DE LA RECHERCHE À L'INDUSTRIE

Research Program for improving SRF cavity performances at CEA

Thomas Proslier

www.cea.fr

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - > Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Chemistry: Vertical electropolishing
- Cobotization

Introduction

Reduce operation and construction cost of accelerators

In particular superconducting Nb cavities (bulk, heavy surface treatments)

- <u>Limit</u>: Bulk Nb is reaching intrinsic limits
- Great improvements on Q0 (doping) FNAL, Jlab, Cornell, Desy, HZB, KEK
- Some improvements on Emax to be confirmed (infusion) FNAL, Desy, HZB, KEK
- Solutions:
- Reduce the amount of Nb: Thin films on Cu CERN, Jlab...
- Increase operation temperature from 2 to 4,2 K: better superconductors $\mathrm{Nb_3Sn}$ Cornell, FNAL, CERN
- Increase performances: Q_0 and E_{MAX} , multilayer structure CEA, STFC, INFN, IPNO, Desy, HZB
- Collaborating institutions:
- France: IPNO: bulk Nb surface treatments; LAL: characterization; CERN: thin films
- Japan: KEK: thin films, theory, electropolishing
- Germany: HZB: characterization, thin films; DESY: characterization, thin films
- England: STFC: thin films
- USA: JLAB: Bulk Nb, thin films; FNAL: Bulk Nb, Nb3Sn; Cornell: Nb3Sn

$$Q_0 = \frac{Energie input}{Losses} = \frac{G}{R_S(B)}$$

For Nb, $\lambda = 45$ nm

- Surface properties dominate
- Whatever the solution, tools needed to probe the surface superconductivity.

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - ➤ Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Chemistry: Vertical electropolishing
- Cobotization

Tunneling spectroscopy: what do we measure and why?

Measure the fundamental superconducting parameters:

$$\Delta$$
, T_C , H_{C2}

- Measure non-ideal signature: Γ.
- All of these are directly correlated to SRF cavity performances
- Cartography

The Point Contact system at CEA

- Temp: 1,4 K Magnetic field: 6 T
- Variable junction resistance: $2.10^2 2.10^9 \Omega$.
- Cartography: 10 µm − 1 mm
- Fast measurements: 100-300 jonctions/5hrs

- Transport (RRR, Tc vs H applied...)
- Hall Effect
- Sample size: 10x10 mm

Used for thin films: Nb/Cu, Nb₃Sn, mutlilayers...

Bulk Nb surface treatments (doping, infusion...)

Magnetometry system at CEA

- Principle: measure critical penetration fields (without vortex) and predict Eacc External field applied with coil << sample size => similar to cavity configuration Measure the vortex nucleation (trapped, they introduce non linearity in the measurement)
- Measure trapped vortices (point defects)

Magnetometry system at CEA

- Measured samples:
 - Thin films on Nb : Magnetron sputtered, HPIMS, ALD....
 - Nb₃Sn (collab Cornell)
 - Damaged layer (starting)
 - Multilayers on thin Nb films or bulk Nb

- Temp: from 4,2 to 300K
- External magnetic field: up to 130 mT
- Sample size: $\emptyset \ge 30 \text{ mm}$

Nb₃Sn/Nb (Cornell-FNAL)

- Wupperthal method: diffusion of Sn in a Nb cavity
- $Nb_3Sn Q_0$ at $4.2K \sim Nb Q_0$ at 2K
- Moderate increase of Q_0 between 4K to 2K -> Non-BCS
- Q_0 decrease at ~ 6 K

Have we reached the limits of Nb₃Sn?

Nb₃Sn/Nb (Cornell) - PCT

- $\Delta > \text{Nb}$ and Γ/Δ is small
- -> Quality factor @ 4K is $\sim Nb$ @ 2K

- But pockets of Nb rich phases:
- Lower Tc and Δ
- Carbon contamination

Nb₃Sn/Nb (Cornell - FNAL) - PCT

Quench field vs Average Gap

For large $K (= \lambda/\xi = 24)$:

$$H_{C1} = \frac{1}{\sqrt{2}\kappa} (Ln[\kappa] + 0.08) H_C$$

$$H_C = \sqrt{\frac{N_0}{\mu_0}} \cdot \Delta \cdot e$$
 $N_0 = 2.5 \cdot 10^{35} \text{ e}^{-7} / \text{spin} / m^3$

$$H_{SH} = 26 \pm 2.5 \Delta mT/meV$$

Bulk \triangle for Nb₃Sn is 3.4 to 3.5 meV

-> Max expected Quench field is $\sim 91 \pm 2 \text{ mT} = 22 \text{ MV/m}$

 \triangleright A15 compounds (V₃Si, Nb₃Sn, Nb₃Al...) are good for Q₀ and higher operation temp. (4,2 K)

Nb₃Sn/Nb (Cornell) - Magnetometry

- > The critical field measured by Magnetometry correlates with RF tests Quench fields
- \triangleright But what about E_{MAX} ? How to increase E_{MAX} ?

