 bI and 9 parameters CIJ . Instead of fixing all of
them and looking for the minimum of the potential, one
can use 8 equations @iW = 0 and W = 0 to find 8 param-
eters g7 and Ai such that these equations are satisfied at
a chosen point �i in moduli space, which therefore de-
scribes a supersymmetric Minkowski vacuum. This still
leaves plenty of free parameters to control the values of
masses of all moduli in the vacuum and to ensure that
there are no flat directions. As we will show in numer-
ical examples, many options are available, even if one
does not engage some of the exponents. We show one
explicit example with unconstrained parameters, and an-
other one where the tadpole conditions are satisfied with-
out sources.

Model 2, without S exponent

A second class of models we consider is a subcase of
the previous one, in which we set AS = aS = 0 from
the very beginning. In other words, we again use the 12
terms from the Mij matrix and add the exponents in all
of the directions but S. The superpotential in this case
takes the form:

W2 =g7 + bKSUK + CIJUITJ

+
X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

UI . (11)

SolvingW = 0 and @iW = 0, in order to find a supersym-
metric Minkowski solution, will now fix the parameters
g7, ATI , AUI , together with one of the parameters among
bK or CIJ , in (11). As it turns out, this does not pro-
hibit a solution. Indeed, explicit examples of this class
of models are possible. We present one such solution in
Section IV.

Model 3, without U exponents

In the third class of models, we consider 15 terms from
the matrix Mij and add the exponents only in four direc-
tions, namely S and TI . In particular, it turns out that
we do not need to add exponents in the UK directions.
This is interesting, since in [2, 14] such terms were em-
ployed in order to facilitate stable dS vacua in type IIA
supergravity constructions, in which the only perturba-
tive term in W was a constant flux. Here we find that, by
including inW geometric fluxes polynomial in the moduli
and looking first for a supersymmetric Minkowski min-
imum, some of the non-perturbative exponential terms
are not required. Therefore, we consider the superpoten-
tial

W3 =g7 + aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+ASe
iaSS +ATIe

iaTI
TI . (12)

which has 24 parameters. Again, we have to solve the
equations @iW = 0 and W = 0, which will fix 8 parame-
ters in W . We are then free to choose the remaining pa-
rameters in order to obtain positive masses in Minkowski.
We present an explicit numerical example of this class of
models in section IV.

Model 4, without T and U exponents

In this fourth class of models, we engage 18 terms from
the matrix Mij and add the exponential contribution
only in one direction, namely S. In particular, in this
case we find that there is no need to add exponents in
the TI and UK directions. Therefore, the superpotential
is

W4 = g7+aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+cI
T1T2T3

TI

+ASe
iaSS , (13)

which has 21 parameters. We solve the 8 equations
@iW = 0 and W = 0 once more and fix the remain-
ing free parameters to produce Minkowski vacua without
flat directions. We show a numerical realisation of this
model in section IV.

III. GENERALIZED TWISTED SIX-TORUS

Following [5, 9, 10], in type IIA string theory compact-

ified on T6

Z2⇥Z2
one finds that only 15 terms are available,
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out of the total 21 terms present in M-theory and given
in (9). In particular, the last two terms in (9), namely
cI T1T2T3

TI
+SdKTK , with 6 parameters, cI and dK , are ab-

sent in standard type IIA orientifold constructions. Fur-
thermore, the six-flux f6 in type IIA replaces the seven-
flux g7 of the M-theory models. In the notation of [9],
with a = 1, 2, 3 and m = 4, 5, 6, the 3 terms aI U1U2U3

UI

correspond to two-fluxes Fam. The 3 terms of the form
bISUI correspond to non-geometric fluxes, with bI de-
fined by !mn

c. Finally, the 9 terms of the form CIJUITJ

correspond to non-geometric fluxes, where CIJ is defined
by !bp

m, !bc
a. Thus, our Models 1, 2 , 3 are also models

in type IIA. Instead, our M-theory Model 4 is not related
to standard type IIA orientifold constructions, due to the
presence of the term cI T1T2T3

TI
.

The tadpole conditions require spacetime filling
sources, such as O6 planes, D6 branes and KK
monopoles, as explained in detail in [9, 10]. In these
cases, the combinations of fluxes

P
I
aIbI and

P
J
aJCJI

(see Table 2 in [9]) do not have to vanish, but can be
cancelled by specific O6/D6 sources. Similarly, the ex-
pressions bICJI + bICJJ and CIJCJK +CIKCJJ do not
need to be set to zero, but can be cancelled by contri-
butions from (KK5/KKO5) and from (KK5/KKO5)’ re-
spectively, where these sources are wrapped on specific
internal cycles.

In Models 3 and 4, we need to consider all of these
conditions, while in Models 1 and 2 the first two are sat-
isfied automatically, since aI = 0. The fact that the tad-
pole conditions can be satisfied in the presence of sources
means, as it was already suggested in [9, 10], that there is
no need to enforce the Jacobi constraints on flux parame-
ters, which would be required in absence of sources. Our
examples will include one case where the tadpole iden-
tities are satisfied even without sources, as well as more
general cases with sources and relaxed Jacobi constraints.

IV. M-THEORY EXAMPLES

In this section, we investigate the models described
above, in the context of an e↵ective 4d N = 1 super-
gravity description and present numerical examples. The
Kähler potential, in our conventions, takes the form (1)
and the complete superpotential is given in eqs. (2) and
(9). After solving for the supersymmetric Minkowski vac-
uum and choosing the free parameters such that there are
no flat directions, we follow the mass production mecha-
nism [1, 2] in order to find a dS solution. We refrain from
giving the details of this construction here and choose
to present only the independent set of parameters and
masses in Minkowski as well as in dS.

One important comment concerns the uplifting proce-
dure, which is well understood in both type IIB as well as
type IIA string theory. It is based on pseudo-calibrated
Dp-branes [15] and results in an equivalent procedure of

supplementing 4d, N = 1 supergravity by a nilpotent
multiplet. In M-theory, the analogous procedure has not
been worked out in detail yet and it will be a matter of
future investigations.

Model 1, with S, T and U exponents

The superpotential of this model is given in (10). For
our first example, we choose to solve the Minkowski con-
ditions W = 0 and @iW = 0 in terms of the parameters
AS , ATI , AUI (I = 1, 2, 3) and the seven-flux g7. All
of the other parameters, as well as the position of the
minimum in moduli space, remain free. Then, we choose
values for these free parameters in a way that avoids flat
directions, which might happen in case of accidental can-
cellations, for very specific values of the parameters. One
possible choice for the free parameters is given in Ta-
ble I. These parameters lead to a stable, supersymmetric
Minkowski vacuum with canonical masses given in Table
II.

