

Marco Rocchini **INFN - Istituto Nazionale di Fisica Nucleare FIRENZE DIVISION**

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ⁷⁴Zn: Suggestion for a Northern Extension of the N = 40 Island of Inversion

Marco Rocchini **INFN - Istituto Nazionale di Fisica Nucleare FIRENZE DIVISION**

Guelph, Ontario, Canada

Islands of Inversion

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

lols: Regions of the nuclide chart in which the energy gained through correlations (*e.g.*, quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states

Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence

4 lols identified: N = 8, 20, 28, 40

1 new lol theorised at N = 50F. Nowacki et al., PRL 117, 272501 (2016)

10C 11C 12C °C °C ъС 7B 8B ⁶Be 7Be ⁸Ee ⁹Be ¹⁰Ee ¹¹Be ¹²Be 14Be 15Be 15Be ^sLi ^sLi ⁷Li ⁸Li N = 8

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

lols, Shape **Coexistence and** Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

lols: Regions of the nuclide chart in which the energy gained through correlations (*e.g.*, quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states

Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence

4 lols identified: N = 8, 20, 28, 40

1 new lol theorised at N = 50F. Nowacki et al., PRL 117, 272501 (2016)

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

Islands of Inversion

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

- lols: Regions of the nuclide chart in which the energy gained through correlations (*e.g.*, quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: N = 8, 20, 28, 40
- 1 new lol theorised at N = 50°C | °C F. Nowacki et al., PRL 117, 272501 ⁵He ⁶He ⁷He ⁸He (2016)

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

lols: Regions of the nuclide chart in which the energy gained through correlations (*e.g.*, quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states

Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence

4 lols identified: N = 8, 20, 28, 40

1 new lol theorised at N = 50F. Nowacki et al., PRL 117, 272501 (2016)

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

lols, Shape **Coexistence and** Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

