Elizabeth Locci, CEA-IRFU, Saclay on behalf of the FCC-ee study group ## **Baseline FCC-ee operation model (2 IPs)** #### Integrated luminosity goals for Z & W physics - **150 ab⁻¹ around the Z pole** (~100 at the pole) - 10 ab⁻¹ around the WW threshold (4 IPs investigated) #### LEP 4 IPs: - 0.6 fb⁻¹ around the the Z pole - 2.4 fb⁻¹ around the WW threshold Also important for WW physics! | | | | | • | | | |---------------------------------------------------|------------------------------|-----|--------------------|---------------------------------------|-------------------|----------------------------------------------| | Working point | Z, years 1-2 Z, later | | WW | HZ | $t\bar{t}$ | | | \sqrt{s} (GeV) | 88, 91, | 94 | 157, 163 | 240 | 340-350 | 365 | | Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$ | / 115 | 230 | 28 | 8.5 | 0.95 | 1.55 | | $Lumi/year (ab^{-1}, 2 IP)$ | 24 | 48 | 6 | 1.7 | 0.2 | 0.34 | | Physics Goal (ab ⁻¹) | 150 | | 10 | 5 | 0.2 | 1.5 | | Run time (year) | 2 | 2 | 2 | 3 | 1 | 4 | | | | | | 10^6 HZ | 10^{6} | $\overline{\mathrm{t}}\overline{\mathrm{t}}$ | | Number of events | $5 \times 10^{12} \text{ Z}$ | | $10^8 \mathrm{WW}$ | + | +2001 | $_{ m K}$ HZ | | | | | | $25 \text{k WW} \rightarrow \text{H}$ | $+50 \mathrm{kW}$ | $W \to H$ | ## **EW Physics Observables at FCC-ee** ## TeraZ (5 X 10¹² Z) From data collected in a lineshape energy scan: - Z mass (key for jump in precision for ewk fits) - Z width (jump in sensitivity to ewk rad corr) - R_I = hadronic/leptonic width (α_s(m²_Z), lepton couplings, precise universality test) - peak cross section (invisible width, N_v) - $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{OED}(m_Z^2)$, lepton couplings) - Tau polarization (sin²θ_{eff}, lepton couplings) - R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings) ## **OkuWW (108 WW)** From data collected around and above the WW threshold: - W mass (key for jump in precision for ewk fits) - W width (first precise direct meas) - $R^W = \Gamma_{had}/\Gamma_{lept} (\alpha_s(m^2_z))$ - $\Gamma_{\rm e}$, $\Gamma_{\rm \mu}$, $\Gamma_{\rm \tau}$ (precise universality test) - Triple and Quartic Gauge couplings (jump in precision, especially for charged couplings) ## I- Determination of Z mass and width The exact choice of the off-peak energies for m_Z , Γ_Z is not as crucial at FCC-ee* as at LEP because of the huge statistics But instead the exact choice is crucial for $\alpha_{QED}(m_z)$, which is driving the choice of: $$Vs_{-} = 88 \text{ GeV } \& Vs_{+} = 94 \text{ GeV } \text{ (slide 13)}$$ * nevertheless \pm 1 GeV (LEP) sub-optimal for $\Gamma_{\rm Z}$ Most critical systematic uncertainties: - Center-of-mass energy and energy spread - Luminosity Requirements on the detector are not crucial, nevertheless: - the control of the acceptance over vs is important - angular resolution < 0.1 mrad - momentum resolution $\Delta p_T / p_T^2 < 4 \cdot 10^{-5} \text{ GeV}^{-1}$ #### (See talk by Alain Blondel) ## Beam energies and crossing angle (FCC-ee Polarization and Center-of-mass Energy Calibration) Beams are transversely polarized below 165 GeV (Sokolov-Ternov effect) and their energies are continuously measured with resonant depolarization on single non-colliding bunches Around the Z pole $\Delta Vs \approx 100 \text{ keV}$ (40 keV point-to-point) is achievable $\longrightarrow \Delta m_7 \approx 100 \text{ keV}$ Beam crossing angle ($\alpha = 30 \text{ mrad}$), energy spread (90 MeV) can be measured with $e^+ e^- \rightarrow \mu^+ \mu^-$ events copiously produced at all energies. $\longrightarrow \Delta\Gamma_7 \approx 25 \text{ keV}$ $$\alpha = 2 \arcsin \left[\frac{\sin (\varphi^{-} - \varphi^{+}) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-} - \sin \varphi^{+} \sin \theta^{+}} \right]$$ From E-p conservation: $$\alpha = 2 \arcsin \left[\frac{\sin (\varphi^{-} - \varphi^{+}) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-} - \sin \varphi^{+} \sin \theta^{+}} \right]$$ # $x_{\gamma} = -\frac{x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-}}{\cos(\alpha/2) + |x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-}|},$ with $x_{\pm} = \frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}}$. ## **Measurement of luminosity** The reference process is small angle Bhabha scattering Realistic goal for theoretical uncertainty from higher order for low angle Bhabha is 0.01%* (Blondel, Jadach & al., arXiv:1812.01004) – already at mid-road : 0.04 % Target $\Delta \mathcal{L}_{abs} \approx 0.0001$, $\Delta \mathcal{L} \approx 5 \cdot 10^{-5}$ point-to-point ---- reduction factor 8 in uncertainty on number of light neutrino families, N_v^* ($\Delta N_v = 0.001$) - * 0.01% uncertainty also reachable with 1.4 ab⁻¹ e⁺e⁻ -> $\gamma\gamma$, theory uncertainty already at this level - control of large angle Bhabha contamination accuracy of $\approx 1 \, \mu m$ required on luminometer internal radius clever acceptance algorithms (a la lep), independent from beam spot position should be extended to beams with crossing angle. ** Measurement of N_v with similar precision provided by $Z\gamma$, $Z \rightarrow vv$ (above the Z) Systematics on γ selection, luminosity, etc cancel in the ratio $$N_{v} = \frac{\frac{\gamma Z(inv)}{\gamma Z \rightarrow ee, \mu\mu}}{\frac{\Gamma_{v}}{\Gamma e, \mu} (SM)}$$ ## **II- Partial widths ratios** $\mathbf{R_I} = \Gamma_I / \Gamma_{had} = \sigma_I / \sigma_{had}$ is a robust measurement, necessary input for a precise measurement of lepton couplings and $(\alpha_s(\mathbf{m_z}))$ Exploiting FCC-ee potential requires an accurate control of acceptance, particularly for leptons - acceptance uncertainties, subdominant at LEP, need factor 5 reduction to match 5.10⁻⁵ goal on R_I* - * corresponds to 0.00015 absolute uncertainty on $\alpha_s(m_z^2)$ - knowledge of boundaries, mechanical precisions, can be reached by exploiting 40 years of improvements in technology - fiducial acceptance is asymmetric at FCC-ee: 30 mrad X-angle causing a boost in transverse direction, which can be measured event by event for e⁺e⁻, μ⁺μ⁻ Z decays to individual quark flavours can be selected when the decay products can be efficiently tagged. LHC detectors and current taggers can reach 3 x LEP b-tagging efficiency at same c and uds suppression in a harsher environment sizeable improvement expected at FCC-ee - statistical uncertainty from double tag sample - systematic uncertainty from hemisphere correlations becomes dominating FCC-ee projections conservatively consider reduction of that uncertainty from ≈ 0.1 % (LEP) to ≈ 0.03 % Other