S0 1.0 aS 1.0 C11 0.11 C32 0.32
T1,0 1.1 aT1 1.1 C12 0.12 C33 0.33
T2,0 1.2 aT2 1.1 C13 0.13 b1 0.55
T3,0 1.3 aT3 1.1 C21 0.21 b2 0.60
U1,0 5.1 aU1 0.51 C22 0.22 b3 0.65
U2,0 5.2 aU2 0.52 C23 0.23 �g7 5 · 10�3

U3,0 5.3 aU3 0.53 C31 0.31 µ4 9 · 10�9

TABLE I. Our set of chosen parameters for Model 1. Note
that S0 corresponds to the imaginary part of the modulus,
similarly for all of the other moduli. The values of the moduli
UI are chosen in this way because, in our conventions, Im(UI)
corresponds to the volume of the internal manifold, which
should be large in IIA. Included are the downshift �g7 and
uplift parameter µ4 for the mass production procedure.

m1 m2 m3 m4 m5 m6 m7

Mk 0.6421 0.4700 0.3216 0.1757 0.1406 0.1129 0.08219
dS 0.6427 0.4705 0.3218 0.1758 0.1407 0.1130 0.08227

TABLE II. The canonical normalized masses for Model 1. We
choose to give only the masses of the moduli, omitting the
axions. The behaviour follows exactly as described in [2].

Model 1, with tadpole condition satisfied without sources

Another interesting variation of the model with bK

and CIJ terms is connected to the tadpole conditions,
as taken from Table 2 of [9]. Usually the tadpole condi-
tions are satisfied by inclusion of sources. However, we
find that, if we include exponents in all directions, we
are able to satisfy all of the tadpole conditions without
sources in this model. The relevant tadpole conditions,
without sources, are:

bICIJ + bJCII = 0,

CIJCJK + CIKCJJ = 0 , (no summation).
(14)

We choose to solve these conditions in terms of the CIJ

with I 6= J and C11, keeping the other parameters as in

Model 1

parameters

Masses of all 7 moduli before and after a small uplift 
(omitting the axion masses, which are similar)
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out of the total 21 terms present in M-theory and given
in (9). In particular, the last two terms in (9), namely
cI T1T2T3

TI
+SdKTK , with 6 parameters, cI and dK , are ab-

sent in standard type IIA orientifold constructions. Fur-
thermore, the six-flux f6 in type IIA replaces the seven-
flux g7 of the M-theory models. In the notation of [9],
with a = 1, 2, 3 and m = 4, 5, 6, the 3 terms aI U1U2U3

UI

correspond to two-fluxes Fam. The 3 terms of the form
bISUI correspond to non-geometric fluxes, with bI de-
fined by !mn

c. Finally, the 9 terms of the form CIJUITJ

correspond to non-geometric fluxes, where CIJ is defined
by !bp

m, !bc
a. Thus, our Models 1, 2 , 3 are also models

in type IIA. Instead, our M-theory Model 4 is not related
to standard type IIA orientifold constructions, due to the
presence of the term cI T1T2T3

TI
.

The tadpole conditions require spacetime filling
sources, such as O6 planes, D6 branes and KK
monopoles, as explained in detail in [9, 10]. In these
cases, the combinations of fluxes

P
I
aIbI and

P
J
aJCJI

(see Table 2 in [9]) do not have to vanish, but can be
cancelled by specific O6/D6 sources. Similarly, the ex-
pressions bICJI + bICJJ and CIJCJK +CIKCJJ do not
need to be set to zero, but can be cancelled by contri-
butions from (KK5/KKO5) and from (KK5/KKO5)’ re-
spectively, where these sources are wrapped on specific
internal cycles.

In Models 3 and 4, we need to consider all of these
conditions, while in Models 1 and 2 the first two are sat-
isfied automatically, since aI = 0. The fact that the tad-
pole conditions can be satisfied in the presence of sources
means, as it was already suggested in [9, 10], that there is
no need to enforce the Jacobi constraints on flux parame-
ters, which would be required in absence of sources. Our
examples will include one case where the tadpole iden-
tities are satisfied even without sources, as well as more
general cases with sources and relaxed Jacobi constraints.

IV. M-THEORY EXAMPLES

In this section, we investigate the models described
above, in the context of an e↵ective 4d N = 1 super-
gravity description and present numerical examples. The
Kähler potential, in our conventions, takes the form (1)
and the complete superpotential is given in eqs. (2) and
(9). After solving for the supersymmetric Minkowski vac-
uum and choosing the free parameters such that there are
no flat directions, we follow the mass production mecha-
nism [1, 2] in order to find a dS solution. We refrain from
giving the details of this construction here and choose
to present only the independent set of parameters and
masses in Minkowski as well as in dS.

One important comment concerns the uplifting proce-
dure, which is well understood in both type IIB as well as
type IIA string theory. It is based on pseudo-calibrated
Dp-branes [15] and results in an equivalent procedure of

supplementing 4d, N = 1 supergravity by a nilpotent
multiplet. In M-theory, the analogous procedure has not
been worked out in detail yet and it will be a matter of
future investigations.

Model 1, with S, T and U exponents

The superpotential of this model is given in (10). For
our first example, we choose to solve the Minkowski con-
ditions W = 0 and @iW = 0 in terms of the parameters
AS , ATI , AUI (I = 1, 2, 3) and the seven-flux g7. All
of the other parameters, as well as the position of the
minimum in moduli space, remain free. Then, we choose
values for these free parameters in a way that avoids flat
directions, which might happen in case of accidental can-
cellations, for very specific values of the parameters. One
possible choice for the free parameters is given in Ta-
ble I. These parameters lead to a stable, supersymmetric
Minkowski vacuum with canonical masses given in Table
II.

S0 1.0 aS 1.0 C11 0.11 C32 0.32
T1,0 1.1 aT1 1.1 C12 0.12 C33 0.33
T2,0 1.2 aT2 1.1 C13 0.13 b1 0.55
T3,0 1.3 aT3 1.1 C21 0.21 b2 0.60
U1,0 5.1 aU1 0.51 C22 0.22 b3 0.65
U2,0 5.2 aU2 0.52 C23 0.23 �g7 5 · 10�3

U3,0 5.3 aU3 0.53 C31 0.31 µ4 9 · 10�9

TABLE I. Our set of chosen parameters for Model 1. Note
that S0 corresponds to the imaginary part of the modulus,
similarly for all of the other moduli. The values of the moduli
UI are chosen in this way because, in our conventions, Im(UI)
corresponds to the volume of the internal manifold, which
should be large in IIA. Included are the downshift �g7 and
uplift parameter µ4 for the mass production procedure.

m1 m2 m3 m4 m5 m6 m7

Mk 0.6421 0.4700 0.3216 0.1757 0.1406 0.1129 0.08219
dS 0.6427 0.4705 0.3218 0.1758 0.1407 0.1130 0.08227

TABLE II. The canonical normalized masses for Model 1. We
choose to give only the masses of the moduli, omitting the
axions. The behaviour follows exactly as described in [2].

