INFN

Marco Rocchini

INFN - Istituto Nazionale di Fisica Nucleare

 FIRENZE DIVISIONAxtal Shape Asymmetiry and Configuration Coexistence in Neutron-Rich 74Zn: Suggestion for a Northern Extension of the $N=40$ Island of Inversion

INFN

Marco Rocchini

INFN - Istituto Nazionale di Fisica Nucleare

 FIRENZE DIVISIONAxial Shape Asymmetry and Configuration Coexistence in Neutron-Rich 74Zn: Suggestion for a Northern Extension of the $N=40$ Island of Inversion

Islands of Inversion

Iols, Shape Coexistence and Triaxiality

GRIFFIN

@TRIUMF

Our Experiment on ${ }^{74} \mathrm{Zn}$
$\gamma-\gamma$ Angular Correlations

Experimental Results

LSSM
Calculations

Shapes and Occupations

Conclusions

- Iols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 Iols identified: $N=8,20,28,40$
- 1 new lol theorised at $N=50$ F. Nowacki et al., PRL 117, 272501 (2016)

Islands of Inversion

Iols, Shape Coexistence and Triaxiality

GRIFFIN

@TRIUMF

Our Experiment on ${ }^{74} \mathrm{Zn}$
$\gamma-\gamma$ Angular Correlations

Experimental Results

LSSM
Calculations

Shapes and Occupations

Conclusions

- lols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states
- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: $N=8,20,28,40$
- 1 new lol theorised at $\mathrm{N}=50$ F. Nowacki et al., PRL 117, 272501 (2016)

$$
g \text { factor of the exotic } N=21 \text { isotope }{ }^{34} \mathrm{Al} \text { : probing the } N=20
$$ and $N=28$ shell gaps at the border of the "island of inversion"

P. Himpe ${ }^{\text {a }}$, G. Neyens ${ }^{\text {a,* }, ~ D . L . ~ B a l a b a n s k i ~}{ }^{\text {b }}$, G. Bélier ${ }^{\text {c }}$, J.M. Daugas ${ }^{\text {c }}$, F. de Oliveira Santos ${ }^{\text {d }}$, M. De Rydt ${ }^{a}$, K.T. Flanagan ${ }^{a}$, I. Matea ${ }^{e}$, P. Morel ${ }^{c}$, Yu.E. Penionzhkevich ${ }^{f}$, L. Perrot ${ }^{d}$ N.A. Smirnova ${ }^{\text {g.1 }}$, C. Stodel ${ }^{\text {d }}$, J.C. Thomas ${ }^{\text {d }}$, N. Vermeulen ${ }^{\text {a }}$, D.T. Yordanov ${ }^{\text {a }}$, The search for the boundaries of the lols
 Y. Utsuno ${ }^{\text {h }}$, T. Otsuka ${ }^{\text {i.j }}$

Islands of Inversion

lols, Shape Coexistence and Triaxiality

GRIFFIN

@TRIUMF

Our Experiment on ${ }^{74} \mathrm{Zn}$
$\gamma-\gamma$ Angular Correlations

Experimental Results

LSSM
Calculations

Shapes and Occupations

Conclusions
, lols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states

- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 Iols identified: $N=8,20,28,40$
- 1 new lol theorised at $\mathrm{N}=50$ F. Nowacki et al., PRL 117, 272501 (2016)

"K

Summit of the $N=40$ island of inversion: Precision mass measurements and ab initio calculations of neutron-rich chromium isotopes

Islands of Inversion

Iols, Shape Coexistence and Triaxiality

GRIFFIN

@TRIUMF

Our Experiment on ${ }^{74} \mathrm{Zn}$
$\gamma-\gamma$ Angular Correlations

Experimental Results

LSSM
Calculations

Shapes and Occupations

Conclusions
, lols: Regions of the nuclide chart in which the energy gained through correlations (e.g., quadrupole) can offset the spherical meanfield gaps, leading to the appearance of unexpected deformed ground states

- Their study permits investigating correlation energies and phenomena such as deformation and shape coexistence
- 4 lols identified: $N=8,20,28,40$
- 1 new lol theorised at $\mathrm{N}=50$ F. Nowacki et al., PRL 117272501 (2016)

$$
28,40
$$

Shape Coexistence between Z = 28 and Z = 50

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

INFN

Shape Coexistence between Z = 28 and $Z=50$

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74Zn
Y-Y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

Shape Coexistence between Z = 28 and Z = 50

INFN
Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$
Shape Coexistence between $Z=28$ and $Z=50$
Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-Y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

Shape Coexistence between Z = 28 and Z = 50

INFN
Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$

Shape Coexistence between $Z=28$ and $Z=50$

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

INFN
Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich 74 Zn

Shape Coexistence between $\mathrm{Z}=28$ and $\mathrm{Z}=50$

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$

Shape Coexistence between $\mathrm{Z}=28$ and $\mathrm{Z}=50$

Shape Coexistence between $Z=28$ and $Z=50$

Iols, Shape
Coexistence and Coexistence and
Triaxiality

GRIFFIN

@TRIUMF
Our Experiment on ${ }^{74} \mathrm{Zn}$
$\gamma-\gamma$ Angular
Correlations
Experimental Results