sources such as gluon splitting and nasty sources of correlations can be studied with data @LHC (e.g. momentum correlations, which can be suppressed by keeping b-tagging efficiency flat in momentum) Improved measurement also in the charm sector ## **Expected precision on normalized partial widths** $$R_f = \sigma_f / \sigma_{had}$$ | | Statistical uncertainty | Systematic uncertainty | improvement w.r.t. LEP | |----------------------|-------------------------|------------------------|------------------------| | $R_{\mu} (R_{\ell})$ | 10^{-6} | 5×10^{-5} | 20 | | $R_{ au}$ | 1.5×10^{-6} | 10^{-4} | 20 | | $R_{ m e}$ | 1.5×10^{-6} | 3×10^{-4} | 20 | | $R_{ m b}$ | 5×10^{-5} | 3×10^{-4} | 10 | | $R_{ m c}$ | 1.5×10^{-4} | 15×10^{-4} | 10 | #### relative precisions ## III- Asymmetries, τ polarization, couplings and $\sin^2\theta_{eff}$ Forward-backward asymmetry: $A_{FB}^{ff} = \frac{\sigma_F^{ff} - \sigma_B^{ff}}{\sigma_F^{ff} + \sigma_B^{ff}}$ unpolarized e beams at the Z pole $$A_{FB, 0}^{ff} \approx \frac{3}{4}$$ \mathcal{A}_{e} \mathcal{A}_{f} with $\mathcal{A}_{f} = \frac{2gVf gAf}{(gVf)2 + (gAf)2} = \frac{2gVf_{/}gAf}{1 + (gVf_{/}gAf)2}$, $sin^{2}\theta_{eff} \equiv \frac{1}{4} \left(1 - \frac{g_{Ve}}{g_{Ae}}\right)$ $A_{FB,0}^{\mu\mu} \approx (1 - 4 \sin^2\theta_{eff})^2$ \longrightarrow $\Delta \sin^2\theta_{eff} \approx 5 \cdot 10^{-6}$ (at least) uncertainty driven by knowledge of \sqrt{s} (point to point energy uncertainties) assumes muon-electron universality #### Tau polarization can reach similar precision without universality assumption $$e^{-}$$ θ θ $$\mathsf{A}^{\mathsf{pol}} = \frac{\sigma_{\mathsf{F},\mathsf{R}} + \sigma_{\mathsf{B},\mathsf{R}} - \sigma_{\mathsf{F},\mathsf{L}} - \sigma_{\mathsf{B},\mathsf{L}}}{\sigma_{\mathsf{tot}}} = -\mathcal{A}_{\mathsf{F}}$$ (rather measures e- $$\tau$$ universality) $$e^{\frac{\tau}{\theta}} = \frac{A_{pol} = \frac{\sigma_{F,R} + \sigma_{B,R} - \sigma_{F,L} - \sigma_{B,L}}{\sigma_{tot}} = -\mathcal{A}_t}{\sigma_{tot}}$$ $$P_{\tau} (\cos\theta) = \frac{A_{pol} (1 + \cos^2\theta) + 8/3 \text{ AFB } \cos\theta}{(1 + \cos^2\theta) + 8/3 \text{ AFB } \cos\theta}$$ $$A_{FB}^{pol} = \frac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{tot}} = -3/4\mathcal{A}_e$$ $$A_{FB}^{pol} = \frac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{tot}} = -3/4\mathcal{A}_{\epsilon}$$ it measures \mathcal{A}_{e} & \mathcal{A}_{t} , which used as input to $\mathbf{A}_{FB,0}^{\mu\mu}$ — \mathbf{e} , μ , τ couplings separately (together with Γe , $\Gamma \mu$, $\Gamma \tau$) - huge statistics \longrightarrow improved knowledge of τ parameters (Br, decay modeling) - use best decay channel, e.g. $\tau \to \rho \nu$ (very clean) detector performance for γ / π^0 mandatory $$\rightarrow$$ $\Delta \sin^2\theta_{\rm eff} \approx 6 \cdot 10^{-6}$ A_{FB, 0}^{bb}, A_{FB, 0}^{cc} provide input to quark couplings (together with $\Gamma_{\rm b}$, $\Gamma_{\rm c}$) #### **Expected precision on coupling ratio factors** A FCC-CDR presentation – R. Tenchini https://indico.cern.ch/event/789349/ | | Statistical uncertainty | Systematic uncertainty | improvement w.r.t. LE | | r.t. LEP | |-----------------------------------------------------------------------|-------------------------|------------------------|-----------------------|-----|----------| | $\overline{\mathcal{A}_e}$ | $5. \times 10^{-5}$ | $1. \times 10^{-4}$ | | 50 | | | ${\cal A}_{\mu}$ | 2.5×10^{-5} | 1.5×10^{-4} | | 30 | | | $egin{array}{l} {\cal A}_e \ {\cal A}_\mu \ {\cal A}_ au \end{array}$ | $4. \times 10^{-5}$ | $3. \times 10^{-4}$ | | 15 | | | \mathcal{A}_b | 2×10^{-4} | 30×10^{-4} | | 5 | | | \mathcal{A}_c | 3×10^{-4} | 80×10^{-4} | | 4 | | | $\sin^2 \theta_{W,eff}$ (from muon FB) | 10^{-7} | $5. \times 10^{-6}$ | | 100 | | | $\sin^2 \theta_{W,eff}$ (from tau pol) | 10^{-7} | 6.6×10^{-6} | | 75 | | relative precisions but for $\text{sin}^2\theta_{\text{eff}}$ ## **Expected precision on vector and axial neutral couplings** | fermion type | g_a | g_v | |--------------|----------------------|----------------------| | e | 1.5×10^{-4} | 2.5×10^{-4} | | μ | 2.5×10^{-5} | $2. \times 10^{-4}$ | | au | 0.5×10^{-4} | 3.5×10^{-4} | | b | $1.5 imes 10^{-3}$ | 1×10^{-2} | | c | 2×10^{-3} | 1×10^{-2} | ## 1-2 orders of magnitudes improvement w.r.t LEP, depending on the fermion (still need to explore the potential for the measurement of the s quark coupling) ## IV- e.m coupling: direct measurement of $\alpha_{OED}(m_z^2)$ (Patrick Janot. JHEP (2016) 53 arXiv:1512.05544 Now $\alpha_{OFD}(M^2)$ from the running of $\alpha \longrightarrow \Delta \alpha/\alpha = 1.1 \ 10^{-4}$ $$A_{FB}^{\mu\mu} = \frac{N_F^{\mu\mu} - N_B^{\mu\mu}}{N_F^{\mu\mu} + N_B^{\mu\mu}} \approx A_{FB,\,0}^{\mu\mu} + \,\alpha_{QED}(s\,)\,\frac{s - mZ^2}{2s}\,f(sin^2\theta_{eff}) \qquad \qquad \Delta\alpha_{QED}\,/\,\alpha_{QED} \approx \Delta A_{FB}^{\,\mu\mu}\,/\,A_{FB}^{\,\mu\mu}$$ Type $\Delta A_{FB}^{\mu\mu}/A_{FB}^{\mu}(s_{\cdot}) < 0$ $\Delta A_{FB}^{\mu\mu}/A_{FB}^{\mu\mu}(s_{+}) > 0$ large cancellation of systematic uncertainties combining measurements below and above Z peak Source $\sigma(\alpha)/\alpha$ for 1 year of running at any \sqrt{s} Uncertainty 3×10^{-5} \rightarrow no sensitivity to $\alpha_{\sf OFD}$ | | $E_{\rm beam}$ calibration | 1×10^{-5} | |--------------|------------------------------------|------------------------------| | | $E_{ m beam}$ spread | $1 \times 10^{-5} < 10^{-7}$ | | Experimental | Acceptance and efficiency | negl. | | | Charge inversion | negl. | | | Backgrounds | negl. | | | $m_{ m Z}$ and $\Gamma_{ m Z}$ | 1×10^{-6} | | Parametric | $\sin^2 heta_{ m W}$ | 5×10^{-6} | | | $G_{ m F}$ | 5×10^{-7} | | | QED (ISR, FSR) | $< 10^{-6}$ | | Theoretical | Missing EW higher orders, QED(IFI) | few 10^{-4} | | | New physics in the running | 0.0 | | Total | Systematics | 1.2×10^{-5} | | | | | for 3 10⁻⁵ relative uncertainty on α_{OED} : $vs = 87.9 \, GeV$ $\sqrt{s_1} = 94.3 \text{ GeV}$ work on EWK theoretical corrections required to reach **3 10**-5 (except missing EW higher orders) | Statistics #### V- W mass and width from WW cross-section At LEP2, $\sqrt{s} = 161 \text{ GeV}$, 11 pb⁻¹ $$m_W = 80.40 \pm 0.21 \text{ GeV}$$ with $\sqrt{s1} = 157.1 \text{ GeV}$ $\sqrt{s2} = 162.6 \text{ GeV}$ f = 0.4 $\Delta M_W = 0.4 \text{ MeV}$ $\Delta \Gamma_W = 1.2 \text{ MeV}$ Systematics control to: - $\Delta E_B < 0.35 \text{ MeV (4 10}^{-6})$ - $\Delta \varepsilon/\varepsilon$, $\Delta L/L < 2 \cdot 10^{-4}$ - $\Delta \sigma_{\rm B} < 0.7 \ {\rm fb} \ (2 \ 10^{-3})$ Sensitivity to mass and width different