																	N	= {	50																
	Z = 50											99Sn	™Sn	¹⁰¹ Sn	¹⁰² Sn	103Sn	¹⁰⁴ Sn	105Sn	106Sn	¹⁰⁷ Sn	¹⁰⁸ Sn	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115Sn 1	usSn ≀	¹¹⁷ S					
	⁹⁶ In ⁹⁷ I										⁹⁷ In	seIn	^{se} In	100In	¹⁰¹ In	¹⁰² In	103In	¹⁰⁴ In	¹⁰⁵ In	105In	¹⁰⁷ In	¹⁰⁸ In	¹⁰⁹ In	110In	111In	112In	113In	114In	¹¹⁵ In	116 I					
	a⊲Cq a⊵Cq a∈0										96Cd	97Cd	**Cd	∾Cd	100Cd	101 Cd	102Cd	103 Cd	¹⁰⁴Cd	105Cd	106Cd	107 Cd	106 Cd	109Cd	™Cd	⊡Cd	¹¹² Cd	^{⊥3} Cd ³	⊴•Cd ≀	1150					
	92Ag 93Ag 94Ag 95A										⁹⁵ Ag	⁹⁶ Ag	⁹⁷ Ag	≪Ag	∞Ag	¹⁰⁰ Ag	¹⁰¹ Ag	102 Ag	¹⁰³ Ag	¹⁰⁴ Ag	¹⁰⁵ Ag	106 Ag	¹⁰⁷ Ag	¹⁰⁸ Ag	™Ag	110 Ag	111Ag	⊡2Ag 1	¹³ Ag ¹	u∗A					
												90Pd	91Pd	22Pd	⁹³ Pd	^{s₄} Pd	⁹⁵ Pd	96Pd	97Pd	98Pd	⁹⁹ Pd	100Pd	101Pd	102Pd	103Pd	¹⁰⁴ Pd	¹⁰⁵ Pd	¹⁰⁶ Pd	¹⁰⁷ Pd	¹⁰⁸ Pd	¹⁰⁹ Pd	110Pd	¹¹¹ Pd 1	¹¹² Pd	изр
											≋Rh	®Rh	90Rh	⁰¹Rh	92Rh	93Rh	24Rh	⁰⁵Rh	≌Rh	97Rh	98Rh	99Rh	100Rh	101Rh	102Rh	103Rh	⁼º⁴Rh	¹⁰⁵Rh	106Rh	107Rh	108Rh	100Rh (^{i≞o} Rh∛	.≕Rh‡	112R
									⁸⁵ Ru	⁸⁶ Ru	87Ru	≋Ru	⁸⁹ Ru	90Ru	⁰¹Ru	92Ru	93Ru	⁰⁴Ru	⁰⁵Ru	≌Ru	97Ru	98Ru	99Ru	100Ru	¹⁰¹ Ru	¹⁰² Ru	¹⁰³ Ru	¹⁰⁴ Ru	¹⁰⁵ Ru	106Ru	107 Ru	¹⁰⁸ Ru	¹⁰⁹ Ru ³	¹⁰ Ru ³	шR
								⁶⁰ TC	⁶⁴ TC	85 T C	80TC	87TC	86TC	89TC	90TC	этТС	92TC	93TC	s₄⊥c	95TC	90TC	°7TC	98TC	⁹⁹ Tc	100TC	¹⁰¹ TC	¹⁰² TC	103TC	104TC	¹⁰⁵ TC	106TC	107 T C	108 T C 3	109TC	1107
							ª±Mo	⁵²Mo	оМ ^{са}	84Mo	⁶⁵ Mo	^{as} Mo	⁸⁷ Mo	^{ss} Mo	^{se} Mo	90Moe	⁹¹ Mo	⁹² MO	93Mo	⊶Мо	∘sMo	≌⁰Mo	⁹⁷ Mo	96Mo	оМее	100Mo	¹⁰¹ Mo	¹⁰² Mo	¹⁰³ Mo	104Mo	¹⁰⁵ Mo	¹⁰⁶ Mo ¹	.07Mo1	.09M01	.09 М
						²⁹ Nb	^{so} Nb	⁸¹ Nb	⁸² Nb	^{a3} Nb	^{a1} Nb	^{as} Nb	⁸⁶ Nb	⁸⁷ Nb	88Nb	⁸⁹ ND	90Nb	^{s1} Nb	⁹² Nb	s₃Nb	91Nb	95Nb	96Nb	92Nb	98Nb	^{aa} Nb	100ND	¹⁰¹ Nb	¹⁰² Nb	¹⁰³ Nb	104 Nb	105ND	^{roe} NP ¹	. ^{oz} Nb ^a	108 N
					²² Zr	²⁸ Zr	⁷⁹ Zr	⁹⁰ Zr	⁸¹ Zr	⁸² Zr	83Zr	84Zr	^{es} Zr	®Zr	⁸⁷ Zr	⁹⁸ Zr	⁹⁹ Zr	90Zr	91Zr	92Zr	⁹³ Zr	⁹⁴ Zr	⁰5Zr	⁹⁶ Zr	⁹⁷ Zr	^{se} Zr	99Zr	¹⁰⁰ Zr	¹⁰¹ Zr	¹⁰² Zr	¹⁰³ Zr	¹⁰⁴ Zr	¹⁰⁵ Zr ³	¹⁰⁶ Zr ³	107 <u>7</u>
				25Y	76Y	<i>"</i> γ	78 Y	79Y	80γ	81 Y	82 Y	83 Y	84 Y	85Y	86Y	87 Y	seY	sэY	Ρoe	91 Y	92 Y	93Y	94 Y	95Y	96 Y	97Y	98Y	99 Y	100 Y	101Y	102 Y	103 Y	104 Y	105 Y	106
			73Sr	²⁴ Sr	⁷⁵ Sr	™Sr	"'Sr	78Sr	⁷⁹ Sr	⁸⁰ Sr	81 S r	82Sr	⁸³ Sr	⁸⁴ Sr	*Sr	°⁰Sr	87Sr	ööSr	89Sr	⁰⁰Sr	⁹¹ Sr	92Sr	93Sr	s +S r	⁹⁵ Sr	^{se} Sr	97Sr	98Sr	⁹⁹ Sr	¹⁰⁰ Sr	¹⁰¹ Sr	¹⁰² Sr	103 Sr 3	™Sr	1055
		71Rb	72Rb	73Rb	74Rb	⁷⁵ Rb	76Rb	77Rb	78Rb	⁷⁹ Rb	®Rb	⁸¹ Rb	⁸² Rb	⁸³ Rb	⁸⁴ Rb	85Rb	85Rb	⁸⁷ Rb	≋Rb	®Rb	90Rb	91 R b	92Rb	⁹³ Rb	94Rb	95Rb	96Rb	97Rb	98Rb	^{ss} Rb	™Rb	101Rb (.02Rb 1	.03 R b 1	104R
≋Kr	⁶⁹ Kr	⁷⁰ Kr	^{7⊥} Kr	72Kr	⁷³ Kr	²⁴Kr	⁷⁵ Kr	⁷⁶ Kr	77 K r	⁷⁸ Kr	⁷⁹ Kr	⁵⁰Kr	⁶¹ Kr	⁸² Kr	⁸³ Kr	⁸⁴ Kr	⁸⁵ Kr	≋Kr	⁸⁷ Kr	⁸⁸ Kr	[⊗] Kr	%Kr	⁹⁴ Kr	92Kr	⁰³Kr	⁹⁴ Kr	⁰⁵Kr	96Kr	97Kr	98Kr	⁰⁰Kr	™Kr	¹⁰¹ Kr		
7Br	68Br	69Br	⁷⁰ Br	²¹ Br	⁷² Br	⁷³ Br	74Br	75Br	⁷⁶ Br	77Br	⁷⁸ Br	⁷⁹ Br	^{so} Br	^{≋∎} Br	82Br	³³Br	⁸⁴ Br	₿SBr	≋sBr	⁸⁷ Br	⁸⁸ Br	89Br	90Br	⁹¹ Br	92Br	⁹³ Br	94Br	95Br	96Br	97Br	⁹⁸ Br				
6Se	67Se	₅₃Se	₅∘Se	⁷⁰ Se	71Se	72Se	⁷³ Se	⁷⁴ Se	⁷⁵ Se	76 S e	""Se	78Se	7⁰Se	^{®0} Se	ª⊧Se	⁸² Se	83Se	⁸⁴ Se	^{as} Se	⁸⁶ Se	⁸⁷ Se	⁵³Se	₽Se	∞Se	91Se	92Se	93Se	94Se	^{₀s} Se						
^s As	66As	67As	68As	69As	⁷⁰ As	71As	72As	⁷³ As	⁷⁴ As	²⁵As	⁷⁶ As	77As	⁷⁸ As	⁷⁹ As	^{so} As	⁸¹ As	⁸² As	⁸³ As	⁸⁴ As	85As	86As	87As	⁸⁸ As	⁸⁹ As	90As	91As	92As								
⁴Ge	65Ge	66Ge	67Ge	⁶⁸ Ge	69Ge	⁷⁰ Ge	71Ge	72Ge	™Ge	²⁴ Ge	⁷⁵ Ge	²⁵Ge	77Ge	⁷⁸ Ge	™Ge	^{ao} Ge	⁸¹ Ge	82Ge	^s 3Ge	⁸⁴ Ge	⁸⁵ Ge	⁸⁶ Ge	⁸⁷ Ge	^{ae} Ge	^{se} Ge	∘∘Ge									
³Ga	6ªGa	⁰⁵Ga	••Ga	≪Ga	e8Ga	^{ss} Ga	™Ga	71Ga	72Ga	73Ga	⁷⁴ Ga	²⁵Ga	⁷⁸ Ga	77Ga	78Ga	79Ga	®Ga	81Ga	⁹² Ga	83Ga	84Ga	85Ga	*•Ga	⁸⁷ Ga	88Ga										
²Zn	₀₃Zn	ĕ₄Zn	∾Zn	∞Zn	⁵″Zn	۰≊Zn	∞Zn	™Zn	71Zn	22Zn	²³ Zn	²⁴Zn	7≊Zn	™Zn	77Zn	⁷⁸ Zn	⁷⁹ Zn	®Zn	81Zn	≊Zn	83Zn	84Zn	™Zn	®≊Zn											
¹ Cu	62Cu	63Cu	64Cu	65Cu	66Cu	67Cu	68Cu	69Cu	™Cu	71Cu	72Cu	⁷³ Cu	74Cu	75Cu	76Cu	77Cu	⁷⁸ Cu	⁷⁹ Cu	®Cu	⁶¹ Cu	82Cu	83Cu	84Cu												
^{so} Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni	64Ni	⁶⁵ Ni	66Ni	67Ni	⁵≊Ni	^{se} Ni	²⁰ Ni	71Ni	72Ni	73Ni	74Ni	⁷⁵ Ni	⁷⁶ Ni	77Ni	⁷⁶ Ni	⁷⁹ Ni	⁸⁰ Ni	^a Ni	⁸² Ni	Ζ	= 2	8										