LSSM Calculations

Shapes and Occupations Conclusions

Shape Coexistence is predicted in 78 Ni but still no firm proof $\quad N=50$
nature ${ }^{78} \mathrm{Ni}$ revealed as a doubly magic stronghold against nuclear deformation
R. Taniuchil ${ }^{1,2}$, C. Santamaria ${ }^{2,3}$, P. Doornenbal ${ }^{2 *}$, A. Obertelli ${ }^{2,3,4}$, K. Yoneda ${ }^{2}$, G. Authelet ${ }^{3}$, H. Baba ${ }^{2}$, D. Calvet ${ }^{3}$, F. Château ${ }^{3}$, R. Taniuchi ${ }^{1,2}$, C. Santamaria ${ }^{2,3}$, P. Doornenbal ${ }^{2 *}$, A. Obertelli ${ }^{2,3,4}$, K. Yoneda ${ }^{2}$, G. Authelet ${ }^{3}$, H. Baba ${ }^{2}$, D. Calvet ${ }^{3}$, F. C
A. Corsi ${ }^{3}$, A. Delbart ${ }^{3}$, J.-M. Gheller ${ }^{3}$, A. Gillibert ${ }^{3}$, J. D. Holt ${ }^{5}$, T. Isobe ${ }^{2}$, V. Lapoux ${ }^{3}$, M. Matsushita ${ }^{6}$, J. Menéndez ${ }^{6}$, A. Corsi ${ }^{3}$, A. Delbart ${ }^{3}$, J.-M. Gheller ${ }^{3}$, A. Gillibert ${ }^{3}$, J. D. Holt ${ }^{5}$, T. Isobe ${ }^{2}$, V. Lapoux ${ }^{3}$, M. Matsushita ${ }^{6}$, J. Menéndez ${ }^{6}$, ${ }^{10}$,
S. Momiyama ${ }^{1,2}$, T. Motobayashi ${ }^{2}$, M. Niikura ${ }^{1}$, F. Nowacki ${ }^{7}$ K. Ogata ${ }^{8,9}$, H. Otsu ${ }^{2}$, T. Otsuka ${ }^{1,2,6}$, C. Péron ${ }^{3}$, S. Péru ${ }^{10}$, S. Momiyama ${ }^{1,2}$, T. Motobayashi ${ }^{2}$, M. Niikura ${ }^{1}$, F. Nowacki ${ }^{7}$, K. Ogata ${ }^{8,9}$, H. Otsu ${ }^{2}$, T. Otsuka ${ }^{1,2,6}$, C. Péron ${ }^{3}$, S. Péru ${ }^{10}$
A. Peyaud ${ }^{3}$, E. C. Pollacco ${ }^{3}$ A. Poves ${ }^{11}$ J.-Y. Rousse ${ }^{3}$ H. S. Sakurai ${ }^{1,2}$ A. Schwenk ${ }^{4,12,13}$ Y. Shiga ${ }^{2,14}$, J. Simonis ${ }^{4}, 12,15$,
 S. R. Stroberg ${ }^{5}, 16$, S. Takeuchi ${ }^{2}$, Y. Tsunoda ${ }^{6}$, T. Uesaka ${ }^{2}$, H. Wang ${ }^{2}$, F. Browne ${ }^{17}$, L. X. Chung , ${ }^{18}$, Z. Dombradi ${ }^{19}$, S. Franchoo ${ }^{20}$, F. Giacoppo ${ }^{21}$, A. Gottardo ${ }^{20}$, K. Hadyńska-Klęk ${ }^{21}$, Z. Korkulu ${ }^{19}$, S. Koyama ${ }^{1,2}$, Y. Kubota²,6, J. Lee ${ }^{22}$, M. Lettmann ${ }^{4}$, C. Louchart ${ }^{4}$ R. Lozeva², ${ }^{23}$, K. Matsui ${ }^{1,2}$, T. Miyazaki ${ }^{1,2}$, S. Nishimura ${ }^{2}$, L. Olivier ${ }^{20}$, S. Ota ${ }^{6}$, Z. Patel ${ }^{24}$, E. Şahin ${ }^{21}$, C. Shand ${ }^{24}$, P.-A. Söderström I. Stefan ${ }^{20}$, D. Steppenbeck ${ }^{6}$, T. Sumikama ${ }^{25}$, D. Suzuki ${ }^{20}$, Z. Vajta ${ }^{19}$, V. Werner ${ }^{4}$, J. Wu ${ }^{2}, 26$ \& Z. Y. Xu ${ }^{22}$

Shape Coexistence between $\mathrm{Z}=28$ and $\mathrm{Z}=50$

Triaxiality in the Se, Ge and Zn Isotopes

Triaxiality in the Se, Ge and Zn Isotopes

Triaxiality in the Se, Ge and Zn Isotopes

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

PHYSICAL REVIEW C 103, 014311 (2021)
Onset of triaxial deformation in ${ }^{66} \mathrm{Zn}$ and properties of its first excited 0^{+}state studied by means of Coulomb excitation
M. Rocchini ${ }^{1,2,3, *}$ K. Hadyńska-Kleç, ${ }^{4,5}$ A. Nannini ${ }^{1,2}$ A. Goasduff ${ }^{6,6,7}$ M. Zielińska, ${ }^{8}$ D. Testov $\odot^{6,7}$ T. R. Rodríguez, ${ }^{9}$ A. Gargano, ${ }^{10}$ F. Nowackio, ${ }^{11}$ G. De Gregorio ${ }^{10,12}{ }^{12}$ H. Naïdja, ${ }^{13}$ P. Sona, ${ }^{1,2}$ J. J. Valiente-Dobón, ${ }^{4}$ D. Mengoni, ${ }^{6}$
P. R. John, ${ }^{6,7,14}$ D. Bazzacco ${ }^{6,7}$ G. Benzoni ${ }^{15}{ }^{15}$ A. Boso, ${ }^{6,7}$ P. Cocconi, ${ }^{4}$ M. Chiari ${ }^{1,1,2}$ D. T. Doherty, ${ }^{16}$ F. Galtarossa, ${ }^{4}$ G. Jaworski, ${ }^{4}$ M. Komorowska, ${ }^{5}$ N. Marchini, ${ }^{1 / 17}$ M. Matejska-Minda ${ }^{5,18}$, ${ }^{5}$ B. Melon, ${ }^{1}$ R. Menegazzo, ${ }^{6,}{ }^{6}$ P. J. Napiorkowski, ${ }^{5}$ D. Napoli,${ }^{4}$ M. Ottanelli, ${ }^{1}$ A. Perego, ${ }^{1,2}$ L. Ramina, ${ }^{7}$ M. Rampazzo, ${ }^{7}$ F. Recchia ${ }^{6,7}{ }^{, 7}$ S. Riccetto, ${ }^{19,20}$

