

Global ab initio calculations for exotic and heavy nuclei

Jason D. Holt TRIUMF, Theory Department ARIS 2023 June 7, 2023

Discovery, accelerate

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Major RIB Facilities Worldwide

Next-generation RIB facilities: unprecedented era of nuclear science

Thousands of new isotopes to be produced: How does our field maximize this opportunity?

RIUMF

Major RIB Facilities Worldwide

Next-generation RIB facilities: unprecedented era of nuclear science

Thousands of new isotopes to be produced: Meaningful interaction with theory!

RIUMF

ISOL + ind.

Major RIB Facilities Worldwide

Next-generation RIB facilities: unprecedented era of nuclear science

Thousands of new isotopes to be produced: **Meaningful interaction with theory!**

Role of theory

FAIR

Fast beam

GISOI

Motivation: robust predictions (with uncertainties) where no data exists

Interpretation: model independent, connect to underlying forces of nature

Ab Initio Approach to Nuclear Structure

Aim of modern nuclear theory: develop unified *first-principles* picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

$$H\psi_n = E_n\psi_n$$

Ab Initio Approach to Nuclear Structure

Aim of modern nuclear theory: develop unified first-principles picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

Chiral Effective Field Theory

- Consistent treatment of
- 2N, 3N, 4N, ... forces
- Electroweak physics

Quantifiable uncertainties

Interactions

1.8/2.0, N2LO_{GO}, N3LO_{LNL} (2.0/2.0, N4LO_{LNL}) **34 non-implausible**

Ab Initio Approach to Nuclear Structure

Aim of modern nuclear theory: develop unified *first-principles* picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

Ab Initio Approach to Nuclear Structure

Aim of modern nuclear theory: develop unified *first-principles* picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

Extends ab initio to scope of traditional nuclear shell model

Ab Initio Approach to Nuclear Structure

Aim of modern nuclear theory: develop unified *first-principles* picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

Methods Exact up to Truncations

Single-particle basis $e_{\max} = 2n + l$

Storage limits of 3N forces $e_1 + e_2 + e_3 \leq E_{3\max}$

Many-body operators: e.g., CCSD(T), IMSRG(2)

Progress of Ab Initio Theory Since 2010

2010: Limited capabilities for 3N forces; ¹⁶O heaviest

Tremendous progress in ab initio reach, largely due to polynomially scaling methods!

Major Questions in Nuclear Structure

Nuclear skins/halos/clusters

Limits of existence + formation/evolution of magic numbers

³H ⁴He ³H ⁴He ³H ⁴He ³H ⁴He ³H ³H ⁴He ³H ³H ⁴He ³H ³H ⁴He ⁴He ³H ⁴He ⁴He ⁴He ⁵H ⁵H

Heavy Nuclei + r-process

Continuum and nuclear reactions

Infinite matter/Neutron stars

Global Ab Initio Calculations: Proton/Neutron Driplines

Featured in Physics

Editors' Suggestion

Ab Initio Limits of Atomic Nuclei

S. R. Stroberg, J. D. Holt, A. Schwenk, and J. Simonis Phys. Rev. Lett. 126, 022501 – Published 12 January 2021

Physics See synopsis: Predicting the Limits of Atomic Nuclei

nitio Goes Global!

Long considered the domain of DFT or shell model

Ab initio calculations of ~700 nuclei from He to Fe!

Input Hamiltonians fit to A=2,3,4 – not biased towards known data

Apply to proton/neutron driplines separation energies?

rms deviation from experiment \rightarrow model for theoretical uncertainties

% TRIUMF Dripline Predictions to Medium Mass Region

Predictions of proton and neutron driplines from first principles

Known drip lines predicted within uncertainties (artifacts at shell closures)

Ab initio guide for neutron-rich driplines

Tremendous progress in ab initio reach, largely due to polynomially scaling methods!

Calculate essentially all properties all of nuclei... up to N, Z ~ 50 54 2022 50 Z=50 Key Limitation 46 42 **3NF matrix element storage** Z=40 -----38 $e_1 + e_2 + e_3 \le E_{3\max}$ 34 N=82 30 Z=28 Ν 26 22 Z=20 **2010** 18 2013 N=50 14 2016 10 2019 N=28 2022

Tremendous progress in ab initio reach, largely due to polynomially scaling methods!