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

lols, Shape **Coexistence and** Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

lols, Shape **Coexistence and** Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, <u>https://people.physics.anu.edu.au/~ecs103/chart/</u>

lols, Shape **Coexistence and** Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

Shape coexistence and the role of axial asymmetry in ⁷²Ge

B.P. Kay^a, K. Kolos^h, A. Korichiⁱ, T. Lauritsen^a, A.O. Macchiavelli^j, A. Richard^g, D. Seweryniak^a, A. Wiens^J

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

PRL 118, 162502 (2017)

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

Relativistic mean-field: Cit. "The Zn isotopic chain is abundant in phenomena of shape coexistence" W.Z. Jiang et al., EPJA 25, 29 (2005)

Covariant density functional theory: Cit. "Shape coexistence does not show up clearly in Zn isotopes" N.J. Abu Awwad et al., PRC 101, 064322 (2020)

Little experimental evidence in stable isotopes: A. Passoja et al., NPA 438, 413 (1985) M. Rocchini et al., PRC 103, 014311 (2021) M. Koizumi et al., NPA 730, 46 (2004)No firm proof in the radioactive, neutron-rich isotopes

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ⁷⁴Zn

Triaxiality in the Se, Ge and Zn Isotopes

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

Triaxiality in the Se, Ge and Zn Isotopes

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ⁷⁴Zn

Triaxiality in the Se, Ge and Zn Isotopes

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

PHYSICAL REVIEW C 103, 014311 (2021)

Onset of triaxial deformation in ⁶⁶Zn and properties of its first exc studied by means of Coulomb excitation

M. Rocchini,^{1,2,3,*} K. Hadyńska-Klęk,^{4,5} A. Nannini,^{1,2} A. Goasduff,^{6,7} M. Zielińska,⁸ D. A. Gargano,¹⁰ F. Nowacki⁽¹⁾,¹¹ G. De Gregorio⁽¹⁾,^{10,12} H. Naïdja,¹³ P. Sona,^{1,2} J. J. Valiente-P. R. John,^{6,7,14} D. Bazzacco,^{6,7} G. Benzoni,¹⁵ A. Boso,^{6,7} P. Cocconi,⁴ M. Chiari,^{1,2} D. T. G. Jaworski,⁴ M. Komorowska,⁵ N. Marchini,^{1,17} M. Matejska-Minda⁰,^{5,18} B. Melon,¹ R. Meneg D. Napoli¹,⁴ M. Ottanelli,¹ A. Perego,^{1,2} L. Ramina,⁷ M. Rampazzo,⁷ F. Recchia,^{6,7} D. Rosso,⁴ and M. Siciliano $\mathbb{D}^{4,6}$

