

Direct measurements of astrophysically important reactions using rare isotope beams at TRIUMF

Annika Lennarz

Division of Physical Sciences | TRIUMF

on behalf of the DRAGON collaboration

Advances in Radioactive Isotope Science - June 4-9, 2023

Key question: Origin of the chemical elements?

Radiative Capture Reactions

- Fusion of nucleus with one or more nuclei via emission of electromag. radiation:
- Occurs directly into bound state or via particle unbound states (resonant)
- Influential in nuclear astrophysics
- pp-chains, CNO cycle, explosive nucleosynthesis in novae, X-ray bursts, supernovae
- p- & α-induced reactions with positive Q-value
- ➔ Knowledge important for reaction pathways!
- Proceed relatively slowly, thus rate-limiting step in reaction pathways
- Many radiative capture cross sections are vanishingly small
- Span a large range at applicable astrophysical energies: (range of cross sections)
 - → Need intense beams, low background, long run times, feasible targets, …

Annika Lennarz – ARIS 2023

TRIUMF/ISAC

- Production of rare ion beams
- TRIUMF: Canada's particle accelerator center
- Irradiation of thick production target with proton beam
- Generated in sector-focused H⁻ cyclotron (23 MHz)

500 MeV proton beam Up to ~100 μA (~5000 hrs/year)

- Beams re-accelerated through 35 MHz RFQ with A/q<30
- 105 MHz variable energy DTL ($3 \le A/q \le 6$)
- Energies between 0.15 MeV/u & 1.8 MeV/u
- Low-energy regime well suited for reaction studies for novae & X-ray bursts

TRIUMF/ISAC

- Production of rare ion beams
- TRIUMF: Canada's particle accelerator center
- Irradiation of thick production target with proton beam
- Generated in sector-focused H⁻ cyclotron (23 MHz)

500 MeV proton beam μA (~5000 hrs/year)

- Beams re-accelerated through 35 MHz RFQ with A/q<30
- 105 MHz variable energy DTL ($3 \le A/q \le 6$)
- Energies between 0.15 MeV/u & 1.8 MeV/u
- Low-energy regime well suited for reaction studies for novae & X-ray bursts

DRAGON – Detector of Recoils and Gammas of Nuclear Reactions

- 1 Windowless gas target
- (2) BGO γ -detection array
- 3 MEME mass separator
- 4 Recoil detection system

#reactions per incident ion

$$N_A \langle \sigma \upsilon \rangle = 1.54 \times 10^{11} \left(\mu T\right)^{-3/2} \omega \gamma \cdot \exp\left(-11.605 \frac{E_R}{T_9}\right)$$

- Coincidence measurement with prompt
 γ-rays & PID cuts & TOF
- suppression factor of ~10¹⁵ for pcapture & ~5x10¹⁷ for α-capture

Annika Lennarz – ARIS 2023

IC/PGAC

Stop

Recoil Detectors

DRAGON

Annika Lennarz – ARIS 2023

Cosmic *γ***-ray emitter** ²⁶**AI**

The radioisotope ²⁶Al provides insight into the nature of nuclear processes in stars in the Milky Way.

Relatively short half-life (0.72 Myr) provided first direct evidence of *active* nucleosynthesis in our Galaxy (1.809 MeV γ-ray)

→ Tracer for star formation

- ²⁶Mg isotopic excesses in **meteorites**
- → Early Solar System

Identifying the main sources of ²⁶Al would have far-reaching implications:

- Circumstances & conditions of the solar system birth
- Strong constraints on the chemical evolution 0 of the Galaxy

However, it's astrophysical origin is still under debate! 8

The astrophysical origin of ²⁶Al

Need to understand production &

destruction of ²⁶AI in stellar scenarios!

 Experimental physics has focused on reactions on nuclear ground states

Annika Lennarz – ARIS 2023

Figure from G. Lotay

The astrophysical origin of ²⁶Al Nucleosynthesis of ²⁶Al is complicated by

the presence of an isomer ($E_x = 228.31(3) \text{ keV}$)

Can act as entirely separate nuclei!