Calculate essentially all properties all of nuclei... up to N, Z ~ 50 54 2022 50 Z=50 Key Limitation 46 42 **3NF matrix element storage** Z=40 ----38 $e_1 + e_2 + e_3 \le E_{3\max}$ 34 N=82 30 Ν Z=28 26 22 Z=20 **2010** 18 2013 N=50 14 2016 10 2019 $0\nu\beta\beta$ candidates N=28 2022 SD WIMP/v SI WIMP/v

Ν

Converged Calculations in Heavy Nuclei

Converged *ab initio* calculations of heavy nuclei

T. Miyagi, S. R. Stroberg, P. Navrátil, K. Hebeler, and J. D. Holt Phys. Rev. C **105**, 014302 – Published 3 January 2022

Ab Initio Calculations of Heavy Nuclei

Limited by typical memory/node: $e_1 + e_2 + e_3 \leq E_{3max}$

Convergence of N=82 Gap

Size of N=70 gap well converged at E_{3max}=28 for neutron-rich Sn, In, Cd!

Convergence in Heavy Nuclei: ²⁰⁸Pb

Previous limit, no hope of convergence in ²⁰⁸Pb g.s. energy...

Convergence in Heavy Nuclei: ²⁰⁸Pb

Previous limit, no hope of convergence in ²⁰⁸Pb g.s. energy

Improved $E_{3\max} = 18 \rightarrow 28$ clear convergence

First converged ab initio calculation of ²⁰⁸Pb!

Ab Initio Analysis: Neutron Skin of ²⁰⁸Pb Linked with neutron star properties

Atmosphere

Combine TRIUMF/ORNL/Chalmers advances!

I: History Matching confronted with A=2,3,4 data + ¹⁶O

10⁹ calculations spanning EFT parameter space at N²LO

34 non-implausible interactions

Combine TRIUMF/ORNL/Chalmers advances!

I: History Matching confronted with A=2,3,4 data + ¹⁶O

10⁹ calculations spanning EFT parameter space at N²LO

34 non-implausible interactions

II: Calibration use ⁴⁸Ca E/A, E(2⁺), R_p, dipole polarizability **Importance resampling – statistically weight interactions**

Combine TRIUMF/ORNL/Chalmers advances! I: History Matching confronted with A=2,3,4 data + ¹⁶O 10⁹ calculations spanning EFT parameter space at N²LO 34 non-implausible interactions

II: Calibration use ⁴⁸Ca E/A, E(2^+), R_p, dipole polarizability Importance resampling – statistically weight interactions

III: Validation ²⁰⁸Pb E/A, R_p + ⁴⁸Ca/²⁰⁸Pb DP from ab initio Clear quality description of data

Combine TRIUMF/ORNL/Chalmers advances! I: History Matching confronted with A=2,3,4 data + ¹⁶O 10⁹ calculations spanning EFT parameter space at N²LO 34 non-implausible interactions

II: Calibration use ⁴⁸Ca E/A, E(2^+), R_p, dipole polarizability Importance resampling – statistically weight interactions

III: Validation ²⁰⁸Pb E/A, R_p + ⁴⁸Ca/²⁰⁸Pb DP from ab initio Clear quality description of data

IV: Prediction - posterior predictive distribution for neutron skin^{E/A} R_{skin}(²⁰⁸Pb) = 0.14-0.20fm (68% credible level) Consistent(ish) with extracted PREXII result

Infinite Matter Equation of State

Explore correlations between finite nuclei and nuclear EOS

Use same 34 non-implausible interactions

Reveals correlation as seen in mean field models

L = 37-63 MeV

Constrain forces potentially from:

Neutron star radii/mergers

Mean field accommodates large range of skins

Tighter range from ab initio calculations

Recalibrating Ab Initio Progress

Rapid progress in ab initio reach, due to valence-space approach... up to...

Major Questions in Nuclear Structure

Limits of existence + formation/evolution of magic numbers

Nuclear radii/skins/halos/clusters

Heavy Nuclei + r-process

Continuum and nuclear reactions

Infinite matter/Neutron stars

Ab Initio Theory for r-process

Information for nuclei along N=126 necessary for third r-process abundance peak

Natural Orbital Basis (NAT) allows for rapid convergence

Ab Initio Theory for r-process

Information for nuclei along N=126 necessary for third r-process abundance peak

Natural Orbital Basis (NAT) allows for rapid convergence

Converged ground-state energies for Z=69-82

RIUMF

Ab Initio Theory for r-process

Information for nuclei along N=126 necessary for third r-process abundance peak

Natural Orbital Basis (NAT) allows for rapid convergence

Significant systematic differences from mass models for $S_{\rm p}$

Odd-even staggering of charge radii across Cu chain

Cu isotopes, odd-even staggering well reproduced

Ab initio competitive with DFT (fit to reproduce odd-even staggering)
TRIUMF Laser Spectroscopy: Charge Radii of Ni Isotopes