$Z=50$		$N=50$									
		${ }^{2005} \mathrm{~S}$	${ }^{102} \mathrm{Sn}$	${ }^{1 a} \mathrm{Sn}$	${ }^{100} \mathrm{Sn}$	${ }^{200} \mathrm{Sn}$	${ }^{112} \mathrm{Sn}$	${ }^{12} \mathrm{~S}$ n	MSn	${ }^{1: C S n}$	${ }^{110} \mathrm{Sn}$
${ }^{\circ} \mathrm{Cd}$	${ }^{3} \mathrm{Cd}$	${ }^{\circ} \mathrm{CA}$ Cd	${ }^{10 \mathrm{Cd}}$	${ }^{100} \mathrm{Cd}$	${ }^{10 \times C d}$	${ }^{100} \mathrm{Cd}$	${ }^{100} \mathrm{Cd}$	${ }^{19} \mathrm{Cd}$	PCd	${ }^{124} \mathrm{Cd}$	${ }^{115} \mathrm{Cd}$
${ }^{2 \times P d}$	${ }^{4.4 P d}$	${ }^{\text {rippd }}$	${ }^{39 P d}$	$1{ }^{10 \mathrm{~Pa}}$	${ }^{1020} \mathrm{Pd}$	$\mathrm{rapd}^{\text {coper }}$	ILSPd	mpapd	${ }_{112} \mathrm{Pd}$	${ }^{127 P d}$	\|14.Pd
${ }^{20} \mathrm{RU}$	${ }^{22 R} \mathrm{R}$	2RRu	${ }^{\text {s*RU }}$ R	9RU	${ }^{100 \mathrm{RU}}$	ExRU	${ }^{29 R R u}$	${ }^{106 R U}$	${ }^{\text {1asRu }}$	${ }^{\text {H.ORU }}$	112RU
${ }^{\text {asmo }}$	9 Mo	${ }^{22} \mathrm{MO}$	MMO	8 Mo	*Mo	1100 Mo	${ }^{102 \mathrm{Mo}}$	13 Mo	${ }^{100 \mathrm{MO}}$	1209 Mo	${ }^{120} \mathrm{MO}$
ewr	a ${ }^{\text {ar }}$ r	${ }^{30} \mathrm{Zr}$	$\stackrel{\text { P2r }}{ }$	*Zr	${ }^{\text {s/2, }}$ r	sezr	${ }_{120 \mathrm{Zr}}$	${ }^{102} \mathrm{Zr}$	${ }^{10+2} \mathrm{Zr}$	${ }^{100 \mathrm{Z}} \mathrm{Z}$	${ }^{108} \mathrm{Zr}$
${ }^{\text {eas }}$ S	Sr	${ }^{3} \mathrm{Sr}$	${ }^{30} \mathrm{Sr}$	${ }^{2} \mathrm{Sr}$	${ }^{3}+\mathrm{Sr}$	sosr	wsr	${ }^{\text {nowSr }}$	${ }^{120} 5 \mathrm{Sr}$	${ }^{12045}$	${ }^{100} \mathrm{Sr}$
${ }_{8 \times \mathrm{Kr}}$	${ }^{3} \mathrm{Kr} \mathrm{r}^{\text {r }}$	${ }^{35 \mathrm{Kr}}$ r	${ }_{80 \mathrm{Kr} \mathrm{r}}$	${ }^{*} \mathrm{Kr}$	${ }^{2} 2 \mathrm{Kr}$	84 Kr	${ }^{6} \mathrm{Kr}$ r	${ }^{99 \mathrm{Kr}}$	${ }^{100 \mathrm{Kr}}$		
${ }^{205} \mathrm{Se}$	${ }^{23} \mathrm{Se}$	${ }^{84} 5 \mathrm{e}$	${ }^{365}$ S	${ }^{3} \mathrm{~S}$ e	${ }^{\text {cose }}$	\%Se	${ }^{45} 5$				
${ }^{7 \times G}$ Ge	me	${ }^{12 \mathrm{Ge}}$	${ }^{4} \mathrm{Ge}$	${ }^{\text {moGe }}$	${ }^{34 G e}$	${ }^{\text {senge }}$					
702n	${ }^{7} \mathrm{Zn}$	$\mathrm{svz}_{\mathrm{Zn}}$	8 zn	${ }^{4} \mathrm{Zn}$	eezn						
${ }^{74} \mathrm{Ni}$	${ }^{\text {s/ }} \mathrm{Ni}$	${ }^{88} \mathrm{Ni}$	${ }^{\infty} \mathrm{Ni}$	${ }^{32} \mathrm{Ni}$	$=28$						

INFN
Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich 74 Zn

Triaxiality in the Se, Ge and Zn Isotopes

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

Triaxiality in the Se, Ge and Zn Isotopes

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

Triaxiality in the Se, Ge and Zn Isotopes

lols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on $74 Z n$
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

选TRIUMF

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}$) \Rightarrow TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency y-ray spectrometer equipped with many ancillary devices

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}$) \Rightarrow TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}$) \Rightarrow TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency y-ray spectrometer equipped with many ancillary devices

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}$) \Rightarrow TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei): High-efficiency γ-ray spectrometer equipped with many ancillary devices

GRIFFIN @TRIUMF

- ISAC facility: Radioactive Ion Beam production using the ISOL technique
- ISAC-I \Rightarrow Non-reaccelerated beams $(20-40 \mathrm{keV}) \Rightarrow$ GRIFFIN
- ISAC-II \Rightarrow Post-accelerated beams (up to $\sim 10 \mathrm{MeV} / \mathrm{A}) \Rightarrow$ TIGRESS
- GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei):

ISAC-I and ISAC-II Facility
EMM

INFN

Our Experiment on ${ }^{74} \mathrm{Zn}$ with GRIFFIN

- ${ }^{74} \mathrm{Zn}$ via ${ }^{74} \mathrm{Cu} \beta$-decay $\left[\mathrm{T}_{1 / 2}=1.63(5) \mathrm{s}\right]$, Beam intensity $\approx 1.5 \cdot 10^{3} \mathrm{pps}$
- GRIFFIN: 12 of 16 available clovers at 14.5 cm from the target
- $\varepsilon_{Y}(1332.5 \mathrm{keV})=7.8 \%, \varepsilon_{\mathrm{Y}}(300 \mathrm{keV})=16.6 \%$
- P/T (addback + BGO suppressors) $=45.5 \%$
- Tape cycle: $5 \mathrm{~T}_{1 / 2}$ on, 1 s off, 0.5 s background, 1 s tape movement

Y- $\mathbf{\gamma}$ Angular Correlations

- $\quad \mathrm{Y}-\mathrm{Y}$ Angular Correlations with GRIFFIN: J.K. Smith et al., NIMA 922, 47 (2019)
- Rhombicuboctahedron geometry \Rightarrow Up to 52 opening angles

- Event mixing technique \Rightarrow No need to know \# of pairs for each opening angle and relative efficiencies of the detectors
- Finite sizes of the detectors \Rightarrow Detailed GEANT4 simulations
- Definitive spin assignments at the 99\% CL

Previous Knowledge

Iols, Shape
Coexistence an
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-Y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- ${ }^{74} \mathrm{Cu} \beta$-decay @ORNL, 3 clovers J.L. Tracy Jr. et al., PRC 98, 034309 (2018)
- 170 y-rays
- 50 levels (29 new)
- log(ft) values
- Tentative spin assignments based on decay patterns, intensities, $\log (\mathrm{ft})$ values, and in a few cases model predictions (shell model and vibrational model)

$\mathrm{y}-\mathrm{Y}$ Angular Correlations: the $\left(\mathrm{O}_{2}{ }^{+}\right)$

Experimental Results in a Nutshell

Iols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ${ }^{74} \mathrm{Zn}$
$\gamma-\gamma$ Angular
Correlations
Experimental
Results
LSSM
Calculations