Model 1, with tadpole condition satisfied without sources

Another interesting variation of the model with bK

and CIJ terms is connected to the tadpole conditions,
as taken from Table 2 of [9]. Usually the tadpole condi-
tions are satisfied by inclusion of sources. However, we
find that, if we include exponents in all directions, we
are able to satisfy all of the tadpole conditions without
sources in this model. The relevant tadpole conditions,
without sources, are:

bICIJ + bJCII = 0,

CIJCJK + CIKCJJ = 0 , (no summation).
(14)

We choose to solve these conditions in terms of the CIJ

with I 6= J and C11, keeping the other parameters as in



Model 1 and tadpole conditions:

4

out of the total 21 terms present in M-theory and given
in (9). In particular, the last two terms in (9), namely
cI T1T2T3

TI
+SdKTK , with 6 parameters, cI and dK , are ab-

sent in standard type IIA orientifold constructions. Fur-
thermore, the six-flux f6 in type IIA replaces the seven-
flux g7 of the M-theory models. In the notation of [9],
with a = 1, 2, 3 and m = 4, 5, 6, the 3 terms aI U1U2U3

UI

correspond to two-fluxes Fam. The 3 terms of the form
bISUI correspond to non-geometric fluxes, with bI de-
fined by !mn

c. Finally, the 9 terms of the form CIJUITJ

correspond to non-geometric fluxes, where CIJ is defined
by !bp

m, !bc
a. Thus, our Models 1, 2 , 3 are also models

in type IIA. Instead, our M-theory Model 4 is not related
to standard type IIA orientifold constructions, due to the
presence of the term cI T1T2T3

TI
.

The tadpole conditions require spacetime filling
sources, such as O6 planes, D6 branes and KK
monopoles, as explained in detail in [9, 10]. In these
cases, the combinations of fluxes

P
I
aIbI and

P
J
aJCJI

(see Table 2 in [9]) do not have to vanish, but can be
cancelled by specific O6/D6 sources. Similarly, the ex-
pressions bICJI + bICJJ and CIJCJK +CIKCJJ do not
need to be set to zero, but can be cancelled by contri-
butions from (KK5/KKO5) and from (KK5/KKO5)’ re-
spectively, where these sources are wrapped on specific
internal cycles.

In Models 3 and 4, we need to consider all of these
conditions, while in Models 1 and 2 the first two are sat-
isfied automatically, since aI = 0. The fact that the tad-
pole conditions can be satisfied in the presence of sources
means, as it was already suggested in [9, 10], that there is
no need to enforce the Jacobi constraints on flux parame-
ters, which would be required in absence of sources. Our
examples will include one case where the tadpole iden-
tities are satisfied even without sources, as well as more
general cases with sources and relaxed Jacobi constraints.

IV. M-THEORY EXAMPLES

In this section, we investigate the models described
above, in the context of an e↵ective 4d N = 1 super-
gravity description and present numerical examples. The
Kähler potential, in our conventions, takes the form (1)
and the complete superpotential is given in eqs. (2) and
(9). After solving for the supersymmetric Minkowski vac-
uum and choosing the free parameters such that there are
no flat directions, we follow the mass production mecha-
nism [1, 2] in order to find a dS solution. We refrain from
giving the details of this construction here and choose
to present only the independent set of parameters and
masses in Minkowski as well as in dS.

One important comment concerns the uplifting proce-
dure, which is well understood in both type IIB as well as
type IIA string theory. It is based on pseudo-calibrated
Dp-branes [15] and results in an equivalent procedure of

supplementing 4d, N = 1 supergravity by a nilpotent
multiplet. In M-theory, the analogous procedure has not
been worked out in detail yet and it will be a matter of
future investigations.

Model 1, with S, T and U exponents

The superpotential of this model is given in (10). For
our first example, we choose to solve the Minkowski con-
ditions W = 0 and @iW = 0 in terms of the parameters
AS , ATI , AUI (I = 1, 2, 3) and the seven-flux g7. All
of the other parameters, as well as the position of the
minimum in moduli space, remain free. Then, we choose
values for these free parameters in a way that avoids flat
directions, which might happen in case of accidental can-
cellations, for very specific values of the parameters. One
possible choice for the free parameters is given in Ta-
ble I. These parameters lead to a stable, supersymmetric
Minkowski vacuum with canonical masses given in Table
II.

S0 1.0 aS 1.0 C11 0.11 C32 0.32
T1,0 1.1 aT1 1.1 C12 0.12 C33 0.33
T2,0 1.2 aT2 1.1 C13 0.13 b1 0.55
T3,0 1.3 aT3 1.1 C21 0.21 b2 0.60
U1,0 5.1 aU1 0.51 C22 0.22 b3 0.65
U2,0 5.2 aU2 0.52 C23 0.23 �g7 5 · 10�3

U3,0 5.3 aU3 0.53 C31 0.31 µ4 9 · 10�9

TABLE I. Our set of chosen parameters for Model 1. Note
that S0 corresponds to the imaginary part of the modulus,
similarly for all of the other moduli. The values of the moduli
UI are chosen in this way because, in our conventions, Im(UI)
corresponds to the volume of the internal manifold, which
should be large in IIA. Included are the downshift �g7 and
uplift parameter µ4 for the mass production procedure.

m1 m2 m3 m4 m5 m6 m7

Mk 0.6421 0.4700 0.3216 0.1757 0.1406 0.1129 0.08219
dS 0.6427 0.4705 0.3218 0.1758 0.1407 0.1130 0.08227

TABLE II. The canonical normalized masses for Model 1. We
choose to give only the masses of the moduli, omitting the
axions. The behaviour follows exactly as described in [2].

Model 1, with tadpole condition satisfied without sources

Another interesting variation of the model with bK

and CIJ terms is connected to the tadpole conditions,
as taken from Table 2 of [9]. Usually the tadpole condi-
tions are satisfied by inclusion of sources. However, we
find that, if we include exponents in all directions, we
are able to satisfy all of the tadpole conditions without
sources in this model. The relevant tadpole conditions,
without sources, are:

bICIJ + bJCII = 0,

CIJCJK + CIKCJJ = 0 , (no summation).
(14)

We choose to solve these conditions in terms of the CIJ

with I 6= J and C11, keeping the other parameters as in
One can satisfy these conditions by taking into account sources, such as KK monopoles, 
but one can also satisfy these condition by making a slight modification of the previous 
choice of parameters CIJ with            and C11, keeping all other parameters intact.

This changes the masses in our table, but the susy Minkowski stays at the same values 
of the moduli, and the mass matrix remains positively definite.
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sources, such as O6 planes, D6 branes and KK
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spectively, where these sources are wrapped on specific
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In Models 3 and 4, we need to consider all of these
conditions, while in Models 1 and 2 the first two are sat-
isfied automatically, since aI = 0. The fact that the tad-
pole conditions can be satisfied in the presence of sources
means, as it was already suggested in [9, 10], that there is
no need to enforce the Jacobi constraints on flux parame-
ters, which would be required in absence of sources. Our
examples will include one case where the tadpole iden-
tities are satisfied even without sources, as well as more
general cases with sources and relaxed Jacobi constraints.

IV. M-THEORY EXAMPLES

In this section, we investigate the models described
above, in the context of an e↵ective 4d N = 1 super-
gravity description and present numerical examples. The
Kähler potential, in our conventions, takes the form (1)
and the complete superpotential is given in eqs. (2) and
(9). After solving for the supersymmetric Minkowski vac-
uum and choosing the free parameters such that there are
no flat directions, we follow the mass production mecha-
nism [1, 2] in order to find a dS solution. We refrain from
giving the details of this construction here and choose
to present only the independent set of parameters and
masses in Minkowski as well as in dS.

