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Fig. 9. Rotational bands in “Er. The figure is from (35) and is based on the experimental
data by Reich and Cline (75). The bands are labelled by the component K of the total

angular momentum with respect to the symmetry axis. The K = 2 band appears to represent

the excitation of a mode of quadrupole vibrations involving deviations from axial symmetry

in the nuclear shape.



T will discuss what shapes appear in exotic nuclei and in deformed
heavy nuclei, by utilizing contemporary shell model calculations.

- Although the nuclear shape is a classical subject (~70 years old),
there seem to be surprises brought in by radioactive
isotope science, and the traditional view may be superseded ...

We start with shapes near driplines predicted by shell model
calculations with ab-initio effective NN interaction, EEdf1.



2" and 4" level systematics of Ne and Mg isotopes up to driplines
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Monte Carlo shell model (MCSM)

More than 10% (in our model spaces)
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Two driving forces: example from Mg isotopes
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Growing triaxiality towards driplines
T-plots on the PES
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Deformation parameters, p and vy, extracted from T-plot
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because of the weakening of the ground-band deformation ?
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This part is published in
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The impact of nuclear shape on the emergence of
the neutron dripline
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“Moments and radii of exotic Na and Mg isotopes”
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From a global viewpoint, this mechanism can be interpreted :
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a. Level energies
of atomic nuclei
with spherical and
ellipsoidal shapes

Excitation energies of the lowest 2" states of even-even nuclel

Ex (MeV)

(examples)

8 .
6 H

S

q) —

=3

=~

Q

I-Ll><

4+

2+

0+

1245
spherical shape

166y

ellipsoidal shape

rotor limit

6+
4+

4+
2+

\
\
\
\
\
\
\
‘\
\ 6*
\
\
\
\
\
\
\
\

2+

O+

\
\
\

\
\
\
\
T

0+

-
——

o) b. All measured Iovx‘)\est 2% level é;nergies (as of 2022) -

neutron number (N)

O magic nuclei
® semi-magic nuclei
® other nuclei

In exotic nuclei, the
shell evolution due to
tensor + central monopole
intferactions produce

new magic humbers shown by
- O (N= 16, 32, 34, 40), which are
absent in Mayer-Jensen model.

Question:

What happens in heavy nuclei




Revisit with Monte Carlo Shell Model

. . 3s
Effective interaction: 2dl,/,22
G-matrix* + VMU 1992
* Brown, PRL 85, 5300 (2000) 2P12
11.:5/2
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Its recent extension, Quasiparticle Vacua Shell 0gor2
Model (QVSM)* is used, 40 1107y
for most of the calculations to be shown. *
Shimizu et al, PRC 103, 014312 (2021) proton neutron

wu : same interaction for the description of shell evolution in exotic nuclei
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PES and T-plot of the ground and lowest states of 166Er
oblate
a. legend @ C. T plots 07, state 2%, state 4%, state
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Similar result from Kumar invariant
<y> ~ 9.2 deg, <f3,> ~ 0.30




What provides such triaxial shapes
in ground and low-lying state.

Monopole interaction



Monopole-interaction effects seen in projected PES

near the minimum: refined contour plots

two most attractive
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Prolate shape produced by Triaxial shape produced by large-j single-

many single-particle orbitals particle orbital lowered by the monopole int.
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c. level energies and E2 properties of 166Er
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Variations as Z and/or N changes (examples)
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Proron number (Z)
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Besides existing Coulex data,
could we observe their
shapes by Relativistic
Heavy-lon Collisions at

LHC ?

(cf. Giacalone et al.)

Extended scissors mode
(rolling mode) is another
possibility to be studied in
HIyS and RCNP.

Hyper nuclei (with A particle)
are another possibility in
J-Lab and JPARC.



less deformed

PES of 17 triaxial deformed nuclei as well as their neighbors
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Summary

The shell-model calculation is now feasible up to rotational bands of heavy nuclei, exhibiting
some new features involving nuclear forces.

