

Elizabeth Locci, CEA-IRFU, Saclay on behalf of the FCC-ee study group

Baseline FCC-ee operation model (2 IPs)

Integrated luminosity goals for Z & W physics

- **150 ab⁻¹ around the Z pole** (~100 at the pole)
- 10 ab⁻¹ around the WW threshold (4 IPs investigated)

LEP 4 IPs:

- 0.6 fb⁻¹ around the the Z pole
- 2.4 fb⁻¹ around the WW threshold

Also important for WW physics!

				•		
Working point	Z, years 1-2 Z, later		WW	HZ	$t\bar{t}$	
\sqrt{s} (GeV)	88, 91,	94	157, 163	240	340-350	365
Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	/ 115	230	28	8.5	0.95	1.55
$Lumi/year (ab^{-1}, 2 IP)$	24	48	6	1.7	0.2	0.34
Physics Goal (ab ⁻¹)	150		10	5	0.2	1.5
Run time (year)	2	2	2	3	1	4
				10^6 HZ	10^{6}	$\overline{\mathrm{t}}\overline{\mathrm{t}}$
Number of events	$5 \times 10^{12} \text{ Z}$		$10^8 \mathrm{WW}$	+	+2001	$_{ m K}$ HZ
				$25 \text{k WW} \rightarrow \text{H}$	$+50 \mathrm{kW}$	$W \to H$

EW Physics Observables at FCC-ee

TeraZ (5 X 10¹² Z)

From data collected in a lineshape energy scan:

- Z mass (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- R_I = hadronic/leptonic width (α_s(m²_Z), lepton couplings, precise universality test)
- peak cross section (invisible width, N_v)
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{OED}(m_Z^2)$, lepton couplings)
- Tau polarization (sin²θ_{eff}, lepton couplings)
- R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings)

OkuWW (108 WW)

From data collected around and above the WW threshold:

- W mass (key for jump in precision for ewk fits)
- W width (first precise direct meas)
- $R^W = \Gamma_{had}/\Gamma_{lept} (\alpha_s(m^2_z))$
- $\Gamma_{\rm e}$, $\Gamma_{\rm \mu}$, $\Gamma_{\rm \tau}$ (precise universality test)
- Triple and Quartic Gauge couplings (jump in precision, especially for charged couplings)

I- Determination of Z mass and width

The exact choice of the off-peak energies for m_Z , Γ_Z is not as crucial at FCC-ee* as at LEP because of the huge statistics

But instead the exact choice is crucial for $\alpha_{QED}(m_z)$, which is driving the choice of:

$$Vs_{-} = 88 \text{ GeV } \& Vs_{+} = 94 \text{ GeV } \text{ (slide 13)}$$

* nevertheless \pm 1 GeV (LEP) sub-optimal for $\Gamma_{\rm Z}$

Most critical systematic uncertainties:

- Center-of-mass energy and energy spread
- Luminosity

Requirements on the detector are not crucial, nevertheless:

- the control of the acceptance over vs is important
- angular resolution < 0.1 mrad
- momentum resolution $\Delta p_T / p_T^2 < 4 \cdot 10^{-5} \text{ GeV}^{-1}$

(See talk by Alain Blondel)

Beam energies and crossing angle (FCC-ee Polarization and Center-of-mass Energy Calibration)

Beams are transversely polarized below 165 GeV (Sokolov-Ternov effect) and their energies are continuously measured with resonant depolarization on single non-colliding bunches

Around the Z pole $\Delta Vs \approx 100 \text{ keV}$ (40 keV point-to-point) is achievable $\longrightarrow \Delta m_7 \approx 100 \text{ keV}$

Beam crossing angle ($\alpha = 30 \text{ mrad}$), energy spread (90 MeV) can be measured with $e^+ e^- \rightarrow \mu^+ \mu^-$ events copiously produced at all energies. $\longrightarrow \Delta\Gamma_7 \approx 25 \text{ keV}$

$$\alpha = 2 \arcsin \left[\frac{\sin (\varphi^{-} - \varphi^{+}) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-} - \sin \varphi^{+} \sin \theta^{+}} \right]$$

From E-p conservation:

$$\alpha = 2 \arcsin \left[\frac{\sin (\varphi^{-} - \varphi^{+}) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-} - \sin \varphi^{+} \sin \theta^{+}} \right]$$

$x_{\gamma} = -\frac{x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-}}{\cos(\alpha/2) + |x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-}|},$ with $x_{\pm} = \frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}}$.