at different \sqrt{s} can **optimize** $\mathbf{m}_{\mathbf{W}}$ **and** $\Gamma_{\mathbf{W}}$ by carefully choosing 2 \forall s - same concept can be used to minimize the systematics (e.g. from background) - Vs known by resonant depolarization (available at ≈ 160 GeV) - Luminosity from Bhabha (requirement similar to Z pole) ## VI-1 W mass and width from direct reconstruction (Marina Béguin, Paolo Azzurri, E.L.) ## VI-2 W mass and width from direct reconstruction (Marina Béguin, Paolo Azzurri, E.L.) #### Fully hadronic channel | | σ_{M} | $_{W}$ MeV | $/c^2$ | σ_{Γ_V} | $_{V}$ MeV | $/\mathrm{c}^2$ | |------------------------|--------------|------------|--------|---------------------|------------|-----------------| | $\sqrt{s} \text{ GeV}$ | 162.6 | 240 | 365 | 162.6 | 240 | 365 | | Luminosity (ab^{-1}) | 12 | 5 | 1.7 | 12 | 5 | 1.7 | | Raw Mass | 1.66 | 0.49 | 0.97 | 1.44 | 1.10 | 1.71 | | 4C rescaling | 1.72 | 0.36 | 0.73 | 1.53 | 0.77 | 1.48 | | 4C fit | 1.14 | 0.28 | 0.5 | 1.1 | 0.58 | 0.95 | | 5C fit | | 0.21 | 0.44 | | 0.47 | 1.02 | #### Semi-leptonic channel | | σ_{M} | $_{W}$ MeV | $/c^2$ | $\sigma_{\Gamma_{V}}$ | w MeV | $/c^2$ | |------------------------|--------------|------------|--------|-----------------------|-------|--------| | $\sqrt{s} \text{ GeV}$ | 162.6 | 240 | 365 | 162.6 | 240 | 365 | | Luminosity (ab^{-1}) | 12 | 5 | 1.7 | 12 | 5 | 1.7 | | Raw Mass | 0.42 | 0.49 | 1.19 | 0.39 | 0.87 | 1.94 | | 1C fit | 0.26 | 0.33 | 0.78 | 0.35 | 0.59 | 1.36 | | 2C fit | | 0.31 | 0.75 | | 0.68 | 1.56 | Largest sources of systematics in the hadronic channel @LEP2: FSI (CR & BEC) Other sources are expected to be much reduced @FCC-ee, due to high statistics and better detectors. | \sqrt{s} [GeV] | 162. | 6 | 240 | | 365 | | |----------------------------------------|----------|------|----------|------|----------|------| | δM_{FSI} [MeV/c ²] | standard | cone | standard | cone | standard | cone | | SKI | 14.6 | 7.5 | 23.9 | 11.5 | 32.2 | 17.5 | | SKII | 7.9 | 3.8 | 12.1 | 6.0 | 14.7 | 8.3 | | BEC | 3.1 | 1.8 | 5.9 | 2.1 | 9.9 | 5.5 | #### More in PhD thesis by Marina Béguin Ultimate: simultaneous fit of WW, ZZ and $Z\gamma$ to extract m_W/m_Z with potential large cancellations of systematic uncertainties ## **VI- W decay Branching Fractions** $$\frac{B_q}{1 - B_q} = 3\left(1 + \frac{\alpha_s(m_W^2)}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^2$$ assuming CKM unitarity $$\Delta Br_{qq}/Br_{qq} = 10^{-4}$$ $$\rightarrow$$ $\Delta \alpha_s \approx 9\pi/2 \Delta Br_{qq} \approx 0.0002$ with Br_{qq} & α_{s} (ind.) precisely measured CKM unitarity tested at 10-4 level Flavour tagging of jets \longrightarrow W coupling to b & c quarks (V_{cb}, V_{cs}) $Br_{\tau\nu} > Br_{e\nu}$, $Br_{\mu\nu}$ (2.8 σ) @FCC-ee, lepton universality test at 4 10⁻⁴ level Also rare W decays can be probed at the level of 10⁻⁷ probability | Decay mode relative precision | $B(W \to e\nu)$ | $B(W \to \mu\nu)$ | $B(W \to \tau \nu)$ | $B(W \to qq)$ | |-------------------------------|-------------------|-------------------|---------------------|---------------| | LEP2 | 1.5% | 1.4% | 1.8% | 0.4% | | FCC-ee | $3 \cdot 10^{-4}$ | 3.10^{-4} | 4.10^{-4} | 1.10^{-4} | excellent control of jet reconstruction and lepton id are needed to control cross-contaminations