

FRIB and the Neutron-Rich Mg Isotopes

Heather Crawford

Nuclear Science Division Lawrence Berkeley National Laboratory

FRIB and the Neutron-Rich Mg Isotopes (and ²⁵F)

Heather Crawford

Nuclear Science Division Lawrence Berkeley National Laboratory

Outline

- Introduction
- Toward the driplines above Z = 12 the first FRIB experiment
- Future plans in ⁴⁰Mg
- The unexpected core of ²⁵F
- Summary

The Science: Nuclear Landscape and Big Questions

- How did visible matter come into being and how does it evolve?
- How does subatomic matter organize itself and what phenomena emerge?
- Are the fundamental interactions that are basic to the structure of matter fully understood?

 How can the knowledge and technological progress provided by nuclear physics best be used to benefit society?

The Science: Nuclear Landscape and Big Questions

- How did visible matter come into being and how does it evolve?
- How does subatomic matter organize itself and what phenomena emerge?
- Are the fundamental interactions that are basic to the structure of matter fully understood?

 How can the knowledge and technological progress provided by nuclear physics best be used to benefit society?

Even at 10kW power (Year 1/2) 'new' isotopes will be accessible to study

Current and Upcoming Facilities

FRIB will Enable Discovery

- FRIB's key feature is 400 kW beam power
 - 8 p μ A or 5 x 10¹³ ²³⁸U /s
 - 42 p μ A or 2.6 x 10¹⁴ ⁴⁸Ca /s
- Experiments with fast (200 MeV/u), stopped (trapped), and reaccelerated beams (0.6 to 10 MeV/u)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - Beams of all elements and short half-lives
- Isotope harvesting capability from beam dump water)

Outline

- Introduction
- Toward the driplines above Z = 12 the first FRIB experiment
- Future plans in ⁴⁰Mg
- The unexpected core of ²⁵F
- Summary

⁴⁰Mg: The Intersection Point

How is the nucleus affected by weak binding and neutron excess?

Explore properties of weakly bound nuclei and ask what happens in the transition from wellbound to weakly-bound "open" systems

Neutron number -

Moving south from ⁴⁸Ca, removal of protons leads to development of collectivity, and rapid **shape evolution** (and coexistence) as a function of proton number

Shell Evolution

T=0 (spin-isospin) interaction

Tensor force

T=1 pairing correlations

low I levels (s, p) → extended wavefunctions ("halos")

Weak Binding

- changes in pairing due to surface diffuseness
 valence nucleons can become decoupled from the core
- coupling to continuum states

Limits of Stability: Halo Nuclei

Weak Binding Phenomena

- Currently we know of examples of weak binding and delocalized wavefunctions giving rise to nuclear halos
- When we do have halo structures then what is the nature of the valence-core interaction?

Do the delocalized, weakly bound nucleons

- decouple from the core and/or
- couple to the continuum?

⁴⁰Mg: The Intersection Point

Pushing Toward the Neutron Dripline – Z=12 and beyond

Decay studies with the FRIB Decay Station Initiator (FDSi)

- FDSi enables total decay spectroscopy, with γ , particle and neutron spectroscopy
- Combination with MTAS or SuN further extends the physics

FRIB Decay Station Initiator (FDSi)

First Results from FRIB

E21062: Decay Near N=28 (Allmond, Crawford, Crider, Grzywacz, Tripathi)

5 isotopes with no published half-life information were measured, with improved half-life values provided for numerous additional species

First Results from FRIB

- Half-life systematics were extended the Mg, Al, Si and P chains
- Overall agreement with available shell model calculations is consistent with a well-developed region of deformation
- Clear evidence for erosion of Z=14 subshell closure
- Intriguing reduction in the half-life for ³⁸Mg still awaiting theoretical values