The dripline mechanism due to monopole-quadrupole interplay is found. Evolving triaxial shapes
towards driplines and shape coexistence (like “°Mg) are shown.

The majority of heavy deformed nuclei have been considered to be (axially-symmetric) prolate
(a /a A. Bohr). This textbook view seems to be superseded by the prevailing triaxiality due to
the central + tensor forces which are responsible for the shell evolution. No gamma vibration
is obtained. Thus, RI-beam physics unveils a hidden general feature of the shapes of stable
and exotic nuclei. Triaxiality is associated with large-j orbitals, like h;;,,, which suggests
impacts on superheavies and fissions as well as superdeformation.

Prolate ground state arises in some nuclei (1°*Sm) with shape coexistence with triaxial bands.

Known Coulex data obtained around 1990s are supportive of the present idea, but were not
addressed this way. (The shell evolution by tensor force was not known before 2005.)

Davydov et al. suggested triaxiality in many nuclei, which appears to be correct, although their
rigid-rotor model furned out to be not precise enough.



Alexander S. Davydov, (Ukrainian, 1912 - 1993), suggested triaxiality of nuclear
shapes and derived the features resulting from the rotation of triaxial objects.
He did not present the underlying mechanism, or the rigid-rotor model may not

be too good. Never"rheless hlS con’rmbu‘nons deserve more apprecua’ruon
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END

Thank you for your attention



Identification of nuclear shape by T-plot of MCSM

Location of circle: shape
quadrupole deformation of
unprojected MCSM basis vector

- Area of circle: importance
overlap probability between each projected

basis vector and the eigen wave function

» Potential energy surface (PES) is calculated by
Constrained HF for the same interaction

angular-
momentum,
parity projection

Y=Y £IPTT )

MCSM eigen wave function MCSM basis vector PRC 89, 031301 (R) (2014)

T-plot of O* states of 78Ni (Z=28, N=50)
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The tensor and central forces produce the shell evolution

> one of the major subjects of RI-beam facilities for exotic nuclei
This word, shell evolution, did not exist before 2004,

“Shell evolution™ : 0 hit in Google Scholar in 2003
1 2004

~140 hits/year ~2021

*Combined with "atomic nuclei”, to avoid biology, ... .

*Type II shell evolution, an extension, 1s included.

We now find notable effects on the shapes from the same origin
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Most advanced methodology in the MCSM is used

* (Ordinary) MCSM: superposed Slater determinants with angular momentum and parity projections

* QVSM(Quasiparticle Vacua Shell Model): superposed quasiparticle vacua with number, angular
momentum, and parity projections

* Pairing correlations over many single-particle orbitals are already incorporated in each basis
vector because of its BCS-type character

_ T
quasiparticle 7 |¢> — H(UP + Upa;aﬁ)|_> NG

vacuum p core (vacuum)
PHYSICAL REVIEW C 103, 014312 (2021)

Variational approach with the superposition of the symmetry-restored quasiparticle vacua
for nuclear shell-model calculations

Noritaka Shimizu®,"" Yusuke Tsunoda,' Yutaka Utsuno,>! and Takaharu Otsuka®*2

The QVSM code was fully used, but huge computer resources were still needed.



Monopole interactions are the key

for Central force
Stronger attraction between single-particle orbits of similar radial wave functions
ex.: f 7/2 — f 5/27 & 9/2 h 11/2 Cf.‘ Federman-Pittel (1977)

for Tensor force j

(long-range part, o i
or 1r, 2n exchange) — TR~
j. JS S> I> j.
j=l+% =

[ aftraction ] [ repulsion |

proton neutron

]'< =]-15 4 spin ( \:} wave function of relative motion

-

The combination of these two creates new magic numbers N=32, 34,
transition from Zr to Sn isotopes, hy1,,-g7,» splitting in Sb isotopes, efc

for Three-nucleon force (A-hole) : overall repulsive effect



Bohr & Mottelson, Nuclear Structure II, 1975

Two possibilities 1. Vibrational mode (most likely preferred)
2. Equilibrium shape deviating from axial symmetry