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - > Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Chemistry: Vertical electropolishing
- Cobotization

Thin films developements at CEA - multilayer

Fields in bulk Nb cavities approaching dc depairing limit for Nb, $H_c(0) \approx 200 \text{ mT}$

Superconductor-Insulator multilayer [Gurevich, Appl. Phys. Lett. 88

- Increase performance
 - Move beyond limits of Nb
- Decrease cost
 - Higher operating temperature (reduce cryogen costs)
 - Replace bulk Nb with cheaper material (Cu/Al)

Very weak

$$B_{c1} = \frac{2\phi_0}{\pi d^2} \ln \frac{d}{\tilde{\xi}}, \quad d < \lambda,$$

Coat inside Nb SRF cavity with precise, layered structure → ALD

Thin films developements at CEA

Set up of the ALD laboratory

- 7 chemical precursors
- Temperature up to 500°C
- RGA and QCM in-situ monitoring
- Design to fit 3 and 1,3 GHz cavities
- Fully automated
- Deposition homogeneity < 1%

Thin films developements at CEA

Deposition on BCP, EP bulk Nb samples + Post annealing treatment in High Vacuum

- Up 1000°C
- 1 inch samples
- 5.10⁻⁶ mbar at 800°C
- RGA and gaz feedthroughs
- Set for Insitu X-ray studies

Soon on 3GHz and 1,3 GHz cavities

Annealing

- Up 1000°C
- Up 1,3 GHz cavities
- 10⁻⁶ mbar at 800°C
 - RGA and gaz feedthourghs

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - > Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Chemistry: Vertical electropolishing
- Cobotization

Bulk Nb Infusion – (IPNO/CEA)

Diffusion of N in the first nm's of bulk Nb cavities.

Treated Samples

Carbon pollution -> improve process

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - > Predictive power for RF tests
- Thin films developements
- Chemistry: Vertical electropolishing
- Bulk Nb infusion
- Cobotization

Chemistry: Vertical electropolishing

Program FJPPL: collaboration KEK + marui

- ➤ Vertical Electropolishing mono cell 1,3 GHz cavity: 37,5 MV/m without baking
- ➤ Vertical Electropolishing 9 cell 1,3 GHz cavity: On Going...

- Future: EPV on 704MHz cavity
- > Real time multiple point thickness measurements during chemistry

Page 21

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - > Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Chemistry: Vertical electropolishing
- 'Cobot'-ization

Robotization

Robotization should reduced assembly mistakes

Robotization could be implemented for, e.g. in order of complexity:

- Ionized N2 cleaning,
- Coupler assembly,
- String assembly,

Robotization will be beneficial with respect to:

- Reducing labour cost
- Uniformization of assembly procedures across several regional assembly plants
- Introducing 'plug-compatible' component design variations

'Cobot'-ization

A first 'proof of principle' experiment has been implemented at Saclay, in the Eu-XFEL/ESS Clean Room with a 'collaborative' robot, a.k.a 'Cobot', for the Ionized-N2 cleaning of the blind holes ESS cavity flange.

CEA proposal to Japan-France collaboration

• With the experience gained on the assembly of the cryomodules at European-XFEL, CEA-Saclay is pursuing R&D effort on robotization.

Cobot

Cobot in Saclay ISO4 Clean Room

R&D plan (KEK/ CEA-Saclay)

JFY2020: (KEK) Robot introduction for dust removal of electrostatic remover

(CEA) Cobot tests for cleaning all flanges of one cavity

(CEA) Evaluation of cobot for flange assembly

JFY2021: (KEK) Development of robot operation program, learning of operation work

(CEA) Order Cobot and development of the flanges assembly by robot

JFY2022: (KEK) Operation confirmation by robotization of equipment

(CEA) Operation confirmation by robotization of equipment

Summary

Characterization:

- Two unique set of characterization tools with predict power for RF cavity tests
 - > Enable testing recipes/surface treatments/heterostructure on coupons prior to cavity tests
 - > Faster turner over and phase space exploration of growth parameters etc...

Thin film growth:

- Set up ready to deposit on coupons, 3 and 1,3 GHz cavities
- > Study influence on RF properties of heterostructures made by ALD
- ➤ Post annealing capalities for samples and cavities

Vertical Electropolishing:

- > Very good results on 1,3 GHz monocell cavities
- > On Going optimization effort on 9 cells and 704 MHz cavities

Thanks you

The END