Measurement of luminosity

The reference process is small angle Bhabha scattering

Realistic goal for theoretical uncertainty from higher order for low angle Bhabha is 0.01%* (Blondel, Jadach & al., arXiv:1812.01004) – already at mid-road : 0.04 %

Target $\Delta \mathcal{L}_{abs} \approx 0.0001$, $\Delta \mathcal{L} \approx 5 \cdot 10^{-5}$ point-to-point

---- reduction factor 8 in uncertainty on number of light neutrino families, N_v^* ($\Delta N_v = 0.001$)

- * 0.01% uncertainty also reachable with 1.4 ab⁻¹ e⁺e⁻ -> $\gamma\gamma$, theory uncertainty already at this level
- control of large angle Bhabha contamination

accuracy of $\approx 1 \, \mu m$ required on luminometer internal radius clever acceptance algorithms (a la lep), independent from beam spot position should be extended to beams with crossing angle.

** Measurement of N_v with similar precision provided by $Z\gamma$, $Z \rightarrow vv$ (above the Z) Systematics on γ selection, luminosity, etc cancel in the ratio

$$N_{v} = \frac{\frac{\gamma Z(inv)}{\gamma Z \rightarrow ee, \mu\mu}}{\frac{\Gamma_{v}}{\Gamma e, \mu} (SM)}$$

II- Partial widths ratios

 $\mathbf{R_I} = \Gamma_I / \Gamma_{had} = \sigma_I / \sigma_{had}$ is a robust measurement, necessary input for a precise measurement of lepton couplings and $(\alpha_s(\mathbf{m_z}))$

Exploiting FCC-ee potential requires an accurate control of acceptance, particularly for leptons

- acceptance uncertainties, subdominant at LEP, need factor 5 reduction to match
 5.10⁻⁵ goal on R_I*
 - * corresponds to 0.00015 absolute uncertainty on $\alpha_s(m_z^2)$
- knowledge of boundaries, mechanical precisions, can be reached by exploiting 40 years of improvements in technology
- fiducial acceptance is asymmetric at FCC-ee:
 30 mrad X-angle causing a boost in transverse direction,
 which can be measured event by event for e⁺e⁻, μ⁺μ⁻

Z decays to individual quark flavours can be selected when the decay products can be efficiently tagged.

LHC detectors and current taggers can reach 3 x LEP b-tagging efficiency at same c and uds suppression in a harsher environment sizeable improvement expected at FCC-ee

- statistical uncertainty from double tag sample
- systematic uncertainty from hemisphere correlations becomes dominating
 FCC-ee projections conservatively consider reduction of that uncertainty from ≈ 0.1 % (LEP) to ≈ 0.03 %

Other sources such as gluon splitting and nasty sources of correlations can be studied with data @LHC (e.g. momentum correlations, which can be suppressed by keeping b-tagging efficiency flat in momentum)

Improved measurement also in the charm sector

Expected precision on normalized partial widths

$$R_f = \sigma_f / \sigma_{had}$$

	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP
$R_{\mu} (R_{\ell})$	10^{-6}	5×10^{-5}	20
$R_{ au}$	1.5×10^{-6}	10^{-4}	20
$R_{ m e}$	1.5×10^{-6}	3×10^{-4}	20
$R_{ m b}$	5×10^{-5}	3×10^{-4}	10
$R_{ m c}$	1.5×10^{-4}	15×10^{-4}	10

relative precisions

III- Asymmetries, τ polarization, couplings and $\sin^2\theta_{eff}$

Forward-backward asymmetry: $A_{FB}^{ff} = \frac{\sigma_F^{ff} - \sigma_B^{ff}}{\sigma_F^{ff} + \sigma_B^{ff}}$ unpolarized e beams

at the Z pole
$$A_{FB, 0}^{ff} \approx \frac{3}{4}$$
 \mathcal{A}_{e} \mathcal{A}_{f} with $\mathcal{A}_{f} = \frac{2gVf gAf}{(gVf)2 + (gAf)2} = \frac{2gVf_{/}gAf}{1 + (gVf_{/}gAf)2}$, $sin^{2}\theta_{eff} \equiv \frac{1}{4} \left(1 - \frac{g_{Ve}}{g_{Ae}}\right)$