Interpretution of the Kn= 2+ excitation  166Fp

The low-energy and large E2-matrix element for exciting the X=2 band
suggests that we are dealing with a collective mode involving deviations of the
nuclear shape from axial symmetry. (The B(FE2) value for exciting the
K=21=2 state is about 28B,,(E2), which is 14 times the appropriate
single-particle unit (see p. 549).) Such a collective mode could have the
character of a vibration around an axially symmetric equilibrium_ or might be
associated with an equilibrium shape deviating from axial symmetry.

shape coexistence
Nobel lecture by A. Bohr (1975)

Only the possibility 1. was mentioned for 1¢°Er,



The dominance of axially-symmetric shapes
has been one of the textbook items.

Kumar, K. and Baranger, M.
Nuclear deformations in the pairing-plus-quadrupole model (III).
Static nuclear shapes in the rare-earth region. Nucl. Phys. A 1968, 110, 529-554.

This paper presents statements such as
While most of the deformed nuclei are found to be prolate,

and
The preponderance of axially symmetric shapes (prolate or oblate)

Bes, D.R. and Sorensen, R.A.
The Pairing-Plus-Quadrupole Model.
In Advances in Nuclear Physics; Ed. by Baranger, M. and Vogt, E, (Plenum Press, New York, NY, USA, 1969)

This conclusion is correct, as far as the Pairing + Quadrupole Model is adopted.
However it may change, if the interaction differs from this one.



Questions were raised from experimental viewpoints ....

Eur. Phys. J. A (2019) 55: 15
DOIT 10.1140/epja/i2019-12665-x -ll;ll:lIsS?CL:jARLC)ngzNAL A
Review

“Stiff” deformed nuclei, configuration dependent pairing and the
3 and ~ degrees of freedom

J.F. Sharpey-Schafer':*, R.A. Bark?, S.P. Bvumbi®, T.R.S. Dinoko?, and S.N.T. Majola®:?

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 27 (2001) R1-R22 www.iop.org/Journals/jg  PII: S0954-3899(01)18337-4

TOPICAL REVIEW

Characterization of the 3 vibration and 07 states in
deformed nuclei

P E Garrett

And from empirical approaches....

P. Boutachkov, A. Aprahamian, Y. Sun, J.A. Sheikh & S. Frauendorf

The European Physical Journal A - Hadrons and Nuclei 15, 455-458 (2002)
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Furthermore, there have been microscopic approaches also,

where the description

(a)

Theory
Theoretical (MeV)

0.1F

x|

+ o . °s
2" Excitation Energies .' b I

7’
e

of excited bands are still a challenge.

0.1

1vr

Theory

Theoretical (MeV)

—
T

%%

—

Experimental (MeV') EXPel" ' men'l'

FIG. 20. Excitation
experiment [24].
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FIG. 19. (Color online) Excitation energy of the second J =2
excitation, comparing 352 nuclei. Experimental data are from
Ref. [24]. The 2j levels are marked with red color.
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between rotational levels of non-axial nuclei. Nucl. Phys. 12, 58

(1959).
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c. level energies and E2 properties of 166Er
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Which monopole interactions are relevant to triaxiality

A substantial effect can be expected from the following correlation

A single-particle orbit with large j (e.g. hy4,») can produce sizable triaxiality
(i.e., Q,), if the number of particles in the orbit is appropriate.

Proton single-particle orbit with large j , and neutron orbit with large j, are
coupled by the monopole interactions of the central and tensor forces, as it

occurs in the shell evolution.

triaxiality
e (Q)
mczg;l)l Y /—,0-0—1 heutron h9/2
proton hi12 —e-e—— el

j=l+% .
extra energy gain



Closely lying single-particle orbits of the same parity = axial symmetry

P2=0 B2>0
— h Y=OO
degenerate f5/29/2§
orbitals ng — :| #
R \d
1112 !
Qop=large
Q2=O
prolate

(axially-symmetric)
shape



Multi-axis rotation is always exciting |

Ayumu Hirano,
Gold medalist, 2022 Olympics

from NHK