Study charge radii systematics across Ni isotopic chain

Nuclear Charge Radii of the Nickel Isotopes ${
m ^{58-68,70}Ni}$

S. Malbrunot-Ettenauer *et al.* Phys. Rev. Lett. **128**, 022502 – Published 14 January 2022

Multiple ab-initio methods largely agree within uncertainties

Ab initio (again) competitive/complementary with DFT

TRIUMF EM Moments in Neutron-Rich In Isotopes

Electromagnetic moments of entire In chain – sharp increase at N=82

Ab initio reproduces trends of new measurements Neglected physics: two-body meson-exchange currents

Nuclear moments of indium isotopes reveal abrupt change at magic number 82

	https://doi.org/10.1038/s41586-022-04818-7	A. R. Vernon ^{12,3^[2]} , R. F. Garcia Ruiz ^{24^[2]} , T. Miyagi ⁵ , C. L. Binnersley ¹ , J. Billowes ¹ , M. L. Bissell ¹ , J. Bonnard ⁶ , T. E. Cocolios ³ , J. Dobaczewski ^{6,7} , G. J. Farooq-Smith ³ , K. T. Flanagan ^{1,8} , G. Georgiev ⁹ , W. Gins ^{3,10} , R. P. de Groote ^{3,10} , R. Heinke ^{4,11} , J. D. Holt ^{5,12} , J. Hustings ³ , Á. Koszorús ³ , D. Leimbach ^{11,13,14} , K. M. Lynch ⁴ , G. Neyens ^{3,4} , S. R. Stroberg ¹⁵ , S. G. Wilkins ¹² , X. F. Yang ³¹⁶ & D. T. Yordanov ^{4,9}
	Received: 10 June 2021	
	Accepted: 28 April 2022	
	Published online: 13 July 2022	

Two-Body Currents for Gamow-Teller Transitions and g_A Quenching

LETTERS https://doi.org/10.1038/s41567-019-0450-7

nature physics

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

P. Gysbers^{1,2}, G. Hagen^{3,4*}, J. D. Holt¹, G. R. Jansen^{3,5}, T. D. Morris^{3,4,6}, P. Navrátil¹, T. Papenbrock^{3,4}, S. Quaglioni¹, A. Schwenk^{8,9,10}, S. R. Stroberg^{1,11,12} and K. A. Wendt⁷

Beta-Decay "Puzzle": Quenching of g_A

∂TRIUMF

Long-standing problem in weak decays: experimental values systematically smaller than theory $M_{\rm GT} = g_A \langle f | \mathcal{O}_{\rm GT} | i \rangle \ \mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$ Using $g_A^{\mathrm{eff}} pprox 0.77 imes g_A^{\mathrm{free}}$ agrees with data π T(GT) 1.0 Missing Wavefunction correlationsEFFECTIVE FREE-NUCLEON 8.0 Renormalized VS operator? EXPERIMENT 0.6 Naglected two-body currents? 0.4 Model-space truncations? ۲ 0.2 Large M_{GT} **Explore in ab initio framework** in sd-shel 0.0 .2 0.6 0.8 0.8 0.4 THEORY Brown, Wildenthal (1985)

TRIUMF Large-Scale Efforts for Ab Initio GT Transitions

Calculate large GT matrix elements

$$M_{\rm GT} = g_A \left\langle f | \mathcal{O}_{\rm GT} | i \right\rangle$$
$$\mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Range of NN+3N forces
- Consistent inclusion of 2BC

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

∂TRIUMF

Solution to g_A-Quenching Problem

VS-IMSRG calculations throughout sd and pf shells

Ab initio calculations across the chart explain data with unquenched g_A Refine results: improvements in forces and many-body methods

∂TRIUMF

Complete GT Picture: Light to ¹⁰⁰Sn

Ab initio calculations throughout sd and pf shells

Ab initio calculations across the chart explain data with unquenched g_A Including p-shell: q=0.99(21)

