

'The strong interaction at the frontier of knowledge: fundamental research and applications'

NA2 – Small-x Physics at the LHC and future DIS experiments

Cyrille MARQUET

École polytechnique and CNRS

STRONG-2020 Kick-off meeting
October 23-25, 2019

Organization and participants

- Spokespersons: Néstor Armesto (Santiago de Compostela) and Tuomas Lappi (Jyväskylä).
- Participants: 15 institutions, 9 countries, 24 permanent researchers.
- Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Centre National de la Recherche Scientifique, France.
- Czech Technical University, Prague, Czech Republic.
- ECT*, Trento, Italy.
- Henryk Niewodniczański Institute of Nuclear Physics, Krakow, Poland.
- Commissariat à l'énergie atomique, Saclay, France.
- National Centre for Nuclear Research, Warsaw, Poland.
- Universidad Autónoma de Madrid, Spain.
- Universidad de Granada, Spain.
- Universidade de Santiago de Compostela, Spain.
- Università della Calabria, Cosenza, Italia.
- Università de Firenze, Italia.
- University of Groningen, The Netherlands.
- University of Jyväskylä, Finland.
- University of Regensburg, Germany.

Participants

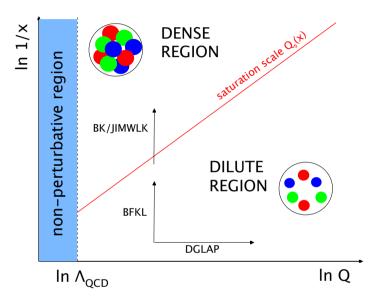
 We aim at strengthening the communication and collaboration between the European groups involved in theoretical and phenomenological

studies of small-x physics.

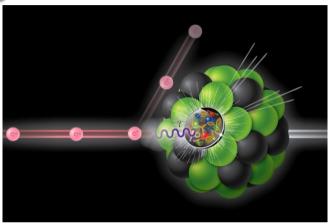
- Our WP comprises most of the theoretical small-x community in Europe, with a large impact in recent years (>2011).
- We welcome and expect new recruits (e.g. in Warsaw) and recruits in new institutions (e.g. in Bielefeld) to join our effort

find a m. lublinsky or a j. cepila or a g. contreras or a c. m	arquet or a s. munier or a d. Triantafyllo	Citesummary	Search
find j "Phys.Rev.Lett.,105*" :: more			
Sort by: Display	y results:		
earliest date Odesc. O - or rank by - Odesc.	ults 🗘 single list 🗘		
Citations summary			
Generated on 2019-10-23			
021 papers found, 989 of them citeable (p	ublished or arXiv)		
Citation summary results	Citeable papers Publis	hed only	
Total number of papers analyzed:	989	578	
Total number of citations:	41,187	38,901	
Average citations per paper:	41.6	67.3	
Breakdown of papers by citations:		22	
Renowned papers (500+)	<u>15</u>	<u>15</u>	
Famous papers (250-499)	<u>12</u>	11	
Very well-known papers (100-249)	<u>31</u>	27	
Well-known papers (50-99)	80		
Known papers (10-49)	284	<u>266</u>	
Less known papers (1-9)	<u>346</u>	<u>161</u>	
Unknown papers (0)	<u>221</u>	<u>24</u>	
h _{HEP} index [?]	80	78	

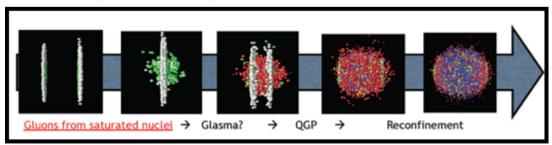
http://inspirehep.net/search?ln=en&ln=en&p=find+a+m.+lublinsky+or+a+j.+cepila+or+a+g.+contreras+or+a+c.+marquet+or+a+s.+munier+or+a+d.

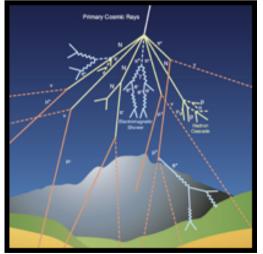

+Triantafyllopoulos+or+a+k.+kutak+or+a+s.+sapota+or+a+f.+cepila+or+a+g.+contreras+or+a+c.+marquet+or+a+s.+munier+or+a+d.