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

					N = 50									
			Z =	= 50	100 S n	¹⁰² Sn	¹⁰⁴ Sn	¹⁰⁶ Sn	¹⁰⁸ Sn	¹¹⁰ Sn	112 S n	114Sn	¹¹⁶ Sn	¹¹⁰ Sn
cited 0 ⁺ state	Rodríguez	9	۹۹Cd	⁹⁵ Cd	**Cd	100 Cd	™Cd	™Cd	¹⁰⁶ Cd	¹⁰⁸ Cd	'''Cd	112Cd	¹1⁴Cd	116 Cd
Dobón, ⁴ D. Mer Doherty, ¹⁶ F. G gazzo, ^{6,7} P. J. Na S. Riccetto, ^{19,20}	ngoni, ^{6,7} valtarossa, ⁴ apiorkowski	, t	³⁵ Pd	⁵⁴ Pd	⁹⁶ Pd	³⁸ Pd	100Pd	¹⁰² Pd	¹⁰⁴ Pd	¹⁰⁵ Pd	¹⁰⁸ Pd	110Pd	¹¹² Pd	¹¹⁴ Pd
		u	⁰Ru	92Ru	⁹⁴ Ru	^{se} Ru	98Ru	¹⁰⁰ Ru	¹⁰² Ru	¹⁰⁴ Ru	¹⁰⁶ Ru	¹⁰⁸ Ru	¹¹⁰ Ru	¹¹² Ru
		o	^{BS} MO	°Moe	⁹² Mo	⁹⁴ Mo	^{so} Mo	∘∞Мо	¹⁰⁰ Mo	¹⁰² MO	104Mo	oM ^{aor}	¹⁰³ Mo	шоМо
		r	⁸⁶ Zr	⁸⁸ Zr	^{so} Zr	⁹² Zr	94Zr	⁹⁶ Zr	⁹⁸ Zr	¹⁰⁰ Zr	¹⁰² Zr	¹⁰⁴ Zr	¹⁰⁶ Zr	¹⁰⁸ Zr
		r	⁶⁴ Sr	86 Sr	°⁼Sr	⁹⁰ Sr	⁹² Sr	^{s+} Sr	^{se} Sr	⁹⁸ Sr	¹⁰⁰ Sr	¹⁰² Sr	¹⁰⁴ Sr	¹⁰⁰ Sr
		r	^{€2} Kr	³⁴ Kr	₀ ^{₿5} Kr	^{₽8} Kr	⁹⁰ Kr	⁹² Kr	⁹⁴ Kr	⁹⁶ Kr	⁰®Kr	¹⁰⁰ Kr		
		e	⁸⁰ Se	⁸² Se	*4Se	³⁶ Se	⁸⁸ Se	^{so} Se	⁹² Se	⁹⁴ Se				
		Le	⁷⁸ Ge	^{au} Ge	^{⊮z} Ge	⁸⁴ Ge	⁸⁶ Ge	зяGe	∍ºGe	1	\leq			
n ™Z n	²² Zn	74Zn	⁷⁶ Zn	⁷⁸ Zn	⁵°Zn	≊Zn	⁸⁴ Zn	^{⊮₀} Zn		L	/			b
i søNi	²⁰ Ni	⁷² Ni	⁷⁴ Ni	⁷⁶ Ni	⁷⁶ Ni	⁸⁰ Ni	⁹² Ni	Z = 28				V		
						The C	olourful I	Nuclide Ch	art, <u>htt</u>	ps://peop	le.physic	s.anu.ed	u.au/~ec:	s103/char

Triaxiality in the Se, Ge and Zn Isotopes

lols, Shape **Coexistence and** Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

The Colourful Nuclide Chart, https://people.physics.anu.edu.au/~ecs103/chart/

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich 74Zn

Triaxiality in the Se, Ge and Zn Isotopes

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

PRL 97, 162502 (2006)

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich 74Zn

Triaxiality in the Se, Ge and Zn Isotopes

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular **Correlations**

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

PRL 97, 162502 (2006)

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

GRIFFIN

GRIFFIN

Our Experiment on 74Zn with GRIFFIN

- ⁷⁴Zn via ⁷⁴Cu β-decay [$T_{1/2}$ = 1.63(5) s], Beam intensity ≈ 1.5 · 10³ pps
- GRIFFIN: 12 of 16 available clovers at 14.5 cm from the target
 - $\epsilon_{\rm V}(1332.5 \text{ keV}) = 7.8\%, \epsilon_{\rm V}(300 \text{ keV}) = 16.6\%$
 - P/T (addback + BGO suppressors) = 45.5%
- Tape cycle: 5 T_{1/2} on, 1 s off, 0.5 s background, 1 s tape movement

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ⁷⁴Zn, Marco Rocchini

Axial Shape Asymmetry and Configuration Coexistence in ⁷⁴Zn

y-y Angular Correlations

- γ-γ Angular Correlations with GRIFFIN: J.K. Smith et al., NIMA 922, 47 (2019)
 - Rhombicuboctahedron geometry \Rightarrow Up to 52 opening angles

- Event mixing technique \Rightarrow No need to know # of pairs for each opening angle and relative efficiencies of the detectors
- Finite sizes of the detectors \Rightarrow Detailed GEANT4 simulations
- Definitive spin assignments at the 99% CL

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich 74Zn

Previous Knowledge

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

⁷⁴Cu β-decay @ORNL, 3 clovers J.L. Tracy Jr. et al., PRC 98, 034309 (2018)

- 170 γ-rays
- 50 levels (29 new)
- log(ft) values
- Tentative spin assignments based on decay patterns, intensities, log(ft) values, and in a few cases model predictions (shell model and vibrational model)

y-y Angular Correlations: the (0_2^+)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

The state at 1789 keV is firmly established as the first excited 0⁺ state

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

New, definitive spin assignment for:

 $2_{2^{+}}, 0_{2^{+}}, 3_{1^{+}}, 2_{3^{+}}$ states

Marco Rocchini

10

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

New, definitive spin assignment for:

 $2_{2^{+}}, 0_{2^{+}}, 3_{1^{+}}, 2_{3^{+}}$ states

Two new transitions:

 $2_{3^+} \longrightarrow 4_{1^+} \text{ and } 2_{3^+} \longrightarrow 0_{2^+}$

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

New, definitive spin assignment for:

 $2_{2^{+}}, 0_{2^{+}}, 3_{1^{+}}, 2_{3^{+}}$ states

Two new transitions:

 $2_{3^+} \longrightarrow 4_{1^+} \text{ and } 2_{3^+} \longrightarrow 0_{2^+}$

From measured branching ratios and $\delta(E2/M1)$ mixing ratios \Rightarrow Relative B(E2) values

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

New, definitive spin assignment for:

 $2_{2^{+}}, 0_{2^{+}}, 3_{1^{+}}, 2_{3^{+}}$ states

Two new transitions:

 $2_{3^+} \longrightarrow 4_{1^+} \text{ and } 2_{3^+} \longrightarrow 0_{2^+}$

From measured branching ratios and $\delta(E2/M1)$ mixing ratios \Rightarrow Relative B(E2) values

> Strong transitions observed, indicative of band structures at low-spin in ⁷⁴Zn

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

New Large-Scale Shell-Model Calculations

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

- By Silvia Lenzi, Frédéric Nowacki, Duc D. Dao
- LNPS interaction, *pf* shell for protons, 1p_{3/2}0f_{5/2}1p_{1/2}0g_{9/2}1d_{5/2} orbitals for neutrons
- **DNO-SM:** Constrained Hartree-Fock shell-model calculations D.D. Dao and F. Nowacki, PRC 105, 054314 (2022)
- Excellent agreement both for the spectra and the relative B(E2) values