in signal channel ($\tau \rightarrow e, \mu \nu$) ("FCC-ee Physics, Experiments and Detectors") ## VII- Probing the TGCs at high precision ## (Jiayin Gu) (also QGCs $WW\gamma\gamma$, $WWZ\gamma$ possible) very important implications on BSM physics - @ LEP2,TGCs constrained at few % level - @FCC-ee, di-boson process will be measured @ 161, 240, 350, 365 GeV with much higher \pounds $$\mathcal{L}_{SM} \xrightarrow{BSM} \mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} O_{i}$$ Focus on CP-even dimension 6 operators $$\mathcal{L}_{TGC} = f(\delta g_1^{Z}, \delta \kappa_Z, \delta \kappa_{\gamma}, \lambda_Z, \lambda_{\gamma})$$ gauge invariance $\delta \kappa_{z} = \delta g_{1}^{z} - \tan^{2}(\theta_{w}) \delta \kappa_{v}$, $\lambda_{z} = \lambda_{v}$ $\begin{array}{|c|c|c|c|c|} \hline \mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu} & \delta g_{1,Z} = -m_{Z}^{2}\frac{c_{HW}}{\Lambda^{2}} \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu} & \delta \kappa_{\gamma} = -m_{W}^{2}(\frac{c_{HW}}{\Lambda^{2}} + \frac{c_{HB}}{\Lambda^{2}}) \\ \mathcal{O}_{3W} = \frac{1}{3!}g\epsilon_{abc}W^{a\,\nu}_{\mu}W^{b}_{\nu\rho}W^{c\,\rho\mu} & \lambda_{Z} = -m_{W}^{2}\frac{c_{3W}}{\Lambda^{2}} \\ \hline \end{array}$ ## **Conclusions** #### FCC-ee has a considerable physics potential: With 5 10¹² Z around the Z pole and 10⁸ WW at and above the W-pair production threshold a large number of electroweak observables (only a sample of them in this talk!) will be measured with unprecedented statistical precision (1 to 2 order of magnitude w.r.t. present measurements). Large statistics also impacts systematic uncertainties: theory (parametric uncertainties) & detector (data-based studies, trading with statistics)! In order to fully exploit this potential, #### the systematic uncertainty must match the statistical uncertainty - The beam energy calibration is the dominant source of systematic uncertainty for a number of observables - ΔE_{CM} ≈ 100 keV @ the Z, 300 keV @ the WW threshold other effects (beam energy spread and asymmetry, etc..) under control at required level - Luminosity uncertainty critical for all measurements related to cross-section absolute accuracy ≈ 10⁻⁴, relative (point to point) ≈ 5x10⁻⁵ requires precision of construction and metrology at the level of 1μm (internal radius) - Also required: control of acceptance, lepton id, good γ/π^0 separation (granularity), flavour-tagging ## **Conclusions** #### A lot of interesting and challenging work both - for experimentalists (new strategies & solutions). A unique opportunity to develop creativity and skills in detection techniques, analysis! - for theorists (higher orders calculations; on the good track to match experimental uncertainties) #### For more informations: - CDR (mainly Vol.2) - "Your Questions answered" <u>arXiv:1906.02693</u> - A. Blondel et al., *Polarization and centre-of-mass energy calibration at FCC-ee*, arXiv:1909.12245 [physics.acc-ph], Sep 26, 2019. - talks @ FCC-week 2019 & EPS-HEP2019 Table 3.1: Measurement of selected electroweak quantities at the FCC-ee, compared with the present precisions. | Observable | present | FCC-ee | FCC-ee | Comment and | |------------------------------------------------------------------------------------------|---------------------|--------|-----------|--------------------------------------| | | value \pm error | Stat. | Syst. | dominant exp. error | | $m_{\rm Z}~({\rm keV})$ | 91186700 ± 2200 | 5 | 100 | From Z line shape scan | | | | | | Beam energy calibration | | $\Gamma_{\rm Z}~({ m keV})$ | 2495200 ± 2300 | 8 | 100
