Isabelle Ripp-Baudot ripp@in2p3.fr

Master in Physics

Search for quantum manifestation of new physics

Outline:

- The Belle II experiment at the Intensity Frontier
- Belle II schedule
- The Belle II group at IPHC
- M2 internship and PhD project

24/10/2019

The Belle II experiment

Legacy of B-Factories:

- BaBar at PEP-II (US) 1999-2008.
 and Belle at KEKB (Japan), 1998-2010.
- Precise measurement of CP violation in quark sector.
- * Nobel Prize 2008 to Kobayashi and Maskawa.
- * Belle II is a Super-B-Factory, building on the excellent accumulated skill :
 - Goal: discovery of physics beyond the SM.
 - Search for quantum manifestation of New Physics: sensitive to higher masses than direct searches at LHC.

- * How to search for quantum manifestation of New Physics:
 - * Compare very precise measurement to very precise theoretical prediction.
 - Experimental precision: statistical and systematical uncertainty:
 - e⁺e⁻ collisions: known initial state governed by QED, clean final state → good for syst.
 - Current data-sample ×50 → good for stat.

Needs a breakthrough in accelerator physics: SuperKEKB is the first collider of nano-beams (P. Raimundi, 2007).

Current luminosity world record (KEKB): 2.1×10³⁴ cm⁻² s⁻¹

Beam transverse size: ~ 1 μ m

SuperKEKB targeted luminosity is 40 × the world record: 0.8×10³⁶ cm⁻² s⁻¹

Beam transverse size: ~ 50 nm

The SuperKEKB collider

Belle II schedule

- Experiment commissioning in Spring 2018.
- Belle II Physics run started in Spring 2019.
- Current particle collisions dataset existing in the world will be overpassed within 1 year.

PhD thesis in Belle II: publications
with > 5× currently available dataset in the world

National and international context

- International Belle II collaboration:
 ~ 800 participants from 26 countries.
- France joined officially in 2016.

Ceremony of French Flag Raising with French Embassy

- Belle II-IPHC main collaborators
 - Germany: KIT (Karlsruhe), DESY (Hamburg), Bonn and München.
 - * Italy: Pisa, Perugia, Trieste.
 - Japan: KEK, Nagoya.
 - South Korea: Daegu
 - Slovenia: Ljubljana

The Belle II group @IPHC in 2020

Jérôme Baudot professor @ Unistra

Giulio Dujany junior researcher @ CNRS

Isabelle Ripp-Baudot research director @ CNRS

Tristan Fillinger CNRS PhD student → 09/2022

Reem Rascheed Unistra PhD student → 09/2020

YOU M2 / PhD student $\rightarrow 09/2023$

M2 physics project Jan. 2020 M2 internship March-July 2020 PhD student Oct. 2020-2023

+ several engineers : slow control of the Vertex detector, upgrade of the vertex det., computing.

+ potential M1 students

IPHC-Belle II group activities

- Search for new physics beyond the Standard Model:
 - * Measurement of the CP asymmetry as a function of time of $b \rightarrow s \gamma$ processes.
 - * Search for $b \rightarrow s v \bar{v}$ processes.
 - Participation to the Physics Statistic Advisory committee.
- * Operate the Belle II detector:
 - Development of the vertex detector slow-control.
 - Development of the calibration database.
 - Shifts (on-site and remote: Belle II, vertex detector, computing, machine-detector interface).
- Design the next generation vertex detector:
 - Define the detector specifications.
 - Simulation and tracking with the new detect.
 - R&D of a sensor prototype.

$b \rightarrow s \gamma process: photon helicity$ (1)

- * V-A coupling in the SM: B mesons produce mainly right-handed photons in $\bar{b} \rightarrow \bar{s} \gamma$ transitions.
- Time-dependent CP asymmetry:

$$\mathcal{A}_{CP}(t) = \frac{\Gamma(B^0(t) \to f_{CP}) - \bar{\Gamma}(\bar{B}^0(t) \to f_{CP})}{" + "}$$

* In SM with a pure left-handed (V-A) coupling to fermions, we have:

$$\mathcal{A}_{CP}(t) \sim \frac{2m_s}{m_b} \sin 2\beta \, \sin \Delta mt = S_{CP} \sin \Delta mt + A_{CP} \cos \Delta mt \, \simeq 0$$

★ However, if New Physics with right-handed coupling exists: the photon is not fully polarised and $A_{CP} \neq 0$.

* Experimentally: measurement of A_{CP} with $B^0 \rightarrow K_S^0 \pi^+ \pi^- \gamma$ et $B^0 \rightarrow K_S^0 \pi^0 \pi \gamma$ decays.

→ Thesis work of Reem Rasheed (2017-2020) and Tristan Fillinger (2019-2022).

$b \rightarrow s \gamma process: photon helicity$ (2)

7

This measurement constrains
 Wilson coefficients C_i of the effective
 Hamiltonien of New Physics :

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

Lepton universality in the S.M.