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

11

New Large-Scale Shell-Model Calculations

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

- By Silvia Lenzi, Frédéric Nowacki, Duc D. Dao
- LNPS interaction, *pf* shell for protons, 1p_{3/2}0f_{5/2}1p_{1/2}0g_{9/2}1d_{5/2} orbitals for neutrons
- **DNO-SM:** Constrained Hartree-Fock shell-model calculations D.D. Dao and F. Nowacki, PRC 105, 054314 (2022)
- Excellent agreement both for the spectra and the relative B(E2) values

$\overline{J_i^{\pi} ightarrow J_f^{\pi}}$	E_{γ} (keV)	I_{γ}	I_{γ}^{prev} [40]	$\delta(E2/M1)$	$B_{\rm rel}^{\rm exp}(E2)$	$B_{\rm rel}^{\rm SM}(E2)$	$B_{\rm abs}^{\rm SM}(E2)$ (W.u.)
$\overline{2^+_2 \rightarrow 2^+_1}$	1064.32(10)	100.0(12)	100.0(6)	-1.13(6)	100(5)	100	9.7
$2^{\tilde{+}}_{2} \rightarrow 0^{+}_{1}$	1670.07(20)	49.3(10)	49.4(4)		9.24(19)	22	2.1
$3^{-}_1 \rightarrow 2^{+}_2$	428.73(18)	6.5(4)	9.3(4)	$-0.8^{+0.2}_{-1.5}$	100^{+120}_{-30}	100	40
$3^+_1 \to 4^+_1$	680.75(15)	7.10(19)	10.5(4)	$-1.0^{+0.3}_{-0.8}$	14_{-5}^{+7}	7.8	3.1
$3^+_1 \to 2^+_1$	1493.2(3)	100.0(18)	100.0(11)	$-0.57^{+0.06}_{-0.07}$	$1.9_{-0.3}^{+0.4}$	8.8	3.5
				$-2.7(5)^{a}$	6.8(4)		
$2^+_3 \rightarrow 0^+_2$	359.2(6)	2.0(4)			100(20)	100	17
$2^+_3 \rightarrow 2^+_2$	478.13(15)	6.8(7)	6.5(10)	$+0.9^{+0.8}_{-0.3}$	37^{+24}_{-15}	15	2.6
$2^+_3 \rightarrow 4^+_1$	729.94(19)	3.1(7)			4.5(10)	2.4	0.4
$2^+_3 \rightarrow 2^+_1$	1542.5(3)	37(3)	29.4(14)	$+2.4^{+1.8}_{-1.0}$	$1.09^{+0.15}_{-0.26}$	0.18	0.03
$\underline{2^+_3 \rightarrow 0^+_1}$	2148.73(16)	100(8)	100.0(27)		0.66(5)	0.18	0.03

^aSecond solution.

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

TABLE I. Energies E_{γ} , branching ratios I_{γ} , mixing ratios $\delta(E2/M1)$, and relative B(E2) values $B_{rel}(E2)$ measured in the present Letter, together with branching ratios from Ref. [40]. Relative and absolute B(E2) values obtained from the present LSSM calculations (full diagonalization) are also given. Relative B(E2) values of 100 are assumed for normalizing transitions.

Marco Rocchini

11

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and Occupations

Conclusions

Shapes of the 0_1^+ , 0_2^+ states calculated from quadrupole sum rules A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

y-y Angular Correlations

Experimental Results

LSSM-Calculations

Shapes and **Occupations**

Conclusions

Shapes of the 0_1^+ , 0_2^+ states calculated from quadrupole sum rules A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)

Triaxial ground state (similar dispersions to those in ⁷⁶Ge!)

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

Shapes of the 0_1^+ , 0_2^+ states calculated from quadrupole sum rules A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)

Triaxial ground state (similar dispersions to those in ⁷⁶Ge!)

Different shape for the 0₂⁺: Less deformed and more prolate

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

Shapes of the 0_{1^+} , 0_{2^+} states calculated from quadrupole sum rules A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)

- Triaxial ground state (similar dispersions to those in ⁷⁶Ge!)
- Different shape for the 0₂⁺: Less deformed and more prolate
- "T-Plot"-like analysis: Shape for each individual state
 - Normalized probability to find a deformation (β , γ) superimposed to the potential energy surface (GCM)
 - Results from quadrupole sum rules confirmed

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ⁷⁴Zn

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

Shapes of the 0_{1^+} , 0_{2^+} states calculated from quadrupole sum rules A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)

- Triaxial ground state (similar dispersions to those in ⁷⁶Ge!!)
- Different shape for the 0₂⁺: Less deformed and more prolate
- "T-Plot"-like analysis: Shape for each individual state
 - Normalized probability to find a deformation (β , γ) superimposed to the potential energy surface (GCM)
 - Results from quadrupole sum rules confirmed

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ⁷⁴Zn

Occupation Numbers from Shell Model

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

chosen model space:

Occupation Numbers from Shell Model

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

chosen model space:

configuration:

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

Occupation Numbers from Shell Model

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

chosen model space:

configuration:

ARIS 2023 Conference, 4th–9th Jun 2023, Avignon (France)

lols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ⁷⁴Zn

γ-γ Angular Correlations

Experimental Results

LSSM Calculations

Shapes and **Occupations**

Conclusions

Conclusions

- Strong $2_{3^+} \longrightarrow 0_{2^+} \Longrightarrow$ Hint of Configuration Coexistence
- Strong $3_1^+ \longrightarrow 2_2^+ \Longrightarrow$ Hint of a quasi γ -band at low excitation energy and Triaxiality
- New Large-Scale Shell-Model calculations support this interpretation
- Inversion of "normal" and intruder configurations \rightarrow ⁷⁴Zn seems to be in the N = 40 Island of Inversion, which extends further north in the chart of the nuclides