Shapes and
Occupations

Conclusions

- New, definitive spin assignment for:
- $22^{+}, 0_{2}{ }^{+}, 3_{1}{ }^{+}, 2_{3}{ }^{+}$states

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$

Experimental Results in a Nutshell

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-Y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- New, definitive spin assignment for:
- $22^{+}, 0_{2}{ }^{+}, 31^{+}, 2_{3}{ }^{+}$states
- Two new transitions:

$$
\text { - } 2_{3^{+}} \longrightarrow 4_{1^{+}} \text {and } 2_{3^{+}} \longrightarrow 0_{2^{+}}
$$

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$

Experimental Results in a Nutshell

Iols, Shape

 Coexistence and TriaxialityGRIFFIN @TRIUMF

Our Experiment on ${ }^{74} \mathrm{Zn}$

y - y Angular

 CorrelationsExperimental Results

LSSM
Calculations

Shapes and Occupations

Conclusions

- New, definitive spin assignment for:
- $22^{+}, \mathrm{O}_{2}{ }^{+}, 3_{1}+, 2_{3}{ }^{+}$states
- Two new transitions:
- $23^{+} \longrightarrow 4_{1}{ }^{+}$and $23^{+} \longrightarrow 0_{2}{ }^{+}$
- From measured branching ratios and $\delta(E 2 / M 1)$ mixing ratios \Rightarrow Relative $B(E 2)$ values

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$

Experimental Results in a Nutshell

Iols, Shape Coexistence and Triaxiality

GRIFFIN @TRIUMF

Our Experiment on ${ }^{74} \mathrm{Zn}$
y - y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and Occupations

Conclusions

- New, definitive spin assignment for:
- $22^{+}, \mathrm{O}_{2}{ }^{+}, 31^{+}, 2_{3}{ }^{+}$states
- Two new transitions:
- $23^{+} \longrightarrow 4_{1}{ }^{+}$and $23^{+} \longrightarrow 0_{2}{ }^{+}$
- From measured branching ratios and $\delta(E 2 / M 1)$ mixing ratios \Rightarrow Relative $B(E 2)$ values

Strong transitions observed, indicative of band structures at low-spin in 74 Zn

New Large-Scale Shell-Model Calculations

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- By Silvia Lenzi, Frédéric Nowacki, Duc D. Dao
- LNPS interaction, pf shell for protons, $1 p_{3 / 2} \mathrm{Of}_{5 / 2} 1 \mathrm{p}_{1 / 2} \mathrm{Og}_{9 / 2} 1 \mathrm{~d}_{5 / 2}$ orbitals for neutrons
- DNO-SM: Constrained Hartree-Fock shell-model calculations D.D. Dao and F. Nowacki, PRC 105, 054314 (2022)
- Excellent agreement both for the spectra and the relative $B(E 2)$ values

In-band transitions in the calculated spectrum are labelled with the respective $B(E 2)$ values in Weisskopf units

New Large-Scale Shell-Model Calculations

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-Y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- By Silvia Lenzi, Frédéric Nowacki, Duc D. Dao
- LNPS interaction, pf shell for protons, $1 \mathrm{p}_{3 / 2} \mathrm{Of}_{5 / 2} 1 \mathrm{p}_{1 / 2} \mathrm{Og}_{9 / 2} 1 \mathrm{~d}_{5 / 2}$ orbitals for neutrons
- DNO-SM: Constrained Hartree-Fock shell-model calculations D.D. Dao and F. Nowacki, PRC 105, 054314 (2022)
- Excellent agreement both for the spectra and the relative $B(E 2)$ values

TABLE I. Energies E_{γ}, branching ratios I_{γ}, mixing ratios $\delta(E 2 / M 1)$, and relative $B(E 2)$ values $B_{\text {rel }}(E 2)$ measured in the present Letter, together with branching ratios from Ref. [40]. Relative and absolute $B(E 2)$ values obtained from the present LSSM calculations (full diagonalization) are also given. Relative $B(E 2)$ values of 100 are assumed for normalizing transitions.

$J_{i}^{\pi} \rightarrow J_{f}^{\pi}$	$E_{\gamma}(\mathrm{keV})$	I_{γ}	$I_{\gamma}^{\text {prev }}$ [40]	$\delta(E 2 / M 1)$	$B_{\text {rel }}^{\text {exp }}(E 2)$	$B_{\text {rel }}^{\text {SM }}(E 2)$	$B_{\text {abs }}^{\mathrm{SM}}(E 2)$ (W.u.)
$2_{2}^{+} \rightarrow 2_{1}^{+}$	1064.32(10)	100.0(12)	100.0(6)	-1.13(6)	100(5)	100	9.7
$2_{2}^{+} \rightarrow 0_{1}^{+}$	1670.07(20)	49.3(10)	49.4(4)		9.24(19)	22	2.1
$3_{1}^{+} \rightarrow 2_{2}^{+}$	428.73(18)	6.5(4)	9.3(4)	$-0.8_{-1.5}^{+0.2}$	100_{-30}^{+120}	100	40
$3_{1}^{+} \rightarrow 4_{1}^{+}$	680.75(15)	7.10 (19)	10.5(4)	$-1.0_{-0.8}^{+0.3}$	14_{-5}^{+7}	7.8	3.1
$3_{1}^{+} \rightarrow 2_{1}^{+}$	1493.2(3)	100.0(18)	100.0(11)	$\begin{gathered} -0.57_{-0.07}^{+0.06} \\ -2.7(5)^{a} \\ -2 . \end{gathered}$	$\begin{gathered} 1.9_{-0.3}^{+0.4} \\ 6.8(4) \end{gathered}$	8.8	3.5
$2_{3}^{+} \rightarrow 0_{2}^{+}$	359.2(6)	2.0(4)			100(20)	100	17
$2_{3}^{+} \rightarrow 2_{2}^{+}$	478.13(15)	6.8(7)	6.5(10)	$+0.9{ }_{-0.3}^{+0.8}$	37_{-15}^{+24}	15	2.6
$2_{3}^{+} \rightarrow 4_{1}^{+}$	729.94(19)	3.1(7)			4.5(10)	2.4	0.4
$2_{3}^{+} \rightarrow 2_{1}^{+}$	1542.5(3)	37(3)	29.4(14)	$+2.4{ }_{-1.0}^{+1.8}$	$1.09_{-0.26}^{+0.15}$	0.18	0.03
$2_{3}^{+} \rightarrow 0_{1}^{+}$	2148.73(16)	100(8)	100.0(27)		0.66 (5)	0.18	0.03

[^0]
Calculated Shapes from Shell Model

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- Shapes of the $0_{1}{ }^{+}, 0_{2}{ }^{+}$states calculated from quadrupole sum rules A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)

Calculated Shapes from Shell Model

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-Y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- Shapes of the $0_{1}{ }^{+}, 0_{2}{ }^{+}$states calculated from quadrupole sum rules
A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)
- Triaxial ground state (similar dispersions to those in ${ }^{76} \mathrm{Ge}$!!)