 $A_{FB,0}^{\mu\mu} \approx (1 - 4 \sin^2\theta_{eff})^2$ \longrightarrow $\Delta \sin^2\theta_{eff} \approx 5 \cdot 10^{-6}$ (at least) uncertainty driven by knowledge of \sqrt{s} (point to point energy uncertainties)

assumes muon-electron universality

Tau polarization can reach similar precision without universality assumption

$$e^{-}$$
 θ θ

$$\mathsf{A}^{\mathsf{pol}} = \frac{\sigma_{\mathsf{F},\mathsf{R}} + \sigma_{\mathsf{B},\mathsf{R}} - \sigma_{\mathsf{F},\mathsf{L}} - \sigma_{\mathsf{B},\mathsf{L}}}{\sigma_{\mathsf{tot}}} = -\mathcal{A}_{\mathsf{F}}$$

(rather measures e-
$$\tau$$
 universality)
$$e^{\frac{\tau}{\theta}} = \frac{A_{pol} = \frac{\sigma_{F,R} + \sigma_{B,R} - \sigma_{F,L} - \sigma_{B,L}}{\sigma_{tot}} = -\mathcal{A}_t}{\sigma_{tot}}$$

$$P_{\tau} (\cos\theta) = \frac{A_{pol} (1 + \cos^2\theta) + 8/3 \text{ AFB } \cos\theta}{(1 + \cos^2\theta) + 8/3 \text{ AFB } \cos\theta}$$

$$A_{FB}^{pol} = \frac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{tot}} = -3/4\mathcal{A}_e$$

$$A_{FB}^{pol} = \frac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{tot}} = -3/4\mathcal{A}_{\epsilon}$$

it measures \mathcal{A}_{e} & \mathcal{A}_{t} , which used as input to $\mathbf{A}_{FB,0}^{\mu\mu}$ — \mathbf{e} , μ , τ couplings separately (together with Γe , $\Gamma \mu$, $\Gamma \tau$)

- huge statistics \longrightarrow improved knowledge of τ parameters (Br, decay modeling)
- use best decay channel, e.g. $\tau \to \rho \nu$ (very clean) detector performance for γ / π^0 mandatory

$$\rightarrow$$
 $\Delta \sin^2\theta_{\rm eff} \approx 6 \cdot 10^{-6}$

A_{FB, 0}^{bb}, A_{FB, 0}^{cc} provide input to quark couplings (together with $\Gamma_{\rm b}$, $\Gamma_{\rm c}$)

Expected precision on coupling ratio factors

A

FCC-CDR presentation – R. Tenchini https://indico.cern.ch/event/789349/

	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LE		r.t. LEP
$\overline{\mathcal{A}_e}$	$5. \times 10^{-5}$	$1. \times 10^{-4}$		50	
${\cal A}_{\mu}$	2.5×10^{-5}	1.5×10^{-4}		30	
$egin{array}{l} {\cal A}_e \ {\cal A}_\mu \ {\cal A}_ au \end{array}$	$4. \times 10^{-5}$	$3. \times 10^{-4}$		15	
\mathcal{A}_b	2×10^{-4}	30×10^{-4}		5	
\mathcal{A}_c	3×10^{-4}	80×10^{-4}		4	
$\sin^2 \theta_{W,eff}$ (from muon FB)	10^{-7}	$5. \times 10^{-6}$		100	
$\sin^2 \theta_{W,eff}$ (from tau pol)	10^{-7}	6.6×10^{-6}		75	

relative precisions but for $\text{sin}^2\theta_{\text{eff}}$

Expected precision on vector and axial neutral couplings

fermion type	g_a	g_v
e	1.5×10^{-4}	2.5×10^{-4}
μ	2.5×10^{-5}	$2. \times 10^{-4}$
au	0.5×10^{-4}	3.5×10^{-4}
b	$1.5 imes 10^{-3}$	1×10^{-2}
c	2×10^{-3}	1×10^{-2}