One important comment concerns the uplifting proce-
dure, which is well understood in both type IIB as well as
type IIA string theory. It is based on pseudo-calibrated
Dp-branes [15] and results in an equivalent procedure of

supplementing 4d, N = 1 supergravity by a nilpotent
multiplet. In M-theory, the analogous procedure has not
been worked out in detail yet and it will be a matter of
future investigations.

Model 1, with S, T and U exponents

The superpotential of this model is given in (10). For
our first example, we choose to solve the Minkowski con-
ditions W = 0 and @iW = 0 in terms of the parameters
AS , ATI , AUI (I = 1, 2, 3) and the seven-flux g7. All
of the other parameters, as well as the position of the
minimum in moduli space, remain free. Then, we choose
values for these free parameters in a way that avoids flat
directions, which might happen in case of accidental can-
cellations, for very specific values of the parameters. One
possible choice for the free parameters is given in Ta-
ble I. These parameters lead to a stable, supersymmetric
Minkowski vacuum with canonical masses given in Table
II.

S0 1.0 aS 1.0 C11 0.11 C32 0.32
T1,0 1.1 aT1 1.1 C12 0.12 C33 0.33
T2,0 1.2 aT2 1.1 C13 0.13 b1 0.55
T3,0 1.3 aT3 1.1 C21 0.21 b2 0.60
U1,0 5.1 aU1 0.51 C22 0.22 b3 0.65
U2,0 5.2 aU2 0.52 C23 0.23 �g7 5 · 10�3

U3,0 5.3 aU3 0.53 C31 0.31 µ4 9 · 10�9

TABLE I. Our set of chosen parameters for Model 1. Note
that S0 corresponds to the imaginary part of the modulus,
similarly for all of the other moduli. The values of the moduli
UI are chosen in this way because, in our conventions, Im(UI)
corresponds to the volume of the internal manifold, which
should be large in IIA. Included are the downshift �g7 and
uplift parameter µ4 for the mass production procedure.

m1 m2 m3 m4 m5 m6 m7

Mk 0.6421 0.4700 0.3216 0.1757 0.1406 0.1129 0.08219
dS 0.6427 0.4705 0.3218 0.1758 0.1407 0.1130 0.08227

TABLE II. The canonical normalized masses for Model 1. We
choose to give only the masses of the moduli, omitting the
axions. The behaviour follows exactly as described in [2].

Model 1, with tadpole condition satisfied without sources

Another interesting variation of the model with bK

and CIJ terms is connected to the tadpole conditions,
as taken from Table 2 of [9]. Usually the tadpole condi-
tions are satisfied by inclusion of sources. However, we
find that, if we include exponents in all directions, we
are able to satisfy all of the tadpole conditions without
sources in this model. The relevant tadpole conditions,
without sources, are:

bICIJ + bJCII = 0,

CIJCJK + CIKCJJ = 0 , (no summation).
(14)

We choose to solve these conditions in terms of the CIJ

with I 6= J and C11, keeping the other parameters as in 5

This leads to a stable solution with masses given in Table
III.

m1 m2 m3 m4 m5 m6 m7

Mk 0.3006 0.1641 0.1179 0.07467 0.06229 0.03988 0.02517
dS 0.2997 0.1637 0.1176 0.07449 0.06227 0.03976 0.02513

TABLE III. The canonical normalized masses for Model 1

with all tadpole conditions solved.

Model 2, without S exponent

It is possible to set AS = 0 from the very beginning, as
given in (11), in order to eliminate the non-perturbative
contributions for the S-direction. Then, solving the 8
supersymmetric Minkowski equations for such a reduced
model, gives a restriction on one of the flux parameters,
for example b1, besides the 7 parameters g7, ATI and
AUI . Keeping all of the other parameters the same as in
Table I, leads to a stable solution, with masses given in
Table IV.

m1 m2 m3 m4 m5 m6 m7

Mk 0.6360 0.4629 0.3295 0.1491 0.1225 0.09989 0.03602
dS 0.6365 0.4633 0.3297 0.1492 0.1226 0.09993 0.03607

TABLE IV. The canonical normalized masses of the moduli
for the Model 2 without non-perturbative contributions for
the S direction.

Model 3, without U exponents

The superpotential of this model is given in (12). Com-
pared to Model 1 and Model 2, it contains an additional
term aI U1U2U3

UI
, which allows to build dS vacua without

the U-exponent. When evaluating the conditions for su-
persymmetric Minkowski vacua, we can now solve for the
three parameters aI (these aI parameters should not be
confused with the parameters in the exponents, a�i). We
find a stable dS solution with the same parameters as in
Table I and give the masses in Table V.

m1 m2 m3 m4 m5 m6 m7

Mk 0.2569 0.2342 0.1706 0.1424 0.1260 0.1030 0.02566
dS 0.2572 0.2344 0.1707 0.1425 0.1261 0.1030 0.02565

TABLE V. The canonical normalized masses for Model 3,
without non-perturbative exponential corrections in the U -
directions.

Model 4, without T and U exponents

The superpotential of Model 4 is defined in (13). Includ-
ing the terms cI T1T2T3

TI
, from (13), we find that it is in

fact possible to find a Minkowski solution without any ex-
ponents other than ASeiasS , i.e. we set ATI = AUI = 0
for all I. Instead of solving for the pre-factors of the ex-
ponents in the T and U directions, we now obtain the
solutions in terms of the parameters aI and cI of the
terms quadratic in U - and T -moduli. Once again, we use
the parameters of Table I and obtain the Minkowski and
dS masses for the moduli given in table VI. Once more,

we found a stable dS solution after the mass production
procedure.

m1 m2 m3 m4 m5 m6 m7

Mk 0.2639 0.2520 0.1469 0.06163 0.04579 0.03365 0.02874
dS 0.2636 0.2513 0.1467 0.06163 0.04565 0.03363 0.02871

TABLE VI. The canonical normalized masses for the model
with only one exponent, in the S-direction.

To summarize the results obtained so far, in Model 2,
Model 3 and Model 4 we find that quadratic tree-level
contributions to the superpotential can take the place of
some of the the non-perturbative exponential terms that
are usually required.

V. IIB THEORY, GAUGED SUPERGRAVITY
AND DS VACUA

In this section, we continue the investigation of the
seven-moduli model with the Kähler potential given
in (1). The superpotential W of the type IIB theory
[12, 16, 17] has the following 4 structures: contributions
coming from the F -flux, from the H-flux and from the
Q-flux, which are all known fluxes in type IIB string the-
ory. In addition, it was conjectured in [12] that certain
P -fluxes should be present due to S-duality of string the-
ory. In [16], it was recognized that terms inW of the form
coming from the conjectured P -fluxes appear naturally
as components of gauged supergravity in 4d, when the
embedding tensor procedure is performed consistently.

For our purpose we will keep only terms even in the
moduli in the superpotential, namely we will use

W5 = a0 + aI
U1U2U3

UI

+ S
�
bI UI + b3 U1 U2 U3

�

+ TK

�
CIK UI � cK U1 U2 U3

�

� S TK

✓
dK �DIK

U1U2U3

UI

◆
. (15)

The first, second, third and fourth line represent the even
parts of F -,H- ,Q- and P - flux, respectively. We find that
the last term, with coe�cients DIK , is not necessary for
full stabilization of moduli, in this model. Thus, we use
(15) with DIK = 0 as a new model which does not have
non-perturbative exponents in W . As a numerical exam-
ple, we have found that there is a Minkowski minimum
without flat directions. This means that we were able to
employ this model in order to get a dS minimum, using
the technology developed in [1, 2].