PHYSICAL REVIEW LETTERS 123, 102501 (2019)

Evidence for Rigid Triaxial Deformation in ${ }^{76} \mathbf{G e}$ from a Model-Independent Analysis
A. D. Ayangeakaa@, ${ }^{1,{ }^{*}}$ R. V.F. Janssens, ${ }^{2,3, \dagger}$ S. Zhu, ${ }^{4,+\hbar}$ D. Little ${ }^{2,3}$ J. Henderson, ${ }^{5}$ C. Y. Wu, ${ }^{5}$ D. J. Hartley, ${ }^{1}$ M. Albers, ${ }^{4}$ K. Auranen, ${ }^{4}$ B. Bucher,,${ }^{5,8}$ M. P. Carpenter, ${ }^{4}$ P. Chowdhury, ${ }^{6}$ D. Cline, ${ }^{7}$ H. L. Crawford, ${ }^{8}$ P. Fallon, ${ }^{8}$ A. M. Forney, ${ }^{,}$ A. Gade, ${ }^{10,11}$ A. B. Hayes, ${ }^{7}$ F. G. Kondev, ${ }^{4}{ }^{4}$ Krishichayan, ${ }^{3,12}$ T. Lauritsen, ${ }^{4}$ J. Li, ${ }^{4}$ A. O. Macchiavelli, ${ }^{4}$ D. Rhodes, ${ }^{10}$ D. Seweryniak, ${ }^{4}$ S. M. Stolze, ${ }^{4}$ W. B. Walters, ${ }^{9}$ and J. Wu ${ }^{4}$

Calculated Shapes from Shell Model

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- Shapes of the $0_{1}{ }^{+}, \mathrm{O}_{2}{ }^{+}$states calculated from quadrupole sum rules
A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)
- Triaxial ground state (similar dispersions to those in ${ }^{76} \mathrm{Ge}!!$
- Different shape for the $\mathrm{O}_{2}{ }^{+}$: Less deformed and more prolate

Calculated Shapes from Shell Model

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-Y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- Shapes of the $0_{1}{ }^{+}, 0_{2}{ }^{+}$states calculated from quadrupole sum rules
A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)
- Triaxial ground state (similar dispersions to those in ${ }^{76} \mathrm{Ge}!!$
- Different shape for the $\mathrm{O}_{2}{ }^{+}$: Less deformed and more prolate
- "T-Plot"-like analysis: Shape for each individual state
- Normalized probability to find a deformation (β, γ) superimposed to the potential energy surface (GCM)
- Results from quadrupole sum rules confirmed

Calculated Shapes from Shell Model

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- Shapes of the $0_{1}{ }^{+}, 0_{2}{ }^{+}$states calculated from quadrupole sum rules
A. Poves, F. Nowacki, and Y. Alhassid, PRC 101, 054307 (2020)
- Triaxial ground state (similar dispersions to those in ${ }^{76} \mathrm{Ge}!!$
- Different shape for the $\mathrm{O}_{2}{ }^{+}$: Less deformed and more prolate
- "T-Plot"-like analysis: Shape for each individual state
- Normalized probability to find a deformation (β, γ) superimposed to the potential energy surface (GCM)
- Results from quadrupole sum rules confirmed

Occupation Numbers from Shell Model

Iols, Shape
Coexistence and
Triaxiality
GRIFFIN
@TRIUMF
Our Experiment
on 74 Zn
Y-y Angular
Correlations
Experimental
Results
LSSM
Calculations
Shapes and
Occupations
Conclusions

- Occupation difference with respect to the Fermi configuration for each orbital in the chosen model space:

SM

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74}$ Zn

Occupation Numbers from Shell Model

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich 74 Zn

Occupation Numbers from Shell Model

Iols, Shape Coexistence and Triaxiality

GRIFFIN

@TRIUMF
Our Experiment on ${ }^{74} \mathrm{Zn}$
$y-y$ Angular
Correlations
Experimental Results

LSSM
Calculations
Shapes and
Occupations
Conclusions

- Occupation difference with respect to the Fermi configuration for each orbital in the chosen model space:

- Which is the intruder state? Neutrons from the pf shell and percentage of 0pOh configuration:

The ground state in
74 Zn seems to be the intruder state 1529

Typical behaviour of a nucleus in an Island of Inversion

Axial Shape Asymmetry and Configuration Coexistence in Neutron-Rich ${ }^{74} \mathrm{Zn}$

Conclusions

Iols, Shape

Coexistence and Triaxiality

GRIFFIN

@TRIUMF
Our Experiment on ${ }^{74} \mathrm{Zn}$

$\gamma-\gamma$ Angular

 CorrelationsExperimental Results

LSSM
Calculations
Shapes and Occupations

Conclusions

- Strong $2_{3}{ }^{+} \longrightarrow \mathrm{O}_{2}{ }^{+} \Longrightarrow$ Hint of Configuration Coexistence
- Strong $31^{+} \longrightarrow 2_{2}{ }^{+} \Longrightarrow$ Hint of a quasi γ-band at low excitation energy and Triaxiality
- New Large-Scale Shell-Model calculations support this interpretation
- Inversion of "normal" and intruder configurations $\Rightarrow{ }^{74} \mathrm{Zn}$ seems to be in the $\mathrm{N}=40$

Island of Inversion, which extends further north in the chart of the nuclides

PHYSICAL REVIEW LETTERS 130, 122502 (2023)