1-2 orders of magnitudes improvement w.r.t LEP, depending on the fermion

(still need to explore the potential for the measurement of the s quark coupling)

IV- e.m coupling: direct measurement of $\alpha_{OED}(m_z^2)$

(Patrick Janot. JHEP (2016) 53 arXiv:1512.05544

Now $\alpha_{OFD}(M^2)$ from the running of $\alpha \longrightarrow \Delta \alpha/\alpha = 1.1 \ 10^{-4}$

$$A_{FB}^{\mu\mu} = \frac{N_F^{\mu\mu} - N_B^{\mu\mu}}{N_F^{\mu\mu} + N_B^{\mu\mu}} \approx A_{FB,\,0}^{\mu\mu} + \,\alpha_{QED}(s\,)\,\frac{s - mZ^2}{2s}\,f(sin^2\theta_{eff}) \qquad \qquad \Delta\alpha_{QED}\,/\,\alpha_{QED} \approx \Delta A_{FB}^{\,\mu\mu}\,/\,A_{FB}^{\,\mu\mu}$$

Type

 $\Delta A_{FB}^{\mu\mu}/A_{FB}^{\mu}(s_{\cdot}) < 0$ $\Delta A_{FB}^{\mu\mu}/A_{FB}^{\mu\mu}(s_{+}) > 0$

large cancellation of systematic uncertainties combining measurements below and above Z peak

Source

 $\sigma(\alpha)/\alpha$ for 1 year of running at any \sqrt{s}

Uncertainty

 3×10^{-5}

 \rightarrow no sensitivity to $\alpha_{\sf OFD}$

	$E_{\rm beam}$ calibration	1×10^{-5}
	$E_{ m beam}$ spread	$1 \times 10^{-5} < 10^{-7}$
Experimental	Acceptance and efficiency	negl.
	Charge inversion	negl.
	Backgrounds	negl.
	$m_{ m Z}$ and $\Gamma_{ m Z}$	1×10^{-6}
Parametric	$\sin^2 heta_{ m W}$	5×10^{-6}
	$G_{ m F}$	5×10^{-7}
	QED (ISR, FSR)	$< 10^{-6}$
Theoretical	Missing EW higher orders, QED(IFI)	few 10^{-4}
	New physics in the running	0.0
Total	Systematics	1.2×10^{-5}

for 3 10⁻⁵ relative uncertainty

on α_{OED} :

 $vs = 87.9 \, GeV$

 $\sqrt{s_1} = 94.3 \text{ GeV}$

work on EWK theoretical corrections required to reach **3 10**-5

(except missing EW higher orders) | Statistics

V- W mass and width from WW cross-section

At LEP2, $\sqrt{s} = 161 \text{ GeV}$, 11 pb⁻¹

$$m_W = 80.40 \pm 0.21 \text{ GeV}$$

with $\sqrt{s1} = 157.1 \text{ GeV}$ $\sqrt{s2} = 162.6 \text{ GeV}$ f = 0.4

 $\Delta M_W = 0.4 \text{ MeV}$ $\Delta \Gamma_W = 1.2 \text{ MeV}$

Systematics control to:

- $\Delta E_B < 0.35 \text{ MeV (4 10}^{-6})$
- $\Delta \varepsilon/\varepsilon$, $\Delta L/L < 2 \cdot 10^{-4}$
- $\Delta \sigma_{\rm B} < 0.7 \ {\rm fb} \ (2 \ 10^{-3})$

Sensitivity to mass and width different at different \sqrt{s}

can **optimize** $\mathbf{m}_{\mathbf{W}}$ **and** $\Gamma_{\mathbf{W}}$ by carefully choosing 2 \forall s

- same concept can be used to minimize the systematics (e.g. from background)
- Vs known by resonant depolarization (available at ≈ 160 GeV)
- Luminosity from Bhabha (requirement similar to Z pole)

VI-1 W mass and width from direct reconstruction

(Marina Béguin, Paolo Azzurri, E.L.)

VI-2 W mass and width from direct reconstruction

(Marina Béguin, Paolo Azzurri, E.L.)

