Advances in Radioactive Isotope Science

ID de Contribution: 384 Type: invited presentation

Determination of the Neutron Dripline at F and Ne and Discovery of the Heaviest Na Isotope: ³⁹Na

mercredi 7 juin 2023 11:25 (25 minutes)

The location of the neutron dripline is crucial to understand the stability of nucleonic many-body systems with extreme neutron-to-proton ratios.

It provides a benchmark for nuclear theories and mass models, and an important key to understand underlying nuclear structure and interactions.

The neutron dripline has been experimentally determined up to oxygen (atomic number Z = 8) as 24 O [1-4] more than 20 year ago, while no experimental confirmation has been reported for $Z \ge 9$.

We have searched for the neutron driplines, the heaviest new isotopes, of fluorine (Z = 9), neon (10), and sodium (11) by the BigRIPS separator at the RIKEN RI Beam Factory.

The neutron-rich isotopes were produced by projectile fragmentation of a 345-MeV/u 450~500-pnA ⁴⁸Ca²⁰⁺ beam impinging on a 20-mm-thick Be target.

No events were observed for ^{32,33}F, ^{35,36}Ne, and ³⁸Na [5].

Comparison with predicted yields excludes the existence of bound states of these unobserved isotopes with high confidence levels, which indicates that 31 F and 34 Ne are the heaviest bound isotopes of fluorine and neon, respectively.

We have confirmed the fluorine and neon neutron driplines for the first time.

We have observed the new isotope of 39 Na, which is the most neutron-rich isotope with N = 28 neutron magic number [6].

The locations of the neutron dripline from oxygen to neon isotopes and the bound nature of 39 Na could be explained by evolution of nuclear deformation.

By the recent large-scale shell-model calculation with $ab\ initio$ effective NN interaction [7], the oxygen dripline is determined by a new magic number of N = 16, emerging by tensor force and repulsive 3 nucleon forces

From Z = 9 to 12, quadrupole deformation leads to a larger binding energy for neutrons and affects the location of the driplines.

The discovery of 39 Na suggests that its ground state is deformed and the magicity of N=28 is lost.

In this talk, the experimental results will be presented to discuss the location of the neutron driplines as well as the underlying nuclear structure.

References:

- [1] D. Guillemaud-Mueller et~al., Phys. Rev. C 41, 937 (1990).
- [2] M. Fauerbach et al., Phys. Rev. C 53, 647 (1996).
- [3] O. B. Tarasov et al., Phys. Lett. B 409, 64 (1997).
- [4] H. Sakurai et al., Phys. Lett. B 448, 180 (1999).
- [5] D.S. Ahn, T. Kubo et al., Phys. Rev. Lett. 123, 212501 (2019).
- [6] D.S. Ahn, T. Kubo et al., Phys. Rev. Lett. 129, 212502 (2022).
- [7] N. Tsunoda et al., Nature (London) 587, 66 (2020).

Auteur: Prof. KUBO, Toshiyuki (RIKEN Nishina Center)

Co-auteurs: Dr AHN, DeukSoon (Center for Exotic Nuclear Studies, KOREA); M. AMANO, Junki (Rikkyo University); Dr BABA, Hidetada (RIKEN Nishina Center); Dr FUKUDA, Naoki (RIKEN Nishina Center); Prof. GEISSEL, Hans (GSI); Dr INABE, Naohito (RIKEN Nishina Center); M. ISHIKAWA, Shunki (Tohoku University); Prof. IWASA, Naohito (Tohoku University); Dr KOMATSUBARA, Tetsuro (RIKEN Nishina Center); Dr KUSAKA, Kensuke (RIKEN Nishina Center); Prof. MORRISSEY, David J. (NSCL/MSU); Dr MURAI, Daichi (Rikkyo University); Prof. NAKAMURA, Takashi (Tokyo Institute of Technology); M. OHTAKE, Masao (RIKEN Nishina Center); Dr OTSU, Hideaki (RIKEN Nishina Center); M. SAKAKIBARA, Takahiro (Tohoku University); Dr SATO, Hiromi (RIKEN Nishina Center); Prof. SHERRILL, Brad M. (FRIB/MSU); Dr SHIMIZU, Yohei (RIKEN Nishina Center); Dr SUZUKI, Hiroshi (RIKEN Nishina Center); Dr TAKEDA, Hiroyuki (RIKEN Nishina Center); Dr TARASOV, Oleg B. (NSCL/MSU); Dr UENO, Hideki (RIKEN Nishina Center); Dr YANAGISAWA, Yoshiyuki (RIKEN Nishina Center); Dr YOSHIDA, Koichi (RIKEN Nishina Center)

Orateur: Dr SUZUKI, Hiroshi (RIKEN Nishina Center)

Classification de Session: plenary 10

Classification de thématique: reactions