➔ Need to measure proton capture on excited quantum state of ²⁶A1

EXPERIMENTAL CHALLENGE

Annika Lennarz – ARIS 2023

Radiative capture on nuclear isomer – Direct measurement of $^{26m}AI(p,\gamma)$ at DRAGON

Incoming beam composed of ^{26m}AI, ^{26g}AI, ²⁶Na

G. Lotay, A. Lennarz, C. Ruiz et. al., Phys. Rev. Lett. 128, 042701 (2022)

Annika Lennarz – ARIS 2023

Used Ionization chamber & MCPs for recoil detection

Results

- **Reference** resonance: $\omega\gamma(369 \text{keV}) = 61 + 8(\text{stat.}) + 6(\text{sys.}) \text{ meV}$ (singles & coincidence analysis) in good agreement). Good agreement with previous measurements \rightarrow Verifies exp. methodology.
- **Off-resonance** measurements were taken at a beam energy of 484 A keV
 - **→ No coincident events** were observed in those data runs, confirming zero background counts in the region of interest.
- Strength for 447 keV resonance is <u>high!</u> Consistent with constraints given in Hallam, Lotay et al. (PRL126, 2021)

TABLE I: Summary of parameters used for the determination of resonance strengths. The values N_{inc} and N_{det} represent the number of incident particles and number of detected events, respectively, while the parameters η_{BGO} , η_{MCP} , $\eta_{trans.}$, η_{IC} and η_{CSF} correspond to the BGO array, MCP, transmission, ionization chamber and charge state fraction efficiencies.

Reaction	E_r	N_{inc}	N_{det}	η_{BGO}	η_{MCP}	$\eta_{trans.}$	η_{IC}	η_{CSF}		$\omega\gamma$	
	$[\mathrm{keV}]$									[meV]	
$^{26g}Al + p$	369	$1.090(9) \times 10^{13}$	339(18)	0.83(8)	0.99(1)	0.77(1)	0.80(1)	0.40(2)	61 ± 8	$(stat.) \pm 6$	δ (sys.)
26m Al + p	447	$6.93(20) \times 10^{10}$	10(3)	0.64(6)	0.99(1)	0.77(1)	0.80(1)	0.37(2)	$432\ \pm 137$	$'$ (stat.) \pm	51 (sys.)
G. Lotay, A. Lennarz, C. Ruiz et. al.,											

G. Lotav. A. Lennarz. C. Ruiz et. al.,

```
Phys. Rev. Lett. 128, 042701 (2022)
```

Conclusions – contribution to reaction rate

G. Lotay, A. Lennarz, C. Ruiz et. al., Phys. Rev. Lett. 128, 042701 (2022) → With present result for $\omega\gamma$, $E_{c.m.} = 447$ keV resonance governs the entire ${}^{26m}AI(p,\gamma)$ stellar reaction rate over the peak temperature range of classical novae and supernovae

 But, keep in mind, strengths of resonances in ^{26m}Al + p with E_r > 447 keV remain uncertain

→ could still increase the overall ${}^{26m}Al(p, \gamma)$ rate considerably at high temperatures!

PHYSICAL REVIEW LETTERS										
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Staff	
Radia ^{26m} Al	tive Ca $\left(p,\gamma ight)^{27}$	pture on Si Reacti	Nuclear I on	somers	Direct	Measur	ement	t of the		

G. Lotay, A. Lennarz, C. Ruiz, C. Akers, A. A. Chen, G. Christian, D. Connolly, B. Davids, T. Davinson, J. Fallis, D. A. Hutcheon, P. Machule, L. Martin, D. J. Mountford, and A. St. J. Murphy Phys. Rev. Lett. **128**, 042701 – Published 27 January 2022