⁺ Triantafyllopoulos+or+a+k. + kutak+or+a+s. + sapeta+or+a+f. + gelis+or+a+e. + iancu+or+a+g. + soyez+or+a+s. + wallon+or+a+altinoluk+or+a+l. + gelis+or+a+e. + iancu+or+a+g. + gelis+or+a+g. + gelis+or+a+g


⁺Szymanowski+or+a+sabio+vera+or+a+albacete+or+a+armesto+or+a+a.+papa+or+a+d.+colferai+or+a.+d.+boer+or+a+t.+lappi+or+a+k.+eskola+or+a+h.+paukkunen+and+not+cn+alice+and+date+after+2011+and+not+cn+h1&of=hcs&action search=Search&sf=earliestdate&so=d&rm=&rg=25&sc=0

Small-x physics




Electron Ion Collider (EIC)

high-energy cosmic rays

initial stages of heavy-ion collisions

Objectives

- → Nuclear PDFs: factorisation at small x, impact of new methods for determination and new data from RHIC and the LHC.
- → Resummation in small-x evolution equations and production cross sections.
- → New NLO calculations for new observables.
- → Correlation calculations for more than 2 particles.
- → Improving models for colour correlations inside hadrons and nuclei and their interplay with hydrodynamics.: connection with pp and UPCs @ LHC.
- → Relations with spin physics (TMDs) at small x.
- → Proposal of observables disentangling fixed-order, resummed and non-linear approaches.
- → Implications of small-x CGC dynamics on thermalisation.

Exploring the possibilities of the future runs at RHIC and the LHC, and of future experimental programs on ep/A collisions, to clarify the structure of the non-linear regime of QCD.

Tasks

we are there																
TASKS/Subtasks		Year 1			Year 2			Year 3			Year 4					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1. Nuclear PDFs																
1.1 Perform a reweighting analysis of nuclear PDFs with LHC data																
1.2 Produce a new nuclear PDF set																
2. NLO Calculations in CGC and BFKL																
2.1 Compare NLO calculations with DIS and forward pA data																
2.2 Establish the connection between the CGC formulation at NLO																
and resummations in BFKL																
3. Gluon TMDs at small-x																
3.1 Establish (or disprove) TMD factorization for processes with																
three final-state particles																
3.2 Establish (or disprove) TMD factorization at NLO, starting																
with the simplest processes, e.g. for photon+jet																
3.3 Implement the hard-scale evolution of TMDs, on top of the																
small-x evolution															<u> </u>	
3.4 Develop the phenomenology for processes sensitive to the																
linear polarization of gluons																
4. Multi-particle Correlations & Thermalization																
4.1 Combine calculations of initial and final state multiparticle																
correlations																
4.2 Establish the initial state for kinetic theory or hydrodynamical																
calculations from the CGC																

we are there

The tasks are divided between participating institutions,
 with four leading ones (Jyvaskyla 1, CNRS 2, Krakow 3, Santiago 4)

Budget

Item	Comments	Amount (EUR)
Travel money	1000 EUR times 4 years times # of participating teams (16), for travels/stays within the NA and for attendance at conferences and workshops organised by or with active participation of the NA participants	64000
Personnel	3 postdocs years, shared between institutions to enhance researcher mobility and collaborations within the network	
Total	Overheads not included	184000

Concrete Plans

- Postdoc #1: Joint Santiago/Jyvaskyla position [Task 1]
 Fall 2020 -> Fall 2022 with second year funded by STRONG2020
- Postdoc #2: Joint Krakow/CNRS (Orsay&Palaiseau) position [Task 3]
 Fall 2020(1) -> Fall 2022(3) fully funded by STRONG2020
- Workshop #1: ECT* Trento July 6-10 2020 (NA2 contact: A. Sabio Vera)
- Workshop #2: considering ECT* again in ETC* for 2021 (if successful)
- Workshop #3: considering NCBJ Warsaw (T. Altinoluk, G. Beuf) for 2022
- Travel funds within consortium: requests handled by the WP leaders on a case-by-case basis; 3 trips planned so far 1 scientific visit (CNRS to Warsaw) & trips to Nantes for 2 representatives

Status Report

4.5 months into the project (~10% of total duration)

First publications acknowledging STRONG2020:

Effect of non-eikonal corrections on azimuthal asymmetries in the Color Glass Condensate P. Agostini, T. Altinoluk and N. Armesto, Eur. Phys. J. C79 (2019) no9, 790

Towards a complete next-to-logarithmic description of forward exclusive diffractive dijet electroproduction at HERA: real corrections

R. Boussarie, A.V. Grabovsky, L. Szymanowski and S. Wallon, Phys.Rev. D100 (2019) no.7, 074020

- STRONG2020 already acknowledged in conference talks e.g. Light-Cone (Sep. 2019), ...
- Milestone MS13 (one of four) delivered before the end of the year, corresponding to the 1st part of deliverable D13.3

Thank you!