∂TRIUMF

Impact of Two-Body M1 Currents

Ab initio calculations throughout the nuclear chart

Including 2bc consistent with input forces

sp limit X **₩** $^{17}O(5/2_{1}^{+})$ μ_{1B} $\mu_{1B} + \mu_{2B}$ Q $^{17}F(5/2_1^+)$ Exp. Х ³⁷Cl(3/2⁺₁) Ο \star Х ³⁹K(3/2⁺₁) \star **P** ³⁷Ca(3/2⁺₁) **≁**× □ ³⁹Ca(3/2⁺₁) Q $^{41}Ca(7/2_{1}^{-})$ $^{41}Sc(7/2_{1}^{-})$ **V** Х ⁵⁵Ni(7/2₁⁻) ¹³¹In(9/2⁺₁) ¹³³Sb(7/2⁺₁) \mathbf{X} 0 \star 207 TI(1/2⁺₁) X ²⁰⁹Bi(9/2₁⁻) -1.0-0.50.0 0.5 $\mu_{calc.} - \mu_{exp.}$

 μ_{exp}

T. Miyagi et al, in prep.

∂TRIUMF

Applications to Searches for BSM Physics

Neutrinoless double beta decay

Dark matter direct detection

Superallowed Fermi transitions

Neutrino scattering

Symmetry-violating moments

Atomic theory

Nuclear Structure/Astrophysics

Development of forces and currents Ab initio to ²⁰⁸Pb: neutron skin, r-process Dripline predictions to medium-masses Evolution of magic numbers:

masses, radii, spectra, EM transitions Multi-shell theory:

Islands of inversion, forbidden decays Nuclear EOS/Neutron star properties Atomic systems

McGill UNIVERSITY *T. Miyagi, B. S. Hu, L. Jokiniemi*

A. Belley, I. Ginnett, C. G. Payne

M. Bruneault, J. Padua S. Leutheusser

E. Love

K. Evidence, D. Kush

G. Tenkila, H. Patel, V. Chand

B. Wong, X. Cao

S. R. Stroberg N. Vassh

Present and Future for Ab Initio Theory

Fundamental Symmetries/BSM Physics

EW operators: GT quenching, muon capture 0vββ **decay matrix elements + DGT/ECEC/Dg WIMP-Nucleus scattering for dark matter detection Coherent elastic neutrino-nucleus scattering Superallowed Fermi transitions**

Symmetry-violating moments: EDM, anapole, Schiff

Work in progress

Higher-order many-body physics: IMSRG(3) Monte Carlo shell model diagonalization Extension to superheavy nuclei

Confrontation with R_{skin} of ⁴⁸Ca

Newly extracted neutron skin in ⁴⁸Ca

Use same 34 interactions – predictions in good agreement with CREX result

Constraints on Nuclear Symmetry Energy Parameters J. Lattimer (2023)

Neutrinoless Double Beta Decay NMEs for Major Players: ⁷⁶Ge, (¹⁰⁰Mo), ¹³⁰Te, ¹³⁶Xe

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of $^{48}\mathrm{Ca}$

J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, and H. Hergert Phys. Rev. Lett. **124**, 232501 – Published 11 June 2020

Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for ${}^{48}Ca$, ${}^{76}Ge$, and ${}^{82}Se$

A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, and J. D. Holt Phys. Rev. Lett. **126**, 042502 – Published 29 January 2021

Coupled-Cluster Calculations of Neutrinoless Double-eta Decay in ${
m ^{48}Ca}$

S. Novario, P. Gysbers, J. Engel, G. Hagen, G. R. Jansen, T. D. Morris, P. Navrátil, T. Papenbrock, and S. Quaglioni Phys. Rev. Lett. **126**, 182502 – Published 7 May 2021

Current Status of NMEs

Calculations to date from phenomenological models; large spread in results

Compiled values from: Engel and Menéndez (2017); Brase et al, PRC (2022)

All models missing essential physics: correlations, single-particle levels, two-body currents **Address with ab initio theory**

Ab Initio Predictions in Heavy Nuclei

Converged NMEs for major players in global searches: ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe

∂TRIUMF

Ab Initio Predictions in Heavy Nuclei

Converged NMEs for major players in global searches: ⁷⁶Ge, ¹⁰⁰Mo ¹³⁰Te, ¹³⁶Xe

Ab initio results: differences from models; large NMEs strongly disfavored

Belley et al, in prep

% TRIUMF Impact of Ab Initio NMEs on Worldwide Searches

Impact for next-generation searches: Large matrix elements disfavored, lowers expected rates Current experimental reach – improved with effects of contact term,

Not the end of the story: estimate three-body corrections + two-body currents

TRIME Stategy III. Correlation with Structure Observables

⁷⁶Ge: Explore correlations with other observable incomession systematic analysis (34 interactions)

Few clear correlations, except DGT

Maybe with first excited 2⁺ states?