⁷Be(α,γ)¹¹C

- Breakout reaction from pp-chains to CNO cycle
- Affects proton-to-seed ratio in early vp-process in CCSN
- DRAGON performed first measurement of the E_r = 1155 & 1110 keV resonances + confirmed 2 known strengths
- Uncertainty of reaction rate is now ~ 9.4 10.7% over T= 1.5-3 GK (relevant temperature window for vp-process nucleosynthesis)

⁷Be(α,γ)¹¹C

- Breakout reaction from pp-chains to CNO cycle
- Affects proton-to-seed ratio in early vp-process in CCSN
- DRAGON performed first measurement of the E_r = 1155 & 1110 keV resonances + confirmed 2 known strengths
- Uncertainty of reaction rate is now ~ 9.4 10.7% over T= 1.5-3 GK (relevant temperature window for vp-process nucleosynthesis)

Conclusions:

- The new ⁷Be(α,γ)¹¹C reaction rate is sufficiently constrained for nucleosynthesis calculations
- Does not significantly affect production of neutron-deficient heavy elements (p-nuclei)
- New avenue for future experiments using DRAGON, that were previously thought to be inaccessible due to acceptance

A. Psaltis et al. - PRL 129, 162701 (2022) A. Psaltis et al. - PRC 106, 045805 (2022)

Study of the ${}^{20}Ne(p,\gamma){}^{21}Na$ reaction rate

NeNa cycle & ²²Na production

 20 Ne(p, γ) 21 Na(β +) 21 Ne(p, γ) 22 Na

Study of the ${}^{20}Ne(p,\gamma){}^{21}Na$ reaction rate

• No data for DC \rightarrow 2424 keV or DC \rightarrow 332 keV (target Gamow window)

Annika Lennarz – ARIS 2023

Proposal by Greife, Sarazin, Ruiz et al.

17

GRIFFIN HPGe detectors at DRAGON gas target

DRAGON & GRIFFIN DAQs

Merged for coincidence

measurements

Temporarily replaced BGO array with GRIFFIN HPGe detectors

Analysis & simulations by Madeleine Hanley Colorado School of Mines

Annika Lennarz – ARIS 2023

Proof of principle at 550 keV in ²⁰Ne(p,γ)

GRIFFIN-DRAGON coincidence spectrum

Analysis by Madeleine Hanley Colorado School of Mines

Outlook: ${}^{23}Mg(p,\gamma){}^{24}AI - Nova nucleosynthesis$

Bridge between the NeNa & MgAl cycles (T ~0.2 – 0.4 GK)

Rate likely dominated by ~475 keV resonance!

Affects abundances of γ-ray emitters ²⁶AI & ²²Na

> Collaboration with Surrey (UK) and St. Mary's U.

Previous work at DRAGON by L. Erikson et al. - PRC 81, 045808 (2010):

- Uncertainties in the resonance energy
- Resonance was placed far upstream in the DRAGON gas target

Second attempt this July w/ new detector configuration (LaBr3, CeBr3, BGO):

- Target ~663 keV and ~475 keV resonances (perform energy scan)
- Careful placement of potential contaminating resonance in ${}^{23}Na(p,\gamma)!$

Outlook: Upgrade to LaBr₃ array – resonant timing technique

- Medium with better timing properties (sub-ns) and/or energy resolution
- High-efficiency scintillation material \rightarrow LaBr₃

Timing between prompt γ-rays & accelerator beam bunch accuracy arrival time \rightarrow **Reaction position** 40 35 30 a) b) 7 events 67 events Beam bunch generated Incoming energy Outgoing energy 25 with (ΔE , Δt) according (measured in expt.) (measured in expt.) 20 to ISAC emittance 15 10 Gas target 100 events d) 6 events c) 0.6 0.4 0.2 γ hits TDC signals w.r.t. ISAC 11MHz signal RF Annika Lennarz – ARIS 2023 Resonance Z Position [cm] \rightarrow 84ns

Extra sensitive, precise measure of resonance energy!

 z_0 within a few events, to ~ ±0.3cm

Outlook: Plans for neutron detector array ²²Ne(α,n)