PHYSICAL REVIEW LETTERS 129, 212501 (2022)

ditors' Suggestion Featured in Physics

Crossing N = 28 Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB

H. L. Crawford⁶,^{1,*} V. Tripathi,² J. M. Allmond,³ B. P. Crider,⁴ R. Grzywacz,⁵ S. N. Liddick,^{6,7} A. Andalib,^{6,8} E. Argo,^{6,8}
C. Benetti,² S. Bhattacharya,² C. M. Campbell,¹ M. P. Carpenter,⁹ J. Chan,⁵ A. Chester,⁶ J. Christie,⁵ B. R. Clark,⁴ I. Cox,⁵
A. A. Doetsch,^{6,8} J. Dopfer,^{6,8} J. G. Duarte,¹⁰ P. Fallon,¹ A. Frotscher,¹ T. Gaballah,⁴ T. J. Gray,³ J. T. Harke,¹⁰ J. Heideman,⁵
H. Heugen,⁵ R. Jain,^{6,8} T. T. King,³ N. Kitamura,⁵ K. Kolos,¹⁰ F. G. Kondev,⁹ A. Laminack,³ B. Longfellow,¹⁰ R. S. Lubna,⁶
S. Luitel,⁴ M. Madurga,⁵ R. Mahajan,⁶ M. J. Mogannam,^{6,7} C. Morse,¹¹ S. Neupane,⁵ A. Nowicki,⁵ T. H. Ogunbeku,^{4,6}
W.-J. Ong,¹⁰ C. Porzio,¹ C. J. Prokop,¹² B. C. Rasco,³ E. K. Ronning,^{6,7} E. Rubino,⁶ T. J. Ruland,¹³ K. P. Rykaczewski,³
L. Schaedig,^{6,8} D. Seweryniak,⁹ K. Siegl,⁵ M. Singh,⁵ S. L. Tabor,² T. L. Tang,² T. Wheeler,^{6,8} J. A. Winger,⁴ and Z. Xu⁵

Next Steps Along Z=12

⁴⁰Mg reaction cross-section and mass measurement

First spectroscopy in ⁴⁰Mg shows a surprising structure – could the spectrum be evidence of weak binding / halo structure?

- A total reaction cross-section measurement will answer the question of whether there is a halo or not
- With a TOF mass measurement, the 2n separation energy can be established also constrains Q_{β}
- Revisit the prompt spectroscopy

GRETA

- GRETA will have 30 Quad Detector Modules to cover >80% of the full solid angle surrounding a target
- Its design provides the unprecedented combination of full solid angle coverage and high efficiency, excellent energy and position resolution, and good background rejection (peak-to-total) needed to carry out a large fraction of the nuclear science programs at FRIB.
- Unmatched resolving power will enable further push to the driplines and other spectroscopic frontiers
- On track for delivery to FRIB in the first half of 2025

FRIB + GRETA + Extended Proton Tracking Target to Access ⁴⁰Mg

Summary

- First experiments at FRIB have already pushed toward the dripline in the region of ⁴⁰Mg
- 5 new β-decay half-lives extend the systematics in the key region of the nuclear chart around N=28 and the neutron dripline
- Upcoming approved experiments will directly probe ⁴⁰Mg to provide insight into any potential halo structure

Outline

- Introduction
- Toward the driplines above Z = 12 the first FRIB experiment
- Future plans in ⁴⁰Mg
- The unexpected core of ²⁵F
- Summary

Motivation

- Light nuclei remain key to providing the most stringent tests for ۰ state-of-the art theory
- The neutron-rich F and O isotopes are particularly interesting with the addition of a single proton modifying substantially the location of the dripline
- An interesting question is the O core of the F ۰ isotope(s) the same as the corresponding "bare" O nucleus?
- Proton knockout from F into O allows a direct ۰ measure of the wavefunction overlap between the F ground state and the ground and excited states in O

²⁵F(p,2p) Performed at RIBF

PHYSICAL REVIEW LETTERS 124, 212502 (2020)

How Different is the Core of ²⁵F from ²⁴O_{g.s.}?