PHYSICAL REVIEW LETTERS 130, 122502 (2023)

First Evidence of Axial Shape Asymmetry and Configuration Coexistence in ⁷⁴Zn: Suggestion for a Northern Extension of the N = 40 Island of Inversion

M. Rocchini^D,^{1,*} P. E. Garrett^D,¹ M. Zielińska^D,² S. M. Lenzi^D,^{3,4} D. D. Dao^D,⁵ F. Nowacki,⁵ V. Bildstein,¹ A. D. MacLean,¹ B. Olaizola^(b),^{6,†} Z. T. Ahmed,¹ C. Andreoiu^(b),⁷ A. Babu,⁶ G. C. Ball,⁶ S. S. Bhattacharjee,^{6,‡} H. Bidaman,¹ C. Cheng,⁶ R. Coleman,¹ I. Dillmann^(b),^{6,8} A. B. Garnsworthy,⁶ S. Gillespie,⁶ C. J. Griffin^(b),⁶ G. F. Grinyer^(b),⁹ G. Hackman,⁶ M. Hanley^D,¹⁰ A. Illana^D,¹¹ S. Jones,¹² A. T. Laffoley,¹ K. G. Leach^D,¹⁰ R. S. Lubna,^{6,§} J. McAfee,^{6,13} C. Natzke,^{6,10} S. Pannu,¹ C. Paxman^(b),^{6,13} C. Porzio^(b),^{6,14,15,||} A. J. Radich,¹ M. M. Rajabali,¹⁶ F. Sarazin^(b),¹⁰ K. Schwarz,⁶ S. Shadrick,¹⁰ S. Sharma,⁹ J. Suh,⁹ C. E. Svensson,¹ D. Yates,^{6,17} and T. Zidar¹

THANK YOU FOR THE ATTENTION

M. Rocchini¹, P.E. Garrett¹, M. Zielińska², S.M. Lenzi^{3,4}, D.D. Dao⁵, F. Nowacki⁵, V. Bildstein¹, A.D. MacLean¹, B. Olaizola^{6,†}, Z. Ahmed¹, C. Andreoiu⁷, A. Babu⁶, G.C. Ball⁶, S.S. Bhattacharjee^{6,‡}, H. Bidaman¹, C. Cheng⁶, R. Coleman¹, I. Dillmann^{6,8}, A.B. Garnsworthy⁶, S. Gillespie⁶, C. Griffin⁶, G.F. Grinyer⁹, G. Hackman⁶, M. Hanley¹⁰, A. Illana¹¹, S. Jones¹², A.T. Laffoley¹, K.G. Leach¹⁰, R.S. Lubna^{6,§}, J. McAfee^{6,13}, C. Natzke^{6,10}, S. Pannu¹, C. Paxman^{6,13}, C. Porzio^{6,14,15,¶}, A.J. Radich¹, M. Rajabali¹², F. Sarazin¹⁰, K. Schwarz⁶, S. Shadrick¹⁰, S. Sharma⁹, J. Suh⁹, C.E. Svensson¹, D. Yates^{6,16}, and T. Zidar¹

¹ University of Guelph, Guelph, Canada ² IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France ³ Università di Padova, Padova, Italy ⁴ INFN Sezione di Padova, Padova, Italy ⁵ Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ⁶ TRIUMF, Vancouver, Canada ⁷ Simon Fraser University, Burnaby, Canada ⁸ University of Victoria, Victoria, Canada ⁹ University of Regina, Regina, Canada ¹⁰ Colorado School of Mines, Golden, USA ¹¹ University of Jyväskylä, Jyväskylä, Finland ¹² University of Tennessee, Knoxville, USA ¹³ Univesity of Surrey, Guildford, UK ¹⁴ INFN Sezione di Milano, Milano, Italy ¹⁵ Dipartimento di Fisica, Università di Milano, Milano, Italy ¹⁶ University of British Columbia, Vancouver, Canada

Present addresses: [†] CERN, Geneva, Switzerland [‡]Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czech Republic [§] Department of Physics and Astronomy, Michigan State University, East Lansing, USA [¶] Lawrence Berkeley National Laboratory, Berkeley, USA

Marco Rocchini **INFN - Istituto Nazionale di Fisica Nucleare** FIRENZE DIVISION

Marco Rocchini INFN - Istituto Nazionale di Fisica Nucleare FIRENZE DIVISION

0₂⁺ States in the Ge, Zn and Ni Isotopes

- Stable Ge (N = 38 44) \Rightarrow v excitations across N = 40, small-deformation M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, PRC 80, 064323 (2009)
- Radioactive ⁸²Ge \Rightarrow v excitations across N = 50, large-deformation J. K. Hwang et al., PRC 84, 024305 (2011)

- Ni (N = 36 42), Multiple Shape Coexistence:
 - 0_2^+ in 64,66,68 Ni \implies v excitations across N = 40, small-deformation
 - 0_4^+ in 64,66 Ni, 0_3^+ in 68 Ni, 0_2^+ in 70 Ni $\Rightarrow \pi$ excitations across Z = 28, large-deformation

Multitude of p-h excitations across shell and sub shell gaps, with different features and deformations

> Small, filled dots: firm J^{*π*} assignment

Open dots: tentative J^{π} assignment

Circled dots: evidence or suggestions for Shape Coexistence

Large, filled dots: our new results

Data from NNDC Brookhaven ENSDF and XUNDL databases

S. Leoni et al., PRL 118, 162502 (2017) - S. Leoni et al., Acta Physica Polonica B 50, 605 (2019) - N. Marginean et al., PRL 125, 102502 (2020)

Energy Systematics

Extension of the N=40 lol

TABLE I: Occupation of the neutron intruder orbitals and percentage of particle-hole excitations across the N = 40 gap in the ground states and first excited 0^+ states of the Zinc isotopes. The red bold number indicates places where the extra intruder population is larger than 1 particule in average in the ground state and delimits the contour of the Island of Inversion.