Model 5, without any exponents

In order to find an explicit example of a dS vacuum from
the above model, we have again to solve the Minkowski
conditions, W = 0 and @iW = 0 where i = S, TI , UI



Model 2  without  S  exponent:

3

In the presentation of our examples, we split the seven-
moduli in a type IIA language, as

�i = {S, TI , UJ}, I, J = 1, 2, 3. (8)

For convenience, we keep the same notation also for type
IIB examples in Section V. Following also [5], the 21
non-vanishing terms contained in Mij , in the case of ef-
fective supergravities coming from twisted reductions of
M-theory on a X7 = T7/Z3

2 orbifold with fluxes, can be
represented as:

1

2
Mij�

i�j = SbKUK + UIC
IJTJ

+ aI
U1U2U3

UI

+ cI
T1T2T3

TI

+ SdKTK .
(9)

The 21 entries of Mij are now given in terms of the
parameters aI , bK , cI , dK and CIJ . However, for our
purpose of finding discrete supersymmetric Minkowski
vacua, it is su�cient to use only some of these terms.

Model 1, with S, T and U exponents

In this first class of models, we engage only 12 terms in
Mij and keep one exponent for each of the seven direc-
tions. The resulting superpotential is then

W1 = g7 + bKSUK + CIJUITJ

+ASe
iaSS +

X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

TI . (10)

In the vacuum, we have a total of 19 free parameters: 7
ai, 3 bI and 9 parameters CIJ . Instead of fixing all of
them and looking for the minimum of the potential, one
can use 8 equations @iW = 0 and W = 0 to find 8 param-
eters g7 and Ai such that these equations are satisfied at
a chosen point �i in moduli space, which therefore de-
scribes a supersymmetric Minkowski vacuum. This still
leaves plenty of free parameters to control the values of
masses of all moduli in the vacuum and to ensure that
there are no flat directions. As we will show in numer-
ical examples, many options are available, even if one
does not engage some of the exponents. We show one
explicit example with unconstrained parameters, and an-
other one where the tadpole conditions are satisfied with-
out sources.

Model 2, without S exponent

A second class of models we consider is a subcase of
the previous one, in which we set AS = aS = 0 from
the very beginning. In other words, we again use the 12
terms from the Mij matrix and add the exponents in all
of the directions but S. The superpotential in this case
takes the form:

W2 =g7 + bKSUK + CIJUITJ

+
X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

UI . (11)

SolvingW = 0 and @iW = 0, in order to find a supersym-
metric Minkowski solution, will now fix the parameters
g7, ATI , AUI , together with one of the parameters among
bK or CIJ , in (11). As it turns out, this does not pro-
hibit a solution. Indeed, explicit examples of this class
of models are possible. We present one such solution in
Section IV.

Model 3, without U exponents

In the third class of models, we consider 15 terms from
the matrix Mij and add the exponents only in four direc-
tions, namely S and TI . In particular, it turns out that
we do not need to add exponents in the UK directions.
This is interesting, since in [2, 14] such terms were em-
ployed in order to facilitate stable dS vacua in type IIA
supergravity constructions, in which the only perturba-
tive term in W was a constant flux. Here we find that, by
including inW geometric fluxes polynomial in the moduli
and looking first for a supersymmetric Minkowski min-
imum, some of the non-perturbative exponential terms
are not required. Therefore, we consider the superpoten-
tial

W3 =g7 + aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+ASe
iaSS +ATIe

iaTI
TI . (12)

which has 24 parameters. Again, we have to solve the
equations @iW = 0 and W = 0, which will fix 8 parame-
ters in W . We are then free to choose the remaining pa-
rameters in order to obtain positive masses in Minkowski.
We present an explicit numerical example of this class of
models in section IV.

Model 4, without T and U exponents

In this fourth class of models, we engage 18 terms from
the matrix Mij and add the exponential contribution
only in one direction, namely S. In particular, in this
case we find that there is no need to add exponents in
the TI and UK directions. Therefore, the superpotential
is

W4 = g7+aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+cI
T1T2T3

TI

+ASe
iaSS , (13)

which has 21 parameters. We solve the 8 equations
@iW = 0 and W = 0 once more and fix the remain-
ing free parameters to produce Minkowski vacua without
flat directions. We show a numerical realisation of this
model in section IV.

III. GENERALIZED TWISTED SIX-TORUS

Following [5, 9, 10], in type IIA string theory compact-

ified on T6

Z2⇥Z2
one finds that only 15 terms are available,

Model 3  without  U  exponents:

3

In the presentation of our examples, we split the seven-
moduli in a type IIA language, as

�i = {S, TI , UJ}, I, J = 1, 2, 3. (8)

For convenience, we keep the same notation also for type
IIB examples in Section V. Following also [5], the 21
non-vanishing terms contained in Mij , in the case of ef-
fective supergravities coming from twisted reductions of
M-theory on a X7 = T7/Z3

2 orbifold with fluxes, can be
represented as:

1

2
Mij�

i�j = SbKUK + UIC
IJTJ

+ aI
U1U2U3

UI

+ cI
T1T2T3

TI

+ SdKTK .
(9)

The 21 entries of Mij are now given in terms of the
parameters aI , bK , cI , dK and CIJ . However, for our
purpose of finding discrete supersymmetric Minkowski
vacua, it is su�cient to use only some of these terms.

Model 1, with S, T and U exponents

In this first class of models, we engage only 12 terms in
Mij and keep one exponent for each of the seven direc-
tions. The resulting superpotential is then

W1 = g7 + bKSUK + CIJUITJ

+ASe
iaSS +

X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

TI . (10)

In the vacuum, we have a total of 19 free parameters: 7
ai, 3 bI and 9 parameters CIJ . Instead of fixing all of
them and looking for the minimum of the potential, one
can use 8 equations @iW = 0 and W = 0 to find 8 param-
eters g7 and Ai such that these equations are satisfied at
a chosen point �i in moduli space, which therefore de-
scribes a supersymmetric Minkowski vacuum. This still
leaves plenty of free parameters to control the values of
masses of all moduli in the vacuum and to ensure that
there are no flat directions. As we will show in numer-
ical examples, many options are available, even if one
does not engage some of the exponents. We show one
explicit example with unconstrained parameters, and an-
other one where the tadpole conditions are satisfied with-
out sources.

Model 2, without S exponent

A second class of models we consider is a subcase of
the previous one, in which we set AS = aS = 0 from
the very beginning. In other words, we again use the 12
terms from the Mij matrix and add the exponents in all
of the directions but S. The superpotential in this case
takes the form:

W2 =g7 + bKSUK + CIJUITJ

+
X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

UI . (11)

SolvingW = 0 and @iW = 0, in order to find a supersym-
metric Minkowski solution, will now fix the parameters
g7, ATI , AUI , together with one of the parameters among
bK or CIJ , in (11). As it turns out, this does not pro-
hibit a solution. Indeed, explicit examples of this class
of models are possible. We present one such solution in
Section IV.