- Organic glass scintillators for neutron detection
- 1 × 1 × 1 & 3 × 3 × 3 cm³ OGS cubes, each coupled to a PMT
- For e.g.: ${}^{22}Ne + \alpha \rightarrow {}^{25}Mg + n$ (s-process n-source)
- Populate $E_x = 11.83$ MeV resonance in the ²²Ne(a,n)²⁵Mg reaction

Annika Lennarz – ARIS 2023

T. A. Laplace et al., JINST 15 P11020 (2020).

- superb n/γ pulse shape discrimination
- sub-nanosecond timing resolution
- bright, emitting ~17,000 photons/MeVee 22

Successful program at DRAGON

Reactions measured are important for scenarios, including novae, type I x-ray bursts, core-collapse supernovae, main sequence Sun-type stars and late-stage massive stars.

Successful program at DRAGON

Reactions measured are important for scenarios, including novae, type I x-ray bursts, core-collapse supernovae, main sequence Sun-type stars and late-stage massive stars.

Future experiments

Exp. No.	Reaction	RIB	Facility	Motivation	Status	Priority
S813LOI	$^{15}\mathrm{O}(\alpha,\gamma)^{19}\mathrm{Ne}$	Y	DRAGON	Ignition of Type I XRB	Endorsed	1
S870LOI	¹⁸ Ne(α ,p) ²¹ Na	Y	TUDA	Ignition of Type I XRB	Endorsed	1
S922LOI	$^{25}\mathrm{Al}(p,\gamma)^{26}\mathrm{Si}$	Y	DRAGON	Production of Galactic ²⁶ Al	Endorsed	1
S946LOI	${}^{17}\mathrm{F}(p,\gamma){}^{18}\mathrm{O}$	Y	DRAGON	Breakout of Hot CNO cycle, ¹⁸ F	Endorsed	1
S996	$^{18}\mathrm{F}(p,\alpha)^{15}\mathrm{O}$	Y	TUDA	511 keV flux from ¹⁸ F in novae	Approved	High
S1152LOI	$^{14}\mathrm{C}(\alpha,\gamma)^{18}\mathrm{O}$	Y	DRAGON	Ignition of type 0.Ia supernovae	Endorsed	1
S1289LOI	$^{44}{ m Ti}(p,\gamma)^{45}{ m V}$	Y	DRAGON	Production of ⁴⁴ Ti in CCSN	Endorsed	1
S1289LOI	$^{44}\mathrm{Ti}(\alpha,p)^{47}\mathrm{V}$	Y	TUDA	Production of ⁴⁴ Ti in CCSN	Endorsed	1
S1398	${}^{11}C(p,\gamma){}^{12}N$	Y	DRAGON	Stellar evolution and <i>ab-initio</i> theory	Approved	Medium
S1425	$^{15}{\rm O}(\alpha,\gamma)^{19}{\rm Ne}$	Y	DRAGON	511 keV flux from ¹⁸ F in novae	Approved	High
S1690	22 Na(p,γ) 23 Mg	Y	DRAGON	1275 keV line emission from novae	Approved	High
S1763	${}^{11}C(p,p){}^{11}C$	Y	TUDA	Stellar evolution and <i>ab-initio</i> theory	Approved	High
S1796LOI	${}^{37}{\rm Ar}(p,\gamma){}^{38}{\rm K}$	Y	DRAGON	Nucleosynthesis in novae	Endorsed	1
S1799	23 Mg(p,γ) 24 Al	Y	DRAGON	γ -ray emission from novae	Approved	High
S1819	$^{18}\text{Ne}(d,p)^{19}\text{Ne}$	Y	TUDA	511 keV flux from ¹⁸ F in novae	Approved	High
S1880	20 Ne(<i>p</i> , γ) ²² Na		DRAGON	Weakly-bound "proton halo" states	Approved	High
S1881LOI	$^{35}\mathrm{Ar}(p,\gamma)^{36}\mathrm{K}$	Y	DRAGON	Rp-process in Type I XRB	Endorsed	1
S2013	$^{7}\mathrm{Be}(p,\gamma)^{8}\mathrm{B}$	Y	DRAGON	Solar neutrinos	Approved	High
S2018	$^{7}\mathrm{Be}(\alpha,\alpha)^{7}\mathrm{Be}$	Y	DRAGON	Nucleosynthesis & NIF calibration	Approved	High
S2034	$^{7}\mathrm{Be}(p,p)^{7}\mathrm{Be}$	Y	DRAGON	Production of solar neutrinos	Approved	High
S2054LOI	$^{29}{ m Si}(p,\gamma)^{30}{ m P}$		DRAGON	Presolar Grains	Endorsed	1
S2136LOI	51 Mn(p, γ) 52 Fe	Y	DRAGON	Gamma-ray astronomy	Endorsed	1
S2172	⁶ He(<i>p</i> , <i>p</i>) ⁶ He	Y	TUDA	Ab-initio nuclear theory	Approved	Medium
S2186	$^{19}{ m F}(p,\gamma)^{20}{ m Ne}$		DRAGON	Nucleosynthesis in the first stars	Approved	High
S2230	22 Ne(α ,n) 25 Mg		DRAGON	Weak r-process	Approved	High