T. L. Tang[•],^{1,2,*} T. Uesaka[•],² S. Kawase[•],^{1,†} D. Beaumel,³ M. Dozono,² T. Fujii,¹ N. Fukuda,² T. Fukunaga,⁴ A. Galindo-Uribarri,⁵ S. H. Hwang,^{6,‡} N. Inabe,² D. Kameda,² T. Kawahara,⁷ W. Kim,⁶ K. Kisamori,¹ M. Kobayashi,¹ T. Kubo,² Y. Kubota,^{1,§} K. Kusaka,² C. S. Lee,¹ Y. Maeda,⁸ H. Matsubara[•],^{2,|§} S. Michimasa,¹ H. Miya,¹ T. Noro,⁴ A. Obertelli,^{2,9,§} K. Ogata[•],^{10,11} S. Ota,¹ E. Padilla-Rodal[•],¹² S. Sakaguchi[•],⁴ H. Sakai,² M. Sasano,² S. Shimoura[•],¹ S. S. Stepanyan,⁶ H. Suzuki,² M. Takaki,¹ H. Takeda,² H. Tokieda,¹ T. Wakasa,⁴ T. Wakui,^{13,¶} K. Yako,¹ Y. Yanagisawa,² J. Yasuda,⁴ R. Yokoyama,¹ K. Yoshida,² K. Yoshida,^{10,**} and J. Zenihiro²

- The structure of ²⁵F was investigated at RIBF, RIKEN Nishina Center, using the SHARAQ spectrometer, using the (p,2p) quasifree scattering reaction at 270 MeV/nucleon
- Spectroscopic factors were quoted as: 0.36(13) for (²⁵F, ²⁴O), while shell model predicts a value close to 1.

Experiment E16022

D

- Proton knockout from ²¹⁻²⁵F into ²⁰⁻²⁴O respectively was performed at the NSCL Coupled Cyclotron Facility
- Primary beam of ⁴⁸Ca was used to produce F secondary beams; knockout was performed on a secondary Be target at the S800 target position
- S800 spectrometer allowed detection of the O reaction residues, in coincidence with γ-detection in 10 Quad modules of GRETINA surrounding the target position
 - Key for light nuclei -- knockout reactions were performed well above the threshold energy for valid application eikonal reaction theory to describe the process

Results – The Case of ²⁵F(-1p)²⁴O

 Parallel momentum distribution is consistent with removal of d-wave (*l*=2) proton; inclusive direct KO cross-section of 3.63(5)_{stat} mb, giving a spectroscopic factor of σ_{exp}/σ_{th} = 0.23(1).

With no bound excited states in ²⁴O, the observed inclusive cross-section for this knockout reaction is the ground-state to ground-state transition

Is the ²⁴O Core in ²⁵F *really* ²⁴O?

- No all available experimental evidence suggests the ²⁵F ground-state includes significant contributions from excited ²⁴O wavefunction components
- In a shell-model description, one can reproduce the experimental result(s) by modifying the SPE of the d_{3/2} orbital, reducing it by 3-4 MeV – a change potentially attributed to the pn interaction
- Alternatively, the Nilsson + particle-rotor model (PRM) can naturally reproduce the experimental data

- ²⁵F is well-described as the coupling of a proton d_{5/2} Nilsson multiplet to an effective core of moderate ($\varepsilon_2 \sim 0.15$) deformation, giving rise to a decoupled band structure
- Observed ²⁵F(-1p)²⁴O cross-section results from fragmentation of strength due to deformation and reduced core overlap

Tang *et al.*, Phys. Rev. Lett. **124**, 212502 (2020). Macchiavelli *et al.*, Phys. Rev. C **102**, 041301(R) (2020).

Acknowledgements

PHYSICAL REVIEW LETTERS 129, 212501 (2022)