Model 3, without U exponents

In the third class of models, we consider 15 terms from
the matrix Mij and add the exponents only in four direc-
tions, namely S and TI . In particular, it turns out that
we do not need to add exponents in the UK directions.
This is interesting, since in [2, 14] such terms were em-
ployed in order to facilitate stable dS vacua in type IIA
supergravity constructions, in which the only perturba-
tive term in W was a constant flux. Here we find that, by
including inW geometric fluxes polynomial in the moduli
and looking first for a supersymmetric Minkowski min-
imum, some of the non-perturbative exponential terms
are not required. Therefore, we consider the superpoten-
tial

W3 =g7 + aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+ASe
iaSS +ATIe

iaTI
TI . (12)

which has 24 parameters. Again, we have to solve the
equations @iW = 0 and W = 0, which will fix 8 parame-
ters in W . We are then free to choose the remaining pa-
rameters in order to obtain positive masses in Minkowski.
We present an explicit numerical example of this class of
models in section IV.

Model 4, without T and U exponents

In this fourth class of models, we engage 18 terms from
the matrix Mij and add the exponential contribution
only in one direction, namely S. In particular, in this
case we find that there is no need to add exponents in
the TI and UK directions. Therefore, the superpotential
is

W4 = g7+aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+cI
T1T2T3

TI

+ASe
iaSS , (13)

which has 21 parameters. We solve the 8 equations
@iW = 0 and W = 0 once more and fix the remain-
ing free parameters to produce Minkowski vacua without
flat directions. We show a numerical realisation of this
model in section IV.

III. GENERALIZED TWISTED SIX-TORUS

Following [5, 9, 10], in type IIA string theory compact-

ified on T6

Z2⇥Z2
one finds that only 15 terms are available,

Model 4  without  T and U  exponents:

3

In the presentation of our examples, we split the seven-
moduli in a type IIA language, as

�i = {S, TI , UJ}, I, J = 1, 2, 3. (8)

For convenience, we keep the same notation also for type
IIB examples in Section V. Following also [5], the 21
non-vanishing terms contained in Mij , in the case of ef-
fective supergravities coming from twisted reductions of
M-theory on a X7 = T7/Z3

2 orbifold with fluxes, can be
represented as:

1

2
Mij�

i�j = SbKUK + UIC
IJTJ

+ aI
U1U2U3

UI

+ cI
T1T2T3

TI

+ SdKTK .
(9)

The 21 entries of Mij are now given in terms of the
parameters aI , bK , cI , dK and CIJ . However, for our
purpose of finding discrete supersymmetric Minkowski
vacua, it is su�cient to use only some of these terms.

Model 1, with S, T and U exponents

In this first class of models, we engage only 12 terms in
Mij and keep one exponent for each of the seven direc-
tions. The resulting superpotential is then

W1 = g7 + bKSUK + CIJUITJ

+ASe
iaSS +

X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

TI . (10)

In the vacuum, we have a total of 19 free parameters: 7
ai, 3 bI and 9 parameters CIJ . Instead of fixing all of
them and looking for the minimum of the potential, one
can use 8 equations @iW = 0 and W = 0 to find 8 param-
eters g7 and Ai such that these equations are satisfied at
a chosen point �i in moduli space, which therefore de-
scribes a supersymmetric Minkowski vacuum. This still
leaves plenty of free parameters to control the values of
masses of all moduli in the vacuum and to ensure that
there are no flat directions. As we will show in numer-
ical examples, many options are available, even if one
does not engage some of the exponents. We show one
explicit example with unconstrained parameters, and an-
other one where the tadpole conditions are satisfied with-
out sources.

Model 2, without S exponent

A second class of models we consider is a subcase of
the previous one, in which we set AS = aS = 0 from
the very beginning. In other words, we again use the 12
terms from the Mij matrix and add the exponents in all
of the directions but S. The superpotential in this case
takes the form:

W2 =g7 + bKSUK + CIJUITJ

+
X

I

ATIe
iaTI

TI +
X

I

AUIe
iaUI

UI . (11)

SolvingW = 0 and @iW = 0, in order to find a supersym-
metric Minkowski solution, will now fix the parameters
g7, ATI , AUI , together with one of the parameters among
bK or CIJ , in (11). As it turns out, this does not pro-
hibit a solution. Indeed, explicit examples of this class
of models are possible. We present one such solution in
Section IV.

Model 3, without U exponents

In the third class of models, we consider 15 terms from
the matrix Mij and add the exponents only in four direc-
tions, namely S and TI . In particular, it turns out that
we do not need to add exponents in the UK directions.
This is interesting, since in [2, 14] such terms were em-
ployed in order to facilitate stable dS vacua in type IIA
supergravity constructions, in which the only perturba-
tive term in W was a constant flux. Here we find that, by
including inW geometric fluxes polynomial in the moduli
and looking first for a supersymmetric Minkowski min-
imum, some of the non-perturbative exponential terms
are not required. Therefore, we consider the superpoten-
tial

W3 =g7 + aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+ASe
iaSS +ATIe

iaTI
TI . (12)

which has 24 parameters. Again, we have to solve the
equations @iW = 0 and W = 0, which will fix 8 parame-
ters in W . We are then free to choose the remaining pa-
rameters in order to obtain positive masses in Minkowski.
We present an explicit numerical example of this class of
models in section IV.

Model 4, without T and U exponents

In this fourth class of models, we engage 18 terms from
the matrix Mij and add the exponential contribution
only in one direction, namely S. In particular, in this
case we find that there is no need to add exponents in
the TI and UK directions. Therefore, the superpotential
is

W4 = g7+aI
U1U2U3

UI

+ bKSUK + CIJUITJ

+cI
T1T2T3

TI

+ASe
iaSS , (13)

which has 21 parameters. We solve the 8 equations
@iW = 0 and W = 0 once more and fix the remain-
ing free parameters to produce Minkowski vacua without
flat directions. We show a numerical realisation of this
model in section IV.

III. GENERALIZED TWISTED SIX-TORUS

Following [5, 9, 10], in type IIA string theory compact-

ified on T6

Z2⇥Z2
one finds that only 15 terms are available,



Model 5 in type IIB theory without any exponents

Parameters: same as in Model 1, plus additional ones

Masses in Minkowski and in dS

6

with I = 1, 2, 3. This will fix 8 of the parameters in (15).
We choose, in this case, to solve for the following set:

a0, a(I), b3 and c(K)
3 . For the position in moduli space,

the downshift to AdS, �a0 = �g7, and uplift to dS, we
choose the same values as in Table I. These values are
supplemented by the ones in table VII.

b(1)1 0.55 c(11)3 �0.11 c(21)3 0.21 c(31)3 0.31 d(1)0 5.1

b(2)1 0.60 c(12)3 0.12 c(22)3 �0.22 c(32)3 0.32 d(2)0 �5.2

b(3)1 0.65 c(13)3 0.13 c(23)3 0.23 c(33)3 �0.33 d(3)0 5.3

TABLE VII. The independent parameters for our Model 5.
These produce the values for the masses in table VIII. No
particular fine-tuning is necessary.