Annika Lennarz – ARIS 2023

Summary

- We seek to understand the nature and role of nuclear reactions that govern energy release & nucleosynthesis path in explosive scenarios
- Radiative capture reactions play crucial role in many astrophysical scenarios
- DRAGON holds record with 8 out of 11 RIB measurements of radiative capture world-wide!
- At DRAGON we have performed the first ever direct study of excited state proton capture
- Recent experimental upgrades (variable setups):
 - Installation of HPGe detectors instead of BGO \rightarrow ²⁰Ne(*p*, γ)
 - Mixed LaBr₃, CeBr₃ & BGO → $^{23}Mg(p,\gamma)$ in July 2023
- Outlook:
- Plans for neutron detector array \rightarrow Direct measurement of ²²Ne(α ,n) reaction
- RIB experiments: ²³Mg(p,γ), ¹⁵O(α,γ)¹⁹Ne, ⁷Be(p,γ), ¹¹C(p,γ)¹²N, ¹¹C(p,p)¹¹C, ²²Na(p,γ)²³Mg, ...

Acknowledgements

C. Ruiz, M. Alcorta, C. Brune, A.A. Chen, G. Christian, R. deBoer, D. Connolly, B. Davids, A. Edwin, A. Garnsworthy, U. Greife, M. Hanley, D. Hutcheon, A. Katrusiak, A. M. Laird, A. Lennarz, M. Loria, G. Lotay, P. Machule, L. Martin, S. Paneru, A. Parikh, A. Psaltis, F. Sarazin, A. Shotter, S. Upadhyayula, V. Vedia, L. Wagner, M. Williams

∂TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

28

²⁰Ne(*p*,γ) – Doppler corrected spectrum

Recoil gated spectrum

Experimental spectrum with Doppler corrections at 550 keV

Doppler corrections applied to individual crystals in bottom four detectors

Analysis & simulations by Madeleine Hanley Colorado School of Mines

Measurements in Inverse Kinematics

If ratio m_{beam}/m_{target} is <u>large</u>, recoil energy can only be relatively small amount lower than beam energy!

- Necessity due to not being able to make short-lived radioactive targets
- Detect recoiling product nucleus: forward focused
- Problem of separating rare reaction products (recoils) from abundant beam
 >zero-degree electromagnetic separator

Advantages:

- Use of gaseous target (H₂ or He) → windowless (jet, extended), purified etc...
- Detect gamma rays (coincidence tagging)
- Particle ID (focal plane) on reaction products

Normalization

All measurements of cross sections/resonance strength require knowledge of the number of particles incident on the target

- Faraday Cup readings cannot distinguish between beam components
- →Isomeric component was identified by its associated β+ decay to the ²⁶Mg g.s.
- Beam deposited on left mass slit downstream of ED1
- Emitted positrons are "guided" up a horn at the center of two Nal scintillators positioned 180 degrees to each other.
- Allows for β + detection via annihilation in the horn and subsequent detection of 511 keV coincidence photons.