Editors' Suggestion Featured in Physics

Crossing N = 28 Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB

H. L. Crawford, ^{1,*} V. Tripathi, ² J. M. Allmond, ³ B. P. Crider, ⁴ R. Grzywacz, ⁵ S. N. Liddick, ^{6,7} A. Andalib, ^{6,8} E. Argo, ^{6,8} C. Benetti,² S. Bhattacharya,² C. M. Campbell,¹ M. P. Carpenter,⁹ J. Chan,⁵ A. Chester,⁶ J. Christie,⁵ B. R. Clark,⁴ I. Cox,⁵ A. A. Doetsch,^{6,8} J. Dopfer,^{6,8} J. G. Duarte,¹⁰ P. Fallon,¹ A. Frotscher,¹ T. Gaballah,⁴ T. J. Gray,³ J. T. Harke,¹⁰ J. Heideman,⁵ H. Heugen,⁵ R. Jain,^{6,8} T. T. King,³ N. Kitamura,⁵ K. Kolos,¹⁰ E. G. Kondev,⁹ A. Laminack,³ B. Longfellow,¹⁰ R. S. Lubna,⁶
 S. Luitel,⁴ M. Madurga,⁵ R. Mahajan,⁶ M. J. Mogannam,^{6,7} C. Morse,¹¹ S. Neupane,⁵ A. Nowicki,⁵ T. H. Ogunbeku,⁴⁶
 W.-J. Ong,¹⁰ C. Porzio,¹ C. J. Prokop,¹² B. C. Rasco,³ E. K. Ronning,^{6,7} E. Rubino,⁶ T. J. Ruland,¹³ K. P. Rykaczewski,³
 L. Schaedig,^{6,8} D. Seweryniak,⁹ K. Siegl,⁵ M. Singh,⁵ S. L. Tabor,² T. L. Tang,² T. Wheeler,^{6,8} J. A. Winger,⁴ and Z. Xu⁵ ¹Nuclear Science Division, Lawrence Berkelev National Laboratory, Berkelev, California 94720, USA ²Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁴Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, USA ⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA ⁶Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA ⁷Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA ⁸Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁹Argonne National Laboratory, Argonne, Illinois 60439, USA ¹⁰Lawrence Livermore National Laboratory, Livermore, California 94550, USA ¹¹Brookhaven National Laboratory, Upton, New York 11973, USA ¹²Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ¹³Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

PHYSICAL REVIEW C 106, L061303 (2022)

Letter

Core of 25 F studied by the 25 F(-*p*) proton-removal reaction

H. L. Crawford ^{1,*} M. D. Jones, ^{1,2} A. O. Macchiavelli, ^{1,3} P. Fallon, ¹ D. Bazin ^{0,4} P. C. Bender ^{0,4,†} B. A. Brown ^{0,4,5} C. M. Campbell, ¹ R. M. Clark, ¹ M. Cromaz, ¹ B. Elman, ^{4,5} A. Gade, ^{4,5} J. D. Holt, ⁶ R. V. F. Janssens, ² I. Y. Lee ^{0,1}
B. Longfellow, ^{4,5,‡} S. Paschalis ^{0,7} M. Petri ^{0,7} A. L. Richard ^{0,4,‡} M. Salathe, ¹ J. A. Tostevin ^{0,8} and D. Weisshaar ^{0,4}
¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
²Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559-3255, USA and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708-0308, USA
³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁴National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
⁵Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
⁸Department of Physics, University of Survey, Guildford, Surrey GU2 7XH, United Kingdom

Office of Science

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).

Thank you!

²⁵F in a Particle-Vibration Coupling Description

Alternatively, given the small deformation of the effective ²⁴O core in the PRM calculation, a description of ²⁵F as a d_{5/2} proton coupled to a quadrupole phonon of frequency $\hbar\omega_2$ (in the effective core)

Parameter	$^{24}\mathrm{O}$	$^{24}O^{*}$
$\hbar\omega_2[MeV]$	4.7	3.2
$C_2[MeV]$	204	140
$B(E2) \ [e^2b^2]$	0.0012	0.0055

- In this description, the effective ²⁴O core is 'softened' and made more collective in ²⁵F
- The coupling of the phonon to the singleparticle state and the renormalization accounts well for the observed cross-section values

Macchiavelli et al., to be published.

The Key Role of Theory

There has been and continues to be active development in theory toward the goal to "develop a predictive understanding of nuclei and their interactions grounded in fundamental QCD and electroweak theory".

"New measurements drive new theoretical and computational efforts which, in turn, uncover new puzzles that trigger new experiments."

"A strong interplay between theoretical research, experiment, and advanced computing is essential for realizing the full potential of ... discoveries."

Progress relies on understanding which measurements can best inform a given theory or approach – close collaboration through analysis and publication will maximize science output and impacts in nuclear structure.

N=20 Island of Inversion

N=28 Evolution of Nuclear Shapes

Z=12 'Peninsula' of Inversion