25 | From Z line shape scan | | | | | 25 | Beam energy calibration | | $R_{\ell}^{Z} (\times 10^{3})$ | 20767 ± 25 | 0.06 | 0.2-1.0 | ratio of hadrons to leptons | | | | | | acceptance for leptons | | $\alpha_{\rm s}({\rm m_Z})~(\times 10^4)$ | 1196 ± 30 | 0.1 | 0.4-1.6 | from R_ℓ^Z above [41] | | $R_b (\times 10^6)$ | 216290 ± 660 | 0.3 | <60 | ratio of $b\bar{b}$ to hadrons | | | | | | stat. extrapol. from SLD [42] | | $\sigma_{\rm had}^0 (\times 10^3) ({\rm nb})$ | 41541 ± 37 | 0.1 | 4 | peak hadronic cross-section | | | | | | luminosity measurement | | $N_{\nu}(\times 10^3)$ | 2991 ± 7 | 0.005 | 1 | Z peak cross sections | | | | | | Luminosity measurement | | $\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$ | 231480 ± 160 | 3 | 2 - 5 | from $A_{FB}^{\mu\mu}$ at Z peak | | | | | 1-2 | Beam energy calibration | | $\frac{1/\alpha_{\rm QED}(m_{\rm Z})(\times 10^3)}{A_{\rm FB}^{\rm b}, 0~(\times 10^4)}$ | 128952 ± 14 | 4 | small | from $A_{FB}^{\mu\mu}$ off peak [32] | | $\rm A_{FB}^b, 0~(\times 10^4)$ | 992 ± 16 | 0.02 | 1-3 | b-quark asymmetry at Z pole | | | | | | from jet charge | | ${ m A_{FB}^{{ m pol}, au}}~(imes 10^4)$ | 1498 ± 49 | 0.15 | <2 | τ polarisation and charge asymmetry | | | | | | τ decay physics | | $m_W (MeV)$ | 80350 ± 15 | 0.6 | 0.3 | From WW threshold scan | | | | | | Beam energy calibration | | $\Gamma_{ m W}~({ m MeV})$ | 2085 ± 42 | 1.5 | 0.3 | From WW threshold scan | | | | | | Beam energy calibration | | $\alpha_{\rm s}({ m m_W})(imes 10^4)$ | 1170 ± 420 | 3 | small | from R_{ℓ}^{W} [43] | | $N_{\nu}(\times 10^3)$ | 2920 ± 50 | 0.8 | small | ratio of invis. to leptonic | | | | | | in radiative Z returns | | | | | | | # from CDR- Vol 1 **W & Z** **Observables** ## **Expected uncertainty contours for S & T parameters** (courtesy Jorge de Blas) The true FCC-ee potential is better represented by using statistical & parametric uncertainties only, as our next challenge is to improve both the experimental methods and theory calculations, so that systematics match the available statistics. # SPARE SLIDES #### 2 or 4 Interaction Points? #### FCC-ee design builds up on 50 years of experience with circular e⁺e⁻ colliders: - LEP (beam energy calibration) - **SLC** (strong e+e- sources) - VEPP-4 (precise beam energy calibration) - KEKB & PEP-II B factories, BEPC-II (separate bins for e⁻ and e⁺) - larger number of bunches, continuous injection, mitigation of e-cloud effects, highest stored e current, crossing angle - ΔAΦNE (crab-waist optics) - Super B factories (strong focusing) - recent, novel ingredients to reach extremely high luminosities at high energies FCC-ee can be built, with even better performance than originally thought & parameters much more robust All technologies at hand → FCC-ee can be built with the proposed luminosities now! as included in an integrated FCC programme ## FCC integrated project technical schedule - FCC integrated project plan is fully integrated with HL-LHC exploitation - provides for seamless further continuation of HEP in Europe. ## Circular vs Linear e⁺e⁻ colliders | Circular | Linear | |--|--| | Considerable amount of experience | Extensive simulations and paper studies,