Fully hadronic channel

	σ_{M}	$_{W}$ MeV	$/c^2$	σ_{Γ_V}	$_{V}$ MeV	$/\mathrm{c}^2$
$\sqrt{s} \text{ GeV}$	162.6	240	365	162.6	240	365
Luminosity (ab^{-1})	12	5	1.7	12	5	1.7
Raw Mass	1.66	0.49	0.97	1.44	1.10	1.71
4C rescaling	1.72	0.36	0.73	1.53	0.77	1.48
4C fit	1.14	0.28	0.5	1.1	0.58	0.95
5C fit		0.21	0.44		0.47	1.02

Semi-leptonic channel

	σ_{M}	$_{W}$ MeV	$/c^2$	$\sigma_{\Gamma_{V}}$	w MeV	$/c^2$
$\sqrt{s} \text{ GeV}$	162.6	240	365	162.6	240	365
Luminosity (ab^{-1})	12	5	1.7	12	5	1.7
Raw Mass	0.42	0.49	1.19	0.39	0.87	1.94
1C fit	0.26	0.33	0.78	0.35	0.59	1.36
2C fit		0.31	0.75		0.68	1.56

Largest sources of systematics in the hadronic channel @LEP2: FSI (CR & BEC)

Other sources are expected to be much reduced @FCC-ee, due to high statistics and better

detectors.

\sqrt{s} [GeV]	162.	6	240		365	
δM_{FSI} [MeV/c ²]	standard	cone	standard	cone	standard	cone
SKI	14.6	7.5	23.9	11.5	32.2	17.5
SKII	7.9	3.8	12.1	6.0	14.7	8.3
BEC	3.1	1.8	5.9	2.1	9.9	5.5

More in PhD thesis by Marina Béguin

Ultimate: simultaneous fit of WW, ZZ and $Z\gamma$ to extract m_W/m_Z with potential large cancellations of systematic uncertainties

VI- W decay Branching Fractions

$$\frac{B_q}{1 - B_q} = 3\left(1 + \frac{\alpha_s(m_W^2)}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^2$$

assuming CKM unitarity

$$\Delta Br_{qq}/Br_{qq} = 10^{-4}$$

$$\rightarrow$$
 $\Delta \alpha_s \approx 9\pi/2 \Delta Br_{qq} \approx 0.0002$

with Br_{qq} & α_{s} (ind.) precisely measured CKM unitarity tested at 10-4 level

Flavour tagging of jets

 \longrightarrow W coupling to b & c quarks (V_{cb}, V_{cs})

 $Br_{\tau\nu} > Br_{e\nu}$, $Br_{\mu\nu}$ (2.8 σ)

@FCC-ee, lepton universality test at 4 10⁻⁴ level

Also rare W decays can be probed at the level of 10⁻⁷ probability

Decay mode relative precision	$B(W \to e\nu)$	$B(W \to \mu\nu)$	$B(W \to \tau \nu)$	$B(W \to qq)$
LEP2	1.5%	1.4%	1.8%	0.4%
FCC-ee	$3 \cdot 10^{-4}$	3.10^{-4}	4.10^{-4}	1.10^{-4}

excellent control of jet reconstruction and lepton id are needed to control cross-contaminations in signal channel ($\tau \rightarrow e, \mu \nu$)

("FCC-ee Physics, Experiments and Detectors")

VII- Probing the TGCs at high precision

(Jiayin Gu) (also QGCs $WW\gamma\gamma$, $WWZ\gamma$ possible)

very important implications on BSM physics

- @ LEP2,TGCs constrained at few % level
- @FCC-ee, di-boson process will be measured

@ 161, 240, 350, 365 GeV with much higher \pounds

$$\mathcal{L}_{SM} \xrightarrow{BSM} \mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} O_{i}$$

Focus on CP-even dimension 6 operators

$$\mathcal{L}_{TGC} = f(\delta g_1^{Z}, \delta \kappa_Z, \delta \kappa_{\gamma}, \lambda_Z, \lambda_{\gamma})$$

gauge invariance $\delta \kappa_{z} = \delta g_{1}^{z} - \tan^{2}(\theta_{w}) \delta \kappa_{v}$, $\lambda_{z} = \lambda_{v}$