First Evidence of Axial Shape Asymmetry and Configuration Coexistence in ${ }^{74} \mathrm{Zn}$: Suggestion for a Northern Extension of the $N=40$ Island of Inversion
M. Rocchini®,,${ }^{1, *}$ P. E. Garrett®, ${ }^{1}$ M. Zielińska®, ${ }^{2}$ S. M. Lenzi® ${ }^{3,4}$ D. D. Dao®, ${ }^{5}$ F. Nowacki, ${ }^{5}$ V. Bildstein, ${ }^{1}$ A. D. MacLean, ${ }^{1}$ B. Olaizola $\odot,^{6, \dagger}$ Z. T. Ahmed, ${ }^{1}$ C. Andreoiu ${ }^{1}{ }^{7}$ A. Babu, ${ }^{6}$ G. C. Ball, ${ }^{6}$ S. S. Bhattacharjee, ${ }^{6,+}$ H. Bidaman, ${ }^{1}$ C. Cheng, ${ }^{6}$ R. Coleman, ${ }^{1}$ I. Dillmann $\odot{ }^{6,8}$ A. B. Garnsworthy, ${ }^{6}$ S. Gillespie, ${ }^{6}$ C. J. Griffin®, ${ }^{6}$ G. F. Grinyer®, ${ }^{9}$ G. Hackman, ${ }^{6}$ M. Hanley©,${ }^{10}$ A. Illana $\odot{ }^{11}$ S. Jones, ${ }^{12}$ A. T. Laffoley, ${ }^{1}$ K. G. Leach $\odot,{ }^{10}$ R. S. Lubna, ${ }^{6,8}$ J. McAfee,,${ }^{6,13}$ C. Natzke, ${ }^{6,10}$ S. Pannu, ${ }^{1}$ C. Paxman $\odot,{ }^{6,13}$ C. Porzio $\odot,{ }^{6,14,15, \|}$ A. J. Radich, ${ }^{1}$ M. M. Rajabali, ${ }^{16}$ F. Sarazin $\odot,{ }^{10}$ K. Schwarz, ${ }^{6}$

INEN

THANK YOU FOR THE ATTENTION

M. Rocchini1, P.E. Garrett¹, M. Zielińska², S.M. Lenzi3,4, D.D. Dao5, F. Nowacki5, V. Bildstein¹, A.D. MacLean¹, B. Olaizola ${ }^{6, \dagger}$, Z. Ahmed ${ }^{1}$, C. Andreoiu ${ }^{7}$, A. Babu ${ }^{6}$, G.C. Ball ${ }^{6}$, S.S. Bhattacharjee ${ }^{6, \ddagger}$, H. Bidaman ${ }^{1}$, C. Cheng ${ }^{6}$, R. Coleman ${ }^{1}$, I. Dillmann ${ }^{6,8}$, A.B. Garnsworthy ${ }^{6}$, S. Gillespie ${ }^{6}$, C. Griffin ${ }^{6}$, G.F. Grinyer ${ }^{9}$, G. Hackman ${ }^{6}$, M. Hanley ${ }^{10}$, A. Illana ${ }^{11}$, S. Jones ${ }^{12}$, A.T. Laffoley ${ }^{1}$, K.G. Leach ${ }^{10}$, R.S. Lubna ${ }^{6, S}$, J. McAfee ${ }^{6,13,}$ C. Natzke ${ }^{6,10, ~ S . ~ P a n n u 1, ~ C . ~ P a x m a n 6,13, ~ C . ~ P o r z i o ~}{ }^{6,14,15,11, ~ A . J . ~ R a d i c h 1, ~}$ M. Rajabali12, F. Sarazin ${ }^{10}$, K. Schwarz ${ }^{6}$, S. Shadrick ${ }^{10}$, S. Sharma ${ }^{9}$, J. Suh ${ }^{9}$, C.E. Svensson ${ }^{1}$, D. Yates ${ }^{6,16}$, and T. Zidar ${ }^{1}$

1 University of Guelph, Guelph, Canada 2 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France 3 Università di Padova, Padova, Italy
${ }_{4}$ INFN Sezione di Padova, Padova, Italy ${ }^{5}$ Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France 6 TRIUMF, Vancouver, Canada
7 Simon Fraser University, Burnaby, Canada 8 University of Victoria, Victoria, Canada 9 University of Regina, Regina, Canada 10 Colorado School of Mines, Golden, USA
11 University of Jyväskylä, Jyväskylä, Finland 12 University of Tennessee, Knoxville, USA 13 Univesity of Surrey, Guildford, UK 14 INFN Sezione di Milano, Milano, Italy

$$
{ }^{15} \text { Dipartimento di Fisica, Università di Milano, Milano, Italy } 16 \text { University of British Columbia, Vancouver, Canada }
$$

Present addresses: ${ }^{\dagger}$ CERN, Geneva, Switzerland ${ }^{\ddagger}$ Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czech Republic
§ Department of Physics and Astronomy, Michigan State University, East Lansing, USA I Lawrence Berkeley National Laboratory, Berkeley, USA

Marco Rocchini

INFN - Istituto Nazionale di Fisica Nucleare

 FIRENZE DIVISION
BACKUP

INFN

$\mathrm{O}_{2}{ }^{+}$States in the Ge, Zn and Ni Isotopes

- Stable $\mathrm{Ge}(\mathrm{N}=38-44) \Longrightarrow \mathrm{v}$ excitations across $\mathrm{N}=40$, small-deformation M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, PRC 80, 064323 (2009)
(Radioactive ${ }^{82} \mathrm{Ge} \Rightarrow \mathrm{v}$ excitations across $\mathrm{N}=50$, large-deformation

Multitude of p-h excitations across shell and sub shell gaps, with
different features and deformations
J. K. Hwang et al., PRC 84, 024305 (2011)

- $\quad \mathrm{Ni}(\mathrm{N}=36-42)$, Multiple Shape Coexistence:
S. Leoni et al., PRL 118, 162502 (2017) - S. Leoni et al., Acta Physica Polonica B 50, 605 (2019) - N. Marginean et al., PRL 125, 102502 (2020)
- $\mathrm{O}_{2}{ }^{+}$in ${ }^{64,66,68} \mathrm{Ni} \Longrightarrow \mathrm{v}$ excitations across $\mathrm{N}=40$, small-deformation
- $\mathrm{O}_{4}{ }^{+}$in ${ }^{64,66} \mathrm{Ni}, \mathrm{O}_{3}{ }^{+}$in ${ }^{68} \mathrm{Ni}, \mathrm{O}_{2}{ }^{+}$in ${ }^{70} \mathrm{Ni} \Rightarrow$ excitations across $\mathrm{Z}=28$, large-deformation

Energy Systematics

INFN

$$
\mathbf{3 1}^{+} \rightarrow \mathbf{2 1}^{+} \rightarrow \mathbf{0}_{1}{ }^{+}
$$

Extension of the $\mathrm{N}=40 \mathrm{lol}$

TABLE I: Occupation of the neutron intruder orbitals and percentage of particle-hole excitations across the $N=40$ gap in the ground states and first excited 0^{+}states of the Zinc isotopes. The red bold number indicates places where the extra intruder population is larger than 1 particule in average in the ground state and delimits the contour of the Island of Inversion.