Figure from D. Mountford

Benchmark GEANT3 acceptance of DRAGON

-Using a high cone angle reaction of known simple γ -decay

A. Psaltis et al. - NIMA 987 (2021) 164828

- GEANT3 simulation includes raytracing
- Benchmarked against *α*source measurements

- Includes reaction simulation, cascade decays, angular distributions, BRs, energy levels, etc.
- Successfully benchmarked simulation for large recoil cones with ⁶Li(α,γ)¹⁰B reaction (known resonance at 1459 keV)

⁷Be(α,γ)¹¹C – results

- Recently performed direct measurement of various resonances in $^{7}Be(\alpha,\gamma)^{11}C$
- 2 previously unknown strengths!
- Re-measured E_r = 876 keV resonance strength & results agrees with previous measurement
- Work submitted to PRL and PRC

PHYSICAL REVIEW LETTERS 126, 042701 (2021)

TABLE II. Properties of resonant states in the ${}^{26m}Al(p,\gamma){}^{27}Si$ reaction. Upper limits for proton partial widths have been estimated using present cross sections, while γ -ray widths have been determined using a lifetime lower limit of 1 fs, for γ -decaying states, unless otherwise noted. In the case of the 218- and 448-keV resonances, we present strength estimates for both even- and odd-parity assignments.

E_x	<i>E</i> _γ [27]	E_r [27]	J^{π}	σ	$C^2S_{26\mathrm{Si}(d,p)}$ a	$C^2 S_{26mAl(p,\gamma)}^{a}$	Γ_p	Γ_{γ}	ωγ
	[keV]	[keV]		[µb]			[meV]	[meV]	[meV]
7838	6879.6(2)	146.3(3)	$5/2^{+}$	≤ 168	≤ 0.03	≤ 0.015	$\leq 4.9 \times 10^{-6}$	≤ 658	$\leq 1.5 \times 10^{-5}$
7909	7127.1(7)	217.8(7)	3/2-	≤ 43	≤ 0.01	≤ 0.005	$\leq 2.7 \times 10^{-2}$	≤ 658	≤ 0.054
			$3/2^{+}$		≤ 0.01	≤ 0.005	$\leq 7.1 \times 10^{-4}$	≤ 658	$\leq 1.4 \times 10^{-3}$
8070	7111.5(30)	378.3(30)	$3/2^{+}$	≤ 14	≤ 0.003	≤ 0.0015	≤ 0.16	≤ 658	≤ 0.33
8140	7180.9(6)	447.7(6)	$1/2^{+}$	≤ 58	≤ 0.09	≤ 0.045	683 ^b	890 °	385
			$1/2^{-}$		≤ 0.02	≤ 0.01	≤ 190	≤ 658	≤ 147
8184	7401.7(4)	492.2(4)	3/2-	≤ 15	≤ 0.002	≤ 0.001	≤ 45	165 [27]	≤ 70

 ${}^{a}C^{2}_{b} = 2/3 \text{ and } C^{2}_{(p,\gamma)} = 1/3$ ${}^{b}C^{2}S = 0.01 - \text{ see text for details}$

^cAdopted from shell-model calculations for the $1/2^+_7$ state

BGO detector array – Coincidence measurements

- **BGO** (Bi₄Ge₃O₁₂) array (30 detectors)
- High γ-ray detection efficiency (40 to 80%, depending on multiplicity & energy)
- Combined with TOF → low random coincidence rate!

Caveat:

- Rely on simulation for detection efficiency
- \rightarrow dominates syst. error of the experiment!
- Limited γ-ray energy resolution (FWHM ~9%)
- Segmented BGO array along beam axis →
 Information about location of reaction
- BGO hit pattern → resonance energy (0.5%)

Geometric acceptance

Minimum at $E_{cm} = Q$

Figures from C. Ruiz et. al., Eur. Phys. A 50, 99 (2014)