Nucleus	state	IP	M	S	M	0p0h
		$\nu g_{9/2}$	$\nu d_{5/2}$	$\nu g_{9/2}$	$\nu d_{5/2}$	
⁶⁸ Ni	$0^+_1 \\ 0^+_2$	0 0	0 0	$0.80 \\ 2.10$	$\begin{array}{c} 0.10\\ 0.10\end{array}$	$\begin{array}{c} 62 \\ 17 \end{array}$
⁷⁰ Ni	$egin{array}{c} {f 0}_1^+ \ 0_2^+ \end{array}$	2 2	0 0	2.86 4.47	0.17 0.41	55 21
⁷² Ni	$0^+_1 \\ 0^+_2$	$4 \\ 4$	0 0	$\begin{array}{c} 4.52\\ 5.18\end{array}$	$\begin{array}{c} 0.34 \\ 0.18 \end{array}$	$\begin{array}{c} 61 \\ 12 \end{array}$
74 Ni	$0^+_1 \\ 0^+_2$	6 6	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 5.96 \\ 5.65 \end{array}$	$\begin{array}{c} 0.43 \\ 0.73 \end{array}$	58 44
⁷⁶ Ni	$0^+_1 \\ 0^+_2$	8 8	$\begin{array}{c} 0 \\ 0 \end{array}$	$7.84 \\ 7.39$	$\begin{array}{c} 0.36 \\ 0.77 \end{array}$	$90\\92$
⁷⁸ Ni	$0^+_1 \\ 0^+_2$	10 10	$\begin{array}{c} 0 \\ 0 \end{array}$	$9.83 \\ 7.79$	$0.19 \\ 2.33$	99 94
⁷⁰ Zn	$egin{array}{c} {f 0}_1^+ \ 0_2^+ \end{array}$	0 0	0 0	2.60 2.66	0.17 0.25	4 12
72 Zn	$egin{array}{c} {f 0}_1^+ \ 0_2^+ \end{array}$	2 2	0 0	3.99 3.97	0.35 0.29	4 12
74 Zn	$egin{array}{c} {f 0}_1^+ \ 0_2^+ \end{array}$	4 4	0 0	5.13 4.35	0.47 0.50	13 34
⁷⁶ Zn	$0^+_1 \\ 0^+_2$	6 6	0 0	$5.79 \\ 6.12$	$\begin{array}{c} 0.52 \\ 0.47 \end{array}$	$54\\47$
⁷⁸ Zn	$0^+_1 \\ 0^+_2$	8 8	0 0	$7.67 \\ 7.73$	$\begin{array}{c} 0.48\\ 0.44\end{array}$	93 92
⁸⁰ Zn	$0^+_1 \\ 0^+_2$	10 10	0 0	$9.72 \\ 9.74$	$\begin{array}{c} 0.30\\ 0.28\end{array}$	100 100

TABLE II. Occupation number n^{ν} of neutron intruder orbitals from the shell-model calculations (SM) of this work compared to the independent particle model (IPM). The percentage of particlehole excitations across the N = 40 gap in the ground state of Cr isotopes is also given. The last column features the pairing correlations energy differences $\Delta E_{\text{Pairing}}^*$ (in MeV) evaluated between the ground state and the 2_1^+ state.

Nucleus	$n^{\nu}(g_{9/2})$	$+ d_{5/2})$	0p0h	2p2h	4p4h	6 <i>p</i> 6 <i>h</i>	$\Delta E^*_{\text{Pairing}}$
	IPM	SM					
⁶⁰ Cr	0	1.8	14	75	7	0	1.84
⁶² Cr	0	3.5	1	25	71	3	1.49
⁶⁴ Cr	0	4.3	0	8	71	20	1.25
⁶⁶ Cr	2	5.2	0	40	56	3	1.13
⁶⁸ Cr	4	6.0	6	79	11	0	1.24

Staggering

S(J)

PHYSICAL REVIEW C 80, 064323 (2009)

New effective interaction for $f_5 pg_9$ -shell nuclei

M. Honma,¹ T. Otsuka,^{2,3,4} T. Mizusaki,⁵ and M. Hjorth-Jensen⁶

FIG. 24. (Color online) Occupation numbers of the neutron $g_{9/2}$ orbit in the shell-model wave functions. The filling configuration corresponds to the dot-dashed line.

VOLUME 88, NUMBER 9

PHYSICAL REVIEW LETTERS

⁶⁸₂₈Ni₄₀: Magicity versus Superfluidity

O. Sorlin,¹ S. Leenhardt,¹ C. Donzaud,¹ J. Duprat,¹ F. Azaiez,¹ F. Nowacki,² H. Grawe,³ Zs. Dombrádi,⁴ F. Amorini,⁵ A. Astier,⁶ D. Baiborodin,⁷ M. Belleguic,¹ C. Borcea,⁸ C. Bourgeois,¹ D. M. Cullen,^{9,*} Z. Dlouhy,⁷ E. Dragulescu,⁸ M. Górska,³ S. Grévy,¹⁰ D. Guillemaud-Mueller,¹ G. Hagemann,¹¹ B. Herskind,¹¹ J. Kiener,¹² R. Lemmon,¹³ M. Lewitowicz,¹⁴ S. M. Lukyanov,¹⁵ P. Mayet,³ F. de Oliveira Santos,¹⁴ D. Pantalica,⁷ Yu.-E. Penionzhkevich,¹⁵ F. Pougheon,¹ A. Poves,¹⁶ N. Redon,⁶ M. G. Saint-Laurent,¹⁴ J. A. Scarpaci,¹ G. Sletten,¹¹ M. Stanoiu,¹⁴ O. Tarasov,^{15,†} and Ch. Theisen¹⁷

TABLE II. Shell-model and experimental energies of the first excited state $E(2^+)$ [MeV], calculated $B(E2 \uparrow; 0^+_1 \rightarrow 2^+)$ $[e^2 \text{ fm}^4]$, and the number $\langle n_{9/2} \rangle_{\text{extra}}$ of excessive neutrons occupying the $g_{9/2}$ orbit are compiled.