Nucleus state	IPM							SM			0 p 0 h
	$\nu g_{9 / 2}$							$\nu d_{5 / 2}$	$\nu g_{9 / 2}$	$\nu d_{5 / 2}$	
${ }^{68} \mathrm{Ni}$	0_{1}^{+}	0	0	0.80	0.10	62					
	0_{2}^{+}	0	0	2.10	0.10	17					
${ }^{70} \mathrm{Ni}$	0_{1}^{+}	2	0	2.86	0.17	55					
	0_{2}^{+}	2	0	4.47	0.41	21					
${ }^{72} \mathrm{Ni}$	0_{1}^{+}	4	0	4.52	0.34	61					
	0_{2}^{+}	4	0	5.18	0.18	12					
${ }^{74} \mathrm{Ni}$	0_{1}^{+}	6	0	5.96	0.43	58					
	0_{2}^{+}	6	0	5.65	0.73	44					
${ }^{76} \mathrm{Ni}$	0_{1}^{+}	8	0	7.84	0.36	90					
	0_{2}^{+}	8	0	7.39	0.77	92					
${ }^{78} \mathrm{Ni}$	0_{1}^{+}	10	0	9.83	0.19	99					
	0_{2}^{+}	10	0	7.79	2.33	94					
${ }^{70} \mathrm{Zn}$	0_{1}^{+}	0	0	2.60	0.17	4					
	0_{2}^{+}	0	0	2.66	0.25	12					
${ }^{72} \mathrm{Zn}$	0_{1}^{+}	2	0	3.99	0.35	4					
	0_{2}^{+}	2	0	3.97	0.29	12					
${ }^{74} \mathrm{Zn}$	0_{1}^{+}	4	0	5.13	0.47	13					
	0_{2}^{+}	4	0	4.35	0.50	34					
${ }^{76} \mathrm{Zn}$	0_{1}^{+}	6	0	5.79	0.52	54					
	0_{2}^{+}	6	0	6.12	0.47	47					
${ }^{78} \mathrm{Zn}$	0_{1}^{+}	8	0	7.67	0.48	93					
	0_{2}^{+}	8	0	7.73	0.44	92					
${ }^{80} \mathrm{Zn}$	0_{1}^{+}	10	0	9.72	0.30	100					
	0_{2}^{+}	10	0	9.74	0.28	100					

TABLE II. Occupation number n^{ν} of neutron intruder orbitals from the shell-model calculations (SM) of this work compared to the independent particle model (IPM). The percentage of particlehole excitations across the $N=40$ gap in the ground state of Cr isotopes is also given. The last column features the pairing correlations energy differences $\Delta E_{\text {Pairing }}^{*}$ (in MeV) evaluated between the ground state and the 2_{1}^{+}state.

Nucleus	$n^{\nu}\left(g_{9 / 2}+d_{5 / 2}\right)$	$0 p 0 h$	$2 p 2 h$	$4 p 4 h$	$6 p 6 h$	$\Delta E_{\text {Pairing }}^{*}$	
	IPM	SM					
${ }^{60} \mathrm{Cr}$	0	1.8	14	75	7	0	1.84
${ }^{62} \mathrm{Cr}$	0	3.5	1	25	71	3	1.49
${ }^{64} \mathrm{Cr}$	0	4.3	0	8	71	20	1.25
${ }^{66} \mathrm{Cr}$	2	5.2	0	40	56	3	1.13
${ }^{68} \mathrm{Cr}$	4	6.0	6	79	11	0	1.24

INFN

Staggering

$$
\begin{aligned}
& S(J) \\
& =\frac{\left\{E\left(J_{\gamma}^{+}\right)-E\left[(J-1)_{\gamma}^{+}\right]\right\}-\left\{E\left[(J-1)_{\gamma}^{+}\right]-E\left[(J-2)_{\gamma}^{+}\right]\right\}}{E\left(2_{1}^{+}\right)},
\end{aligned}
$$

$\mathrm{N}=40$

PHYSICAL REVIEW C 80, 064323 (2009)

New effective interaction for $f_{5} p g_{9}$-shell nuclei

M. Honma, ${ }^{1}$ T. Otsuka, ${ }^{2,3,4}$ T. Mizusaki, ${ }^{5}$ and M. Hjorth-Jensen ${ }^{6}$

FIG. 24. (Color online) Occupation numbers of the neutron $g_{9 / 2}$ orbit in the shell-model wave functions. The filling configuration corresponds to the dot-dashed line.

${ }_{28}^{68} \mathrm{Ni}_{40}$: Magicity versus Superfluidity

O. Sorlin, ${ }^{1}$ S. Leenhardt, ${ }^{1}$ C. Donzaud, ${ }^{1}$ J. Duprat, ${ }^{1}$ F. Azaiez, ${ }^{1}$ F. Nowacki, ${ }^{2}$ H. Grawe, ${ }^{3}$ Zs. Dombrádi, ${ }^{4}$
F. Amorini, ${ }^{5}$ A. Astier, ${ }^{6}$ D. Baiborodin, ${ }^{7}$ M. Belleguic, ${ }^{1}$ C. Borcea, ${ }^{8}$ C. Bourgeois, ${ }^{1}$ D. M. Cullen, ${ }^{9},{ }^{*}$ Z. Dlouhy, ${ }^{7}$ E. Dragulescu, ${ }^{8}$ M. Górska, ${ }^{3}$ S. Grévy, ${ }^{10}$ D. Guillemaud-Mueller, ${ }^{1}$ G. Hagemann, ${ }^{11}$ B. Herskind, ${ }^{11}$ J. Kiener, ${ }^{12}$ R. Lemmon, ${ }^{13}$ M. Lewitowicz, ${ }^{14}$ S. M. Lukyanov, ${ }^{15}$ P. Mayet, ${ }^{3}$ F. de Oliveira Santos, ${ }^{14}$ D. Pantalica, ${ }^{7}$ Yu.-E. Penionzhkevich, ${ }^{15}$ F. Pougheon, ${ }^{1}$ A. Poves, ${ }^{16}$ N. Redon, ${ }^{6}$ M. G. Saint-Laurent, ${ }^{14}$ J. A. Scarpaci, ${ }^{1}$
G. Sletten, ${ }^{11}$ M. Stanoiu, ${ }^{14}$ O. Tarasov, ${ }^{15, \dagger}$ and Ch. Theisen ${ }^{17}$

TABLE II. Shell-model and experimental energies of the first excited state $E\left(2^{+}\right)[\mathrm{MeV}]$, calculated $B\left(E 2 \uparrow ; 0_{1}^{+} \rightarrow 2^{+}\right)$ $\left[e^{2} \mathrm{fm}^{4}\right]$, and the number $\left\langle n_{9 / 2}\right\rangle_{\text {extra }}$ of excessive neutrons occupying the $g_{9 / 2}$ orbit are compiled.