We found a stable Minkowski solution and then were able
to follow the mass production procedure to obtain a dS
vacuum with masses given in Table VIII. We also found
that it is easy to change the parameters and still have
dS minima, without particular fine-tuning. This model
is very interesting since it has only polynomial terms in
the superpotential.

m1 m2 m3 m4 m5 m6 m7

Mk 0.5392 0.4551 0.1037 0.06185 0.05355 0.02389 0.01263
dS 0.5391 0.4552 0.1036 0.06183 0.05357 0.02381 0.01260

TABLE VIII. For the IIB model without exponents, where
all contributions come from tree-level fluxes, we find these
canonical masses for the moduli.

VI. DISCUSSION

M-theory is supposed to unify all of the consistent ver-
sions of superstring theory. At low energies it should
be approximated by 11d supergravity. Furthermore, it
should also describe various extended objects, like M2
and M5 branes, KK6 monopoles and KKO6-planes, such
that extended objects of string theory, like Dp-branes and
Op-planes are included. The existence of such a theory
was first conjectured by Witten in 1995. Some early pa-
pers on M-theory include [18–20] and more information
can be found in the books [13, 21]. A particularly rele-
vant description of M-theory and 4d gauged supergravity
is given in [3, 5, 10, 16]. We are using these models in our
construction of 4d dS vacua. The main issue in studies of
specific models of dS minima in 4d gauged supergravity
is their motivation from string theory or M-theory.

Here we focused on a model where seven com-
plex scalars are coordinates of the coset spaceh
SL(2,R/SO(2)

i7
. This model is available in M-theory

and in type IIA and type IIB string theory. As a techni-
cal tool for constructing dS minima, we use the method
of mass production of dS vacua proposed in [1, 2], based

on the the possibility to make parametrically small de-
formations (downshift and uplift) of a supersymmetric
Minkowski vacuum state, without flat directions. In all
of the cases, the uplift is due to the existence of the
pseudo-calibrated anti-Dp-branes in string theory, which
in 4d supergravity is equivalent to a presence of a nilpo-
tent chiral multiplet [15]. In M-theory, the details of the
uplifting procedure need to be investigated. It is likely
that the anti-M5-brane wrapped on a 2-cycle will be re-
sponsible for the uplifting. We presented several classes
of models with stable dS vacua, with numerical examples
in Models 1-5.

In all of the models which we studied in M-theory,
namely Models 1, 2, 3, 4, we used a superpotential W
with polynomial terms in the moduli, of degree 0 and 2,
and a single non-perturbative KKLT-type exponent for
some of the moduli, as shown in (9). This is di↵erent from
the case without terms quadratic in the moduli, where
supersymmetric Minkowski vacua without flat directions
are possible with KL-type double set of exponents in ev-
ery moduli direction [1, 2]. After adding quadratic terms,
we found supersymmetric Minkowski vacua without flat
directions by engaging a single non-perturbative expo-
nent for each of the 7 moduli, or only for 4 of them, or
only for the S field. In all of the models of this kind,
namely Models 1, 2, 3, 4, we found locally stable dS
minima.

Perhaps the most surprising result is the model in sec-
tion V, in type IIB string theory, which we call Model 5.
Only terms which are even polynomials in moduli, of de-
gree 0, 2, 4, are present in (15), and no non-perturbative
exponents are required. In a model of 4d supergravity as-
sociated with IIB string theory presented in section V, all
of the terms in the Kähler and superpotential are identi-
fied with type IIB string theory. The only somewhat un-

usual term in (15) is S TKd(K)
0 . It was conjectured to be

present in type IIB theory in [12], to support S-duality.
It is interesting that this same term is also present in
M-theory in (9), as well as in a consistent gauged su-
pergravity in [16]. We have constructed supersymmetric
Minkowski minima without flat directions, and the cor-
responding dS minima in this seven-moduli model.
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This leads to a stable solution with masses given in Table
III.

m1 m2 m3 m4 m5 m6 m7

Mk 0.3006 0.1641 0.1179 0.07467 0.06229 0.03988 0.02517
dS 0.2997 0.1637 0.1176 0.07449 0.06227 0.03976 0.02513

TABLE III. The canonical normalized masses for Model 1

with all tadpole conditions solved.

Model 2, without S exponent

It is possible to set AS = 0 from the very beginning, as
given in (11), in order to eliminate the non-perturbative
contributions for the S-direction. Then, solving the 8
supersymmetric Minkowski equations for such a reduced
model, gives a restriction on one of the flux parameters,
for example b1, besides the 7 parameters g7, ATI and
AUI . Keeping all of the other parameters the same as in
Table I, leads to a stable solution, with masses given in
Table IV.

m1 m2 m3 m4 m5 m6 m7

Mk 0.6360 0.4629 0.3295 0.1491 0.1225 0.09989 0.03602
dS 0.6365 0.4633 0.3297 0.1492 0.1226 0.09993 0.03607

TABLE IV. The canonical normalized masses of the moduli
for the Model 2 without non-perturbative contributions for
the S direction.

Model 3, without U exponents

The superpotential of this model is given in (12). Com-
pared to Model 1 and Model 2, it contains an additional
term aI U1U2U3

UI
, which allows to build dS vacua without

the U-exponent. When evaluating the conditions for su-
persymmetric Minkowski vacua, we can now solve for the
three parameters aI (these aI parameters should not be
confused with the parameters in the exponents, a�i). We
find a stable dS solution with the same parameters as in
Table I and give the masses in Table V.

m1 m2 m3 m4 m5 m6 m7

Mk 0.2569 0.2342 0.1706 0.1424 0.1260 0.1030 0.02566
dS 0.2572 0.2344 0.1707 0.1425 0.1261 0.1030 0.02565

TABLE V. The canonical normalized masses for Model 3,
without non-perturbative exponential corrections in the U -
directions.

Model 4, without T and U exponents

The superpotential of Model 4 is defined in (13). Includ-
ing the terms cI T1T2T3

TI
, from (13), we find that it is in

fact possible to find a Minkowski solution without any ex-
ponents other than ASeiasS , i.e. we set ATI = AUI = 0
for all I. Instead of solving for the pre-factors of the ex-
ponents in the T and U directions, we now obtain the
solutions in terms of the parameters aI and cI of the
terms quadratic in U - and T -moduli. Once again, we use
the parameters of Table I and obtain the Minkowski and
dS masses for the moduli given in table VI. Once more,

we found a stable dS solution after the mass production
procedure.

m1 m2 m3 m4 m5 m6 m7

Mk 0.2639 0.2520 0.1469 0.06163 0.04579 0.03365 0.02874
dS 0.2636 0.2513 0.1467 0.06163 0.04565 0.03363 0.02871

TABLE VI. The canonical normalized masses for the model
with only one exponent, in the S-direction.

To summarize the results obtained so far, in Model 2,
Model 3 and Model 4 we find that quadratic tree-level
contributions to the superpotential can take the place of
some of the the non-perturbative exponential terms that
are usually required.