* S.M. electroweak coupling with leptons is universal:

(i.e. the same, but small corrections due to different lepton masses)

For electron, muon, tau : Q = -1 , T_3 = -1/2 , g_{v} = -0.04

* Experimental measurements agree with this prediction:

$$\frac{\Gamma_{Z \to \mu\mu}}{\Gamma_{Z \to ee}} = 1.0009 \pm 0.0028 \qquad \qquad \frac{\Gamma_{Z \to \tau\tau}}{\Gamma_{Z \to ee}} = 1.0019 \pm 0.0032 \qquad \qquad \frac{\mathcal{B}(W \to e\nu_e)}{\mathcal{B}(W \to \mu\nu_\mu)} = 1.004 \pm 0.008$$

However, this equality is accidental, there is no theoretical ground

* Actually, several discrepancies are observed in the flavour sector:

* Measured observable: a ratio of Branching Ratios (many uncertainties cancel in the ratio)

$$R(D^*)^{SM} = \frac{BR(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{BR(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} = 0.252 \pm 0.003 \qquad R^{SM}_{K^{*0}} = \frac{BR(B^0 \to K^{*0} \mu^+ \mu^-)}{BR(B^+ \to K^{*0} e^+ e^-)} = 1 \pm \mathcal{O}(10^{-3})$$

Measured lepton universality anomalies (2)

3 different experiments, BaBar and Belle (at e⁺e⁻ colliders closed in 2010), and LHCb (at pp collider running at CERN) agree and measure 3 to 4σ-discrepancies with S.M. prediction.

Measured lepton universality anomalies (3)

2017: almost 5σ-discrepancy with S.M. prediction!

Measured lepton universality anomalies (3)

What could explain these anomalies?

 Introduction of new particles with couplings to leptons dependent on the lepton flavour: neutralinos, leptoquarks, additional Z' vector bosons, additional H⁺ Higgs bosons, ...

- * However we must make sure that the discrepancy is actual:
 - * Get rid of possible experimental errors or forgetting in the interpretation.
 - Investigate carefully the significance of the discrepancy.

- * Thesis title: Search for rare $B \rightarrow K^{(*)} \nu \bar{\nu}$ decays
- Supervisor: Isabelle Ripp-Baudot (<u>ripp@in2p3.fr</u>)
 co-supervisor: Giulio Dujany.
- Motivation:
 - ♦ Yet un-observed → discovery.

Current experimental upper limits are put by BaBar and Belle: \mathcal{B} < few×10⁻⁵.

- * Sensitive to indirect New Physics contribution and to direct Dark Matter production.
- Very precise SM prediction: ℬ(B+→K*+ v v) = 9.2×10⁻⁶
 Contribution to the understanding of Lepton Universality observed anomaly:
 important input to check theoretical prediction of b → s ℓ ℓ value.
- Belle II assets:
 - * Observation possible only in Belle II, particularly well adapted to final states involving v.
 - * Experiment at the most luminous collider.
- Particularities:
 - Travels to Japan: 3 collaboration weeks/year + shifts + 1 possible mid-term stay.

- For simple cases a signal selection is done like that:
 - Particles identified (dE/dx, Čerenkov angle, Time of Flight): mass known.
 - Momentum measured from reconstructed bent particle track in silicon detectors with magnetic field.
 - Energy measured in the calorimeter.
 → 4-momentum reconstructed and nice mass peak: invariant mass = √ (∑ E² - ∑ p²).

- ★ But here: presence of several undetected neutrinos in final state, signal consists only of a K^{*+} → K⁺π⁻
 - → and there are many K^{*+} , very few originating in $B^+ \rightarrow K^{*+} \nu \nu$.
- The trick is: reconstruct the companion B, then search for an additional K^{*+} & missing energy.
- Many different final states can be considered to reconstruct B_{Tag} (see PDG), each one with total B.R. ~ or < O(‰): the cornerstone of the analysis is to be able to reconstruct as many B_{Tag} as possible → Full Event Interpretation.

Why a dedicated multivariate algorithm?

Example: try to reconstruct $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ in a collision with 10 tracks in final state: 5 with q>0 and 5 with q<0

- → 100 possible combinations of the 10 tracks and 300 combinations to reconstruct $B^+_{Tag} \rightarrow D^0 (\rightarrow K^- \pi^+ \pi^+ \pi^-) \pi^+$.
- → impossible to do for 10 000 different final states.

- Each step is reconstructed with a dedicated Boosted Decision Tree (BDT).
- Each B_{Tag} decay channel is reconstructed with a dedicated Boosted Decision Tree.

- Simple selection: one combination of sequential cuts on variables.
 Example: select events if p < 2 GeV and particle is identified as a Kaon.
 A purity can be determined for these selection criteria, example: 33 % of the selected candidates will be Kaons originating from D⁰ → K⁻ π⁺.
- * Decision tree: all combinations of sequential cuts are used, each one has a given purity.
- * Building of DT: machine learning process with Signal data and Background data.
 - ➤ needs a lot of CPU.

Boosted Decision Tree: many BDT are built, and combined into a better one, reducing biases.

- * The Full Event Interpretation is a key algorithm to discover new physics beyond the S.M. with the Belle II experiment, and in particular $B \rightarrow K^{(*)} v v$ decays.
- At IPHC, the Belle II group will work on its improvement, in particular in the framework of the proposed PhD thesis:
 - Careful study to understand where inefficiencies come from.
 - Build a new FEI based on Deep Learning techniques.

thank you for your attention

Collider runs

Belle II event

clean final state: only 2 B mesons, quantum correlated

- * events with missing energy: $B^+ \rightarrow \tau^+ v$, $B \rightarrow D^{(*)} \tau v$, $B \rightarrow K^{(*)} v v$...
- * events with neutrals: $B^0 \rightarrow \gamma \gamma$, $B^0 \rightarrow K_s^0 \pi^0 \gamma$, $B^0 \rightarrow K_s^0 K_s^0 K_s^0$, ...
 - ➤ interesting complementary with LHCb.