RIUMF

MM-DGP Emulator: Sensitivity Analysis

Explore correlations with other observables from systematic analysis (34 interactions)

Similar sensitivity as found in ²⁰⁸Pb study!

Highly sensitive to C1S0 – possible correlation with ¹S₀ phase shift (observable!)

Explore correlations with ¹S₀ phse shift from 34 non-implausible interactions

Long-range component in ⁴⁸Ca

Explore correlations with ¹S₀ phse shift from 34 non-implausible interactions

Long-range component in ⁴⁸Ca, ⁷⁶Ge

Explore correlations with ¹S₀ phse shift from 34 non-implausible interactions

Long-range component in ⁴⁸Ca, ⁷⁶Ge, ¹³⁰Te

Explore correlations with ¹S₀ phse shift from 34 non-implausible interactions

Long-range component in ⁴⁸Ca, ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe

TRIME Stategy III: Correlation with Structure Observables

Explored prrelations in other object ables from the ternatic analysis (34 interactions)

Few clear correlations, except DGT in VC

Now clear correlation with **measured** ¹S₀ phase shift!

∂TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \dots$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress

Step 1: Decouple core

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

 $|\Phi_0\rangle = |^{16}O\rangle$

Step 1: Decouple core Step 2: Decouple valence space

Can we achieve accuracy of large-space methods?

$$\langle \tilde{\Psi}_n | P \tilde{H} P \mid \tilde{\Psi}_n \rangle \approx \langle \Psi_i | H | \Psi_i \rangle$$

∂TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$

$$\tilde{H} = e^{\Omega}He^{-\Omega} = H + [\Omega, H] + \frac{1}{2} \left[\Omega, [\Omega, H]\right] + \cdots$$

$$\tilde{\mathcal{O}} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2} \left[\Omega, [\Omega, \mathcal{O}]\right] + \cdots$$

$$\text{Step 1: Decouple core}$$

$$\text{Step 2: Decouple valence space}$$

$$\text{Step 3: Decouple additional operators}$$

$$\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | H | \Psi_i \rangle$$

$$\langle \tilde{\Psi}_n | P\tilde{M}_{0\nu}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\text{Careful benchmarking essential}$$

$\langle P H P\rangle$	$\langle P H Q\rangle \to 0$
$\langle Q H P angle ightarrow 0$	$\langle Q H Q angle$

Strategy IIIb: Sensitivity Analysis

Explore dependence on chiral EFT LECs: requires many samples (as in ²⁰⁸Pb)

Use gaussian processes as an emulator

Multi-Fidelity Gaussian Process: connects few (complicated) high-fidelity data points (eg, full IMSRG) w/ many low-fidelity data points (HF, low e_{max}, etc)

 $k_{inputs} \otimes k_{outputs}$

Difference function fit with Gaussian process: predict HF from LF

When relation between LF and HF is complicated, MFGP fails

Strategy IIIb: Sensitivity Analysis

Explore dependence on chiral EFT LECs: requires many samples (as in ²⁰⁸Pb)

Use gaussian processes as an emulator

Multi-Fidelity Gaussian Process: connects few (complicated) high-fidelity data points (eg, full IMSRG) w/ many low-fidelity data points (HF, low e_{max}, etc)

Difference function fit with Gaussian process: predict HF from LF

Deep Gaussian Process: Neural network links multiple GP

Include outputs of previous fidelity as new HF point: Improves modeling of difference between LF and HF

Adapted for multi output: Multi-Output Multi-Fidelity Deep Gaussian Process (MM-DGP)

Belley Pitcher et al., in preparation

∂TRIUMF

MM-DGP Emulator: Ground-State Energies

Testing MM-DGP: use delta-full chiral EFT at N2LO

Improved energy predictions with high-fidelity training points

Belley, Pitcher et al. in prep.

RIUMF

MM-DGP Emulator: 0vββ-Decay

Testing MM-DGP: use delta-full chiral EFT at N2LO

Improved energy predictions with high-fidelity training points

Belley, Pitcher et al. in prep.