but limited operational experience | | design luminosities are conservative
estimates (always exceeded by factors 2 to 4) | SLC reached half of design peak luminosity after 10 years | | | Larger than expected spot sizes @ SLC, FFTB, ATF2 (not entirely understood). | | Required positron production rates lower
than those routinely achieved @ SLC and | Required positron rates exceed present world record (factors 20 to 40). | | those expected. | new scheme of high energy γ conversion @ILC -> issues of radiation & cooling. | | Low-emittance e-beams stored & maintained in storage rings for decades | Extraction of low-emittance beam from a
storage ring is needed (not standard mode) -> emittance increase | Circular collider technology is reliable and relatively low-risk ## To polarize or not to polarize? (longitudinally) Transverse polarization enables accurate beam energy calibration with resonant depolarization (unique to circular colliders!) The precision could be affected by longitudinal polarization - Longitudinal polarization would lead to a loss of luminosity (factor 50) - For Z, W, t (produced and decaying via parity violating weak interactions), longitudinal polarization brings no information that could not be obtained otherwise #### **Costs** #### **Construction costs** 4 GCHF FCC-ee collider & injector 17 GCHF FCC-hh collider & injector (9.4 GCHF for the magnets) 7.6 GCHF FCC-ee common civil engineering & technical infrastructure #### **Operation costs** 27 TWh for 14 years of FCC-ee research program -> 1.9 TWh/year (1.2 for CERN today, 1.4 for HL-LHC)) Price of the FCC-ee Higgs Boson = 255 euros (<< CLIC & ILC) ## **Detectors & Beam Background** \mathcal{L} @ FCC-ee > 10⁶ x \mathcal{L} @ LEP (Z pole) but - spread over a large number of bunches (16,640 vs 4) -> similar bunch intensities - asymmetric design of IP -> similar synchrotron radiation -> negligible related background #### **Detailed simulations** e.g vertex detector occupancy $< 10^{-5}$ @ Z pole, a few 10^{-4} @365GeV - negligible background - detectors satisfying the requirements are feasible ## **Beam polarization & Resonant depolarization** Electron with momentum p in a uniform vertical magnetic field B: The electrons get transversally polarized (i.e., their spin tends to align with B) - The spin precesses around B with a frequency proportional to B (Larmor precession) - Hence, the number of revolutions v_s for each LEP turn is proportional to BL (or ∫Bdl) ## **Beam polarization & Resonant depolarization** The spin precession (f_{sp}) frequency is determined by resonant depolarization $$f_{sp} = v f_{rev}$$ $$v = a_e \gamma = \frac{g_e - 2}{2} \frac{E_{Beam}}{m_e c^2} = \frac{E_{Beam}}{0.4406486(1)}$$ $$E [MeV]$$ Resonant depolarization is produced by exciting the beam with an oscillating magnetic field generated by a vertical kicker magnet (field in the horizontal plane) If the frequency of the resulting spin kick is in phase with the spin precession, a resonance condition occurs. The electron spins are coherently swept away from the vertical direction, and polarization disappears