	⁶² Ni	⁶⁴ Ni	⁶⁶ Ni	⁶⁸ Ni	⁷⁰ Ni	⁷² Ni	⁷⁴ Ni
$E(2^+)_{calc}$	1.11	1.24	1.49	1.73	1.50	1.42	1.33
$E(2^+)_{exp}$	1.173	1.346	1.425	2.033	1.259		
$B(E2 \uparrow)_{calc}$	775	755	520	265	410	505	690
$\langle n_{9/2} \rangle_{\rm extra}$	0.24	0.43	0.67	1.19	0.73	0.45	0.27

⁶⁶Zn Coulex

PHYSICAL REVIEW C 103, 014311 (2021)

Onset of triaxial deformation in ⁶⁶Zn and properties of its first excited 0⁺ state studied by means of Coulomb excitation

M. Rocchini^(a),^{1,2,3,*} K. Hadyńska-Klęk,^{4,5} A. Nannini^(a),^{1,2} A. Goasduff^(a),^{6,7} M. Zielińska,⁸ D. Testov^(a),^{6,7} T. R. Rodríguez,⁹ A. Gargano,¹⁰ F. Nowacki^(a),¹¹ G. De Gregorio^(a),^{10,12} H. Naïdja,¹³ P. Sona,^{1,2} J. J. Valiente-Dobón,⁴ D. Mengoni,^{6,7} P. R. John,^{6,7,14} D. Bazzacco,^{6,7} G. Benzoni^(a),¹⁵ A. Boso,^{6,7} P. Cocconi,⁴ M. Chiari^(a),^{1,2} D. T. Doherty,¹⁶ F. Galtarossa,⁴ G. Jaworski,⁴ M. Komorowska,⁵ N. Marchini,^{1,17} M. Matejska-Minda^(a),^{5,18} B. Melon,¹ R. Menegazzo,^{6,7} P. J. Napiorkowski,⁵ D. Napoli^(a),⁴ M. Ottanelli,¹ A. Perego,^{1,2} L. Ramina,⁷ M. Rampazzo,⁷ F. Recchia,^{6,7} S. Riccetto,^{19,20} D. Rosso,⁴ and M. Siciliano^(a,4,6)

FIG. 9. Same as Fig. 8 for ⁶⁶Zn after projecting onto angular momentum J = 0. A triaxial shape with a finite dispersion characterize the isotope and a second prolate minimum results from the calculation.

FIG. 8. Potential energy surfaces for stable Zn isotopes resulting from deformation-constrained Hartree-Fock calculations with the particle number projection method (PN-VAP) and Gogny D1S interaction.

FIG. 11. Collective wave functions for selected states in ⁶⁶Zn, obtained within the SCCM framework. The energy of each state (in keV) is given on topleft of each CFW. The colored frames are used to present the suggested band assignments.

Zn: Relativistic Mean-Field

Eur. Phys. J. A 25, 29-39 (2005) DOI 10.1140/epja/i2004-10235-1

Relativistic mean-field study for Zn isotopes

W.Z. Jiang^{1,3,a}, Z.Z. Ren², T.T. Wang¹, Y.L. Zhao¹, and Z.Y. Zhu^{1,3}

Fig. 8. The Routhian for 60 Zn with respect to the quadrupole deformation with the NL-SH set. The coefficient labeled in the figure is the reduction factor of the pairing gap constant. The coefficient 1.0 means no reduction.

THE EUROPEAN PHYSICAL JOURNAL A

Fig. 9. The same as shown in fig. 8, but for ⁶⁶Zn.

Zn: Covariant Density Functional theory

PHYSICAL REVIEW C 101, 064322 (2020)

Ground state properties of Zn, Ge, and Se isotopic chains in covariant density functional theory

Ni Isotopes & Z = 28

PHYSICAL REVIEW C 89, 031301(R) (2014)

Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure

Yusuke Tsunoda,¹ Takaharu Otsuka,^{1,2,3} Noritaka Shimizu,² Michio Honma,⁴ and Yutaka Utsuno⁵

FIG. 3. (Color online) Potential energy surfaces (PESs) of Ni isotopes, coordinated by the usual Q_0 and Q_2 (or γ). The energy relative to the minimum is shown by contour plots. Circles on the PES represent shapes of MCSM basis vectors (see the text).

RAPID COMMUNICATIONS

FIG. 4: ⁶⁴Ni potential energy surfaces with (a) full, original interaction used in MCSM calculations [11], and (b) monopole-frozen interaction (i.e., the monopole component is subtracted from the proton-neutron interaction, and singleparticle energies are adjusted to original effective values of the spherical minimum 6).

PHYSICAL REVIEW C 84, 024305 (2011)

Possible excited deformed rotational bands in ⁸²Ge

J. K. Hwang,¹ J. H. Hamilton,¹ A. V. Ramayya,¹ N. T. Brewer,¹ Y. X. Luo,^{1,2} J. O. Rasmussen,² and S. J. Zhu^{1,3} ¹Physics Department, Vanderbilt University, Nashville, Tennessee 37235, USA ²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ³Department of Physics, Tsinghua University, Beijing 100084, People' Republic of China (Received 26 April 2011; revised manuscript received 27 May 2011; published 9 August 2011)