 $\begin{array}{|c|c|c|c|c|} \hline \mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu} & \delta g_{1,Z} = -m_{Z}^{2}\frac{c_{HW}}{\Lambda^{2}} \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu} & \delta \kappa_{\gamma} = -m_{W}^{2}(\frac{c_{HW}}{\Lambda^{2}} + \frac{c_{HB}}{\Lambda^{2}}) \\ \mathcal{O}_{3W} = \frac{1}{3!}g\epsilon_{abc}W^{a\,\nu}_{\mu}W^{b}_{\nu\rho}W^{c\,\rho\mu} & \lambda_{Z} = -m_{W}^{2}\frac{c_{3W}}{\Lambda^{2}} \\ \hline \end{array}$

Conclusions

FCC-ee has a considerable physics potential:

With 5 10¹² Z around the Z pole and 10⁸ WW at and above the W-pair production threshold a large number of electroweak observables (only a sample of them in this talk!) will be measured with unprecedented statistical precision (1 to 2 order of magnitude w.r.t. present measurements). Large statistics also impacts systematic uncertainties: theory (parametric uncertainties) & detector (data-based studies, trading with statistics)!

In order to fully exploit this potential,

the systematic uncertainty must match the statistical uncertainty

- The beam energy calibration is the dominant source of systematic uncertainty for a number of observables
 - ΔE_{CM} ≈ 100 keV @ the Z, 300 keV @ the WW threshold other effects (beam energy spread and asymmetry, etc..) under control at required level
- Luminosity uncertainty critical for all measurements related to cross-section
 absolute accuracy ≈ 10⁻⁴, relative (point to point) ≈ 5x10⁻⁵
 requires precision of construction and metrology at the level of 1μm (internal radius)
- Also required: control of acceptance, lepton id, good γ/π^0 separation (granularity), flavour-tagging

Conclusions

A lot of interesting and challenging work both

- for experimentalists (new strategies & solutions). A unique opportunity to develop creativity and skills in detection techniques, analysis!
- for theorists (higher orders calculations; on the good track to match experimental uncertainties)

For more informations:

- CDR (mainly Vol.2)
- "Your Questions answered" <u>arXiv:1906.02693</u>
- A. Blondel et al., *Polarization and centre-of-mass energy calibration at FCC-ee*, arXiv:1909.12245 [physics.acc-ph], Sep 26, 2019.
- talks @ FCC-week 2019 & EPS-HEP2019

Table 3.1: Measurement of selected electroweak quantities at the FCC-ee, compared with the present precisions.

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	dominant exp. error
$m_{\rm Z}~({\rm keV})$	91186700 ± 2200	5	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z}~({ m keV})$	2495200 ± 2300	8	100 25	From Z line shape scan
			25	Beam energy calibration
$R_{\ell}^{Z} (\times 10^{3})$	20767 ± 25	0.06	0.2-1.0	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m_Z})~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_ℓ^Z above [41]
$R_b (\times 10^6)$	216290 ± 660	0.3	<60	ratio of $b\bar{b}$ to hadrons
				stat. extrapol. from SLD [42]
$\sigma_{\rm had}^0 (\times 10^3) ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross-section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2991 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	3	2 - 5	from $A_{FB}^{\mu\mu}$ at Z peak
			1-2	Beam energy calibration
$\frac{1/\alpha_{\rm QED}(m_{\rm Z})(\times 10^3)}{A_{\rm FB}^{\rm b}, 0~(\times 10^4)}$	128952 ± 14	4	small	from $A_{FB}^{\mu\mu}$ off peak [32]
$\rm A_{FB}^b, 0~(\times 10^4)$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
${ m A_{FB}^{{ m pol}, au}}~(imes 10^4)$	1498 ± 49	0.15	<2	τ polarisation and charge asymmetry
				τ decay physics
$m_W (MeV)$	80350 ± 15	0.6	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{ m W}~({ m MeV})$	2085 ± 42	1.5	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{\rm s}({ m m_W})(imes 10^4)$	1170 ± 420	3	small	from R_{ℓ}^{W} [43]
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns

from CDR- Vol 1

W & Z

Observables

Expected uncertainty contours for S & T parameters

(courtesy Jorge de Blas)

The true FCC-ee potential is better represented by using statistical & parametric uncertainties only, as our next challenge is to improve both the experimental methods and theory calculations, so that systematics match the available statistics.