V. IIB THEORY, GAUGED SUPERGRAVITY
AND DS VACUA

In this section, we continue the investigation of the
seven-moduli model with the Kähler potential given
in (1). The superpotential W of the type IIB theory
[12, 16, 17] has the following 4 structures: contributions
coming from the F -flux, from the H-flux and from the
Q-flux, which are all known fluxes in type IIB string the-
ory. In addition, it was conjectured in [12] that certain
P -fluxes should be present due to S-duality of string the-
ory. In [16], it was recognized that terms inW of the form
coming from the conjectured P -fluxes appear naturally
as components of gauged supergravity in 4d, when the
embedding tensor procedure is performed consistently.

For our purpose we will keep only terms even in the
moduli in the superpotential, namely we will use

W5 = a0 + aI
U1U2U3

UI

+ S
�
bI UI + b3 U1 U2 U3

�

+ TK

�
CIK UI � cK U1 U2 U3

�

� S TK

✓
dK �DIK

U1U2U3

UI

◆
. (15)

The first, second, third and fourth line represent the even
parts of F -,H- ,Q- and P - flux, respectively. We find that
the last term, with coe�cients DIK , is not necessary for
full stabilization of moduli, in this model. Thus, we use
(15) with DIK = 0 as a new model which does not have
non-perturbative exponents in W . As a numerical exam-
ple, we have found that there is a Minkowski minimum
without flat directions. This means that we were able to
employ this model in order to get a dS minimum, using
the technology developed in [1, 2].

Model 5, without any exponents

In order to find an explicit example of a dS vacuum from
the above model, we have again to solve the Minkowski
conditions, W = 0 and @iW = 0 where i = S, TI , UI

6

with I = 1, 2, 3. This will fix 8 of the parameters in
(15). We choose, in this case, to solve for the following
set: a0, aI , b3 and cK . For the position in moduli space,
the downshift to AdS, �a0 = �g7, and uplift to dS, we
choose the same values as in Table I. These values are
supplemented by the ones in table VII.

b1 0.55 C11 �0.11 C21 0.21 C31 0.31 d1 5.1
b2 0.60 C12 0.12 C22 �0.22 C32 0.32 d2 �5.2
b3 0.65 C13 0.13 C23 0.23 C33 �0.33 d3 5.3

TABLE VII. The independent parameters for our Model 5.
These produce the values for the masses in table VIII. No
particular fine-tuning is necessary.

We found a stable Minkowski solution and then were able
to follow the mass production procedure to obtain a dS
vacuum with masses given in Table VIII. We also found
that it is easy to change the parameters and still have
dS minima, without particular fine-tuning. This model
is very interesting since it has only polynomial terms in
the superpotential.

m1 m2 m3 m4 m5 m6 m7

Mk 0.5392 0.4551 0.1037 0.06185 0.05355 0.02389 0.01263
dS 0.5391 0.4552 0.1036 0.06183 0.05357 0.02381 0.01260

TABLE VIII. For the IIB model without exponents, where
all contributions come from tree-level fluxes, we find these
canonical masses for the moduli.

VI. DISCUSSION

M-theory is supposed to unify all of the consistent ver-
sions of superstring theory. At low energies it should
be approximated by 11d supergravity. Furthermore, it
should also describe various extended objects, like M2
and M5 branes, KK6 monopoles and KKO6-planes, such
that extended objects of string theory, like Dp-branes and
Op-planes are included. The existence of such a theory
was first conjectured by Witten in 1995. Some early pa-
pers on M-theory include [18–20] and more information
can be found in the books [13, 21]. A particularly rele-
vant description of M-theory and 4d gauged supergravity
is given in [3, 5, 10, 16]. We are using these models in our
construction of 4d dS vacua. The main issue in studies of
specific models of dS minima in 4d gauged supergravity
is their motivation from string theory or M-theory.

Here we focused on a model where seven com-
plex scalars are coordinates of the coset spaceh
SL(2,R/SO(2)

i7
. This model is available in M-theory

and in type IIA and type IIB string theory. As a techni-
cal tool for constructing dS minima, we use the method
of mass production of dS vacua proposed in [1, 2], based

on the the possibility to make parametrically small de-
formations (downshift and uplift) of a supersymmetric
Minkowski vacuum state, without flat directions. In all
of the cases, the uplift is due to the existence of the
pseudo-calibrated anti-Dp-branes in string theory, which
in 4d supergravity is equivalent to a presence of a nilpo-
tent chiral multiplet [15]. In M-theory, the details of the
uplifting procedure need to be investigated. It is likely
that the anti-M5-brane wrapped on a 2-cycle will be re-
sponsible for the uplifting. We presented several classes
of models with stable dS vacua, with numerical examples
in Models 1-5.

In all of the models which we studied in M-theory,
namely Models 1, 2, 3, 4, we used a superpotential W
with polynomial terms in the moduli, of degree 0 and 2,
and a single non-perturbative KKLT-type exponent for
some of the moduli, as shown in (9). This is di↵erent from
the case without terms quadratic in the moduli, where
supersymmetric Minkowski vacua without flat directions
are possible with KL-type double set of exponents in ev-
ery moduli direction [1, 2]. After adding quadratic terms,
we found supersymmetric Minkowski vacua without flat
directions by engaging a single non-perturbative expo-
nent for each of the 7 moduli, or only for 4 of them, or
only for the S field. In all of the models of this kind,
namely Models 1, 2, 3, 4, we found locally stable dS
minima.

Perhaps the most surprising result is the model in sec-
tion V, in type IIB string theory, which we call Model 5.
Only terms which are even polynomials in moduli, of de-
gree 0, 2, 4, are present in (15), and no non-perturbative
exponents are required. In a model of 4d supergravity as-
sociated with IIB string theory presented in section V, all
of the terms in the Kähler and superpotential are identi-
fied with type IIB string theory. The only somewhat un-

usual term in (15) is S TKd(K)
0 . It was conjectured to be

present in type IIB theory in [12], to support S-duality.
It is interesting that this same term is also present in
M-theory in (9), as well as in a consistent gauged su-
pergravity in [16]. We have constructed supersymmetric
Minkowski minima without flat directions, and the cor-
responding dS minima in this seven-moduli model.
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Discussion
Non-geometric fluxes & tadpole conditions ???

Top-down/bottom-up ? 

Figure showing the parameter space of M-theory. The 
different well-understood limits correspond to the 5 
string theories and 11-dimensional supergravity. 



Conclusions
We developed a simple procedure of constructing stable dS vacua with 
many moduli and many different Kahler potentials and superpotentials
associated with M-theory, type IIA and type IIB string theory. 

Instead of searching for AdS and checking dS stability with respect to 
all moduli after a large uplift, we find supersymmetric Minkowski vacua
without flat directions. In that case, stability of dS vacua after a 
parametrically small uplift is guaranteed. 

It is easy to find such vacua in many models with nonperturbative 
racetrack superpotentials with two or more exponents, independently of 
the choice of the Kahler potential. One can also find stable dS in 
models with flux superpotentials and a single KKLT-type exponent for 
some of the moduli. It works for a broad choice of parameters, no fine 
tuning is required. 

In the theories with a sufficiently rich structure of flux superpotentials, 
as in one of our examples, we may be able to find stable dS even 
without using nonperturbative exponents.