	${ }^{62} \mathrm{Ni}$	${ }^{64} \mathrm{Ni}$	${ }^{66} \mathrm{Ni}$	${ }^{68} \mathrm{Ni}$	${ }^{70} \mathrm{Ni}$	${ }^{72} \mathrm{Ni}$	${ }^{74} \mathrm{Ni}$
$E\left(2^{+}\right)_{\text {calc }}$	1.11	1.24	1.49	1.73	1.50	1.42	1.33
$E\left(2^{+}\right)_{\text {exp }}$	1.173	1.346	1.425	2.033	1.259		
$B(E 2 \uparrow)_{\text {calc }}$	775	755	520	265	410	505	690
$\left\langle n_{9 / 2}\right\rangle_{\text {ex tra }}$	0.24	0.43	0.67	1.19	0.73	0.45	0.27

66Zn Coulex

PHYSICAL REVIEW C 103, 014311 (2021)

Onset of triaxial deformation in ${ }^{66} \mathrm{Zn}$ and properties of its first excited 0^{+}state studied by means of Coulomb excitation

M. Rocchini $\odot,{ }^{1,2,3, *}$ K. Hadyńska-Klęk, ${ }^{4,5}$ A. Nannini $\odot,{ }^{1,2}$ A. Goasduff $\odot,{ }^{6,7}$ M. Zielińska, ${ }^{8}$ D. Testov $\odot,{ }^{6,7}$ T. R. Rodríguez, ${ }^{9}$ A. Gargano, ${ }^{10}$ F. Nowacki $\odot,{ }^{11}$ G. De Gregorio $\odot,{ }^{10,12}$ H. Naïdja, ${ }^{13}$ P. Sona, ${ }^{1,2}$ J. J. Valiente-Dobón, ${ }^{4}$ D. Mengoni, ${ }^{6}$ P. R. John,,${ }^{6,7,14}$ D. Bazzacco, ${ }^{6,7}$ G. Benzoni ${ }^{,}{ }^{15}$ A. Boso, ${ }^{6,7}$ P. Cocconi, ${ }^{4}$ M. Chiari $\odot,{ }^{1,2}$ D. T. Doherty, ${ }^{16}$ F. Galtarossa, ${ }^{4}$ G. Jaworski, ${ }^{4}$ M. Komorowska, ${ }^{5}$ N. Marchini, ${ }^{1,17}$ M. Matejska-Minda@ ${ }^{5,18}$ B. Melon, ${ }^{1}$ R. Menegazzo, ${ }^{6,7}$ P. J. Napiorkowski, ${ }^{5}$
D. Napoli $\odot{ }^{4}$ M. Ottanelli, ${ }^{1}$ A. Perego, ${ }^{1,2}$ L. Ramina, ${ }^{7}$ M. Rampazzo, ${ }^{7}$ F. Recchia, ${ }^{6,7}$ S. Riccetto, ${ }^{19,20}$

D. Rosso ${ }^{4}$ and M. Siciliano ${ }^{4,6}$

FIG. B. Potential energy surfaces for stable Zn isotopes resulting from detormation-constrained Hatree-Fock calculations with
hie particle number projection method (PN-VAP) and Gogny DIS interaction.

FIG. 9. Same as Fig. 8 for ${ }^{66} \mathrm{Zn}$ after projecting onto angular momentum $J=0$. A triaxial shape with a finite dispersion charac lerize the isotope and a second prolate minimum results from the calculation.

FIG. I1. Collective wave functions for selected states in ${ }^{2} \mathrm{Zn}$,
 keV is given on topleff of each C CW. The ecolored frumes are used
to present the suggested tand assignments.

INFN

Zn: Relativistic Mean-Field

Eur. Phys. J. A 25, 29-39 (2005) DOI 10.1140/ep.ja/i2004-10235-

The European PHYSICAL JOURNAL A

Relativistic mean-field study for Zn isotopes
W.Z. Jiang ${ }^{1,3, \mathrm{a}}, ~ Z . Z$. Ren 2, T.T. Wang ${ }^{1}$, Y.L. Zhao ${ }^{1}$, and Z.Y. Zhu ${ }^{1,3}$

ig. 8. The Routhian for ${ }^{60} \mathrm{Zn}$ with respect to the quadrupole deformation with the NL-SH set. The coefficient labeled in the gure is the reduction factor of the pairing gap constant. The coefficient 1.0 means no reduction.

β_{2}

Fig. 9. The same as shown in fig. 8 , but for ${ }^{66} \mathrm{Zn}$.

INFN

Zn: Covariant Density Functional theory

PHYSICAL REVIEW C 101, 064322 (2020

Ground state properties of Zn, Ge, and Se isotopic chains in covariant density functional theory
Nihad J. Abu Awwad, ${ }^{1}$ H. Abusara \cdot. ${ }^{1, *}$ and Shakeb Ahmad ${ }^{2 .}$

INFN
Ni Isotopes \& Z = 28
Rapid Communications
PHYSICAL REVIEW C 89, 031301(R) (2014)

Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure
Yusuke Tsunoda, ${ }^{1}$ Takaharu Otsuka, ${ }^{1,2,3}$ Noritaka Shimizu, ${ }^{2}$ Michio Honma, ${ }^{4}$ and Yutaka Utsuno ${ }^{5}$

FGG. 3. (Color online) Potential energy surfuces (PESS) of Ni isotopes, coordinated by the usual $\underline{Q}_{\mathrm{a}}$ and $Q_{\text {, (or }} y$). The energy relaive to

FIG. 4: ${ }^{64} \mathrm{Ni}$ potential energy surfaces with (a) full, original interaction used in MCSM calculations [11], and (b) monopole-frozen interaction (i.e., the monopole component is subtracted from the proton-neutron interaction, and singleparticle energies are adjusted to original effective values of the spherical minimum [6]).

PHYSICAL REVIEW C 84, 024305 (2011)

Possible excited deformed rotational bands in ${ }^{82} \mathrm{Ge}$

J. K. Hwang, ${ }^{1}$ J. H. Hamilton, ${ }^{1}$ A. V. Ramayya, ${ }^{1}$ N. T. Brewer, ${ }^{1}$ Y. X. Luo, ${ }^{1,2}$ J. O. Rasmussen, ${ }^{2}$ and S. J. Zhu ${ }^{1,3}$ 'Physics Department, Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{2}$ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{3}$ Department of Physics, Tsinghua University, Beijing 100084, People' Republic of China (Received 26 April 2011; revised manuscript received 27 May 2011; published 9 August 2011)

0^{+}States in Ni Isotopes

[^0]: ${ }^{\mathrm{a}}$ Second solution.