SPARE SLIDES

2 or 4 Interaction Points?

FCC-ee design builds up on 50 years of experience with circular e⁺e⁻ colliders:

- LEP (beam energy calibration)
- **SLC** (strong e+e- sources)
- VEPP-4 (precise beam energy calibration)
- KEKB & PEP-II B factories, BEPC-II (separate bins for e⁻ and e⁺)
- larger number of bunches, continuous injection, mitigation of e-cloud effects, highest stored e current, crossing angle
- ΔAΦNE (crab-waist optics)
- Super B factories (strong focusing)
- recent, novel ingredients to reach extremely high luminosities at high energies

FCC-ee can be built, with even better performance than originally thought & parameters much more robust

All technologies at hand

→ FCC-ee can be built with the proposed luminosities now! as included in an integrated FCC programme

FCC integrated project technical schedule

- FCC integrated project plan is fully integrated with HL-LHC exploitation
- provides for seamless further continuation of HEP in Europe.

Circular vs Linear e⁺e⁻ colliders

Circular	Linear
Considerable amount of experience	Extensive simulations and paper studies, but limited operational experience
 design luminosities are conservative estimates (always exceeded by factors 2 to 4) 	SLC reached half of design peak luminosity after 10 years
	 Larger than expected spot sizes @ SLC, FFTB, ATF2 (not entirely understood).
 Required positron production rates lower than those routinely achieved @ SLC and 	Required positron rates exceed present world record (factors 20 to 40).
those expected.	new scheme of high energy γ conversion @ILC -> issues of radiation & cooling.
Low-emittance e-beams stored & maintained in storage rings for decades	 Extraction of low-emittance beam from a storage ring is needed (not standard mode) -> emittance increase

Circular collider technology is reliable and relatively low-risk

To polarize or not to polarize? (longitudinally)

 Transverse polarization enables accurate beam energy calibration with resonant depolarization (unique to circular colliders!)

The precision could be affected by longitudinal polarization

- Longitudinal polarization would lead to a loss of luminosity (factor 50)
- For Z, W, t (produced and decaying via parity violating weak interactions), longitudinal
 polarization brings no information that could not be obtained otherwise

Costs

Construction costs

4 GCHF FCC-ee collider & injector

17 GCHF FCC-hh collider & injector (9.4 GCHF for the magnets)

7.6 GCHF FCC-ee common civil engineering & technical infrastructure

Operation costs

27 TWh for 14 years of FCC-ee research program -> 1.9 TWh/year

(1.2 for CERN today, 1.4 for HL-LHC))

Price of the FCC-ee Higgs Boson = 255 euros (<< CLIC & ILC)

Detectors & Beam Background

 \mathcal{L} @ FCC-ee > 10⁶ x \mathcal{L} @ LEP (Z pole)

but

- spread over a large number of bunches (16,640 vs 4) -> similar bunch intensities
- asymmetric design of IP -> similar synchrotron radiation -> negligible related background

Detailed simulations

e.g vertex detector occupancy $< 10^{-5}$ @ Z pole, a few 10^{-4} @365GeV

- negligible background
- detectors satisfying the requirements are feasible

Beam polarization & Resonant depolarization

Electron with momentum p in a uniform vertical magnetic field B:

The electrons get transversally polarized (i.e., their spin tends to align with B)

- The spin precesses around B with a frequency proportional to B (Larmor precession)
 - Hence, the number of revolutions v_s for each LEP turn is proportional to BL (or ∫Bdl)

Beam polarization & Resonant depolarization

The spin precession (f_{sp}) frequency is determined by resonant depolarization

$$f_{sp} = v f_{rev}$$

$$v = a_e \gamma = \frac{g_e - 2}{2} \frac{E_{Beam}}{m_e c^2} = \frac{E_{Beam}}{0.4406486(1)}$$

$$E [MeV]$$

Resonant depolarization is produced by exciting the beam with an oscillating magnetic field generated by a vertical kicker magnet (field in the horizontal plane)

If the frequency of the resulting spin kick is in phase with the spin precession, a resonance condition occurs. The electron spins are coherently swept away from the vertical direction, and polarization disappears