Advances in Radioactive Isotope Science ID de Contribution: 639 Type: oral contribution ## OEDO-SHARAQ system: Its multifaceted performance and recent experimental achievements mercredi 7 juin 2023 10:00 (25 minutes) The OEDO-SHARAQ system at RIBF in RIKEN was primarily started to promote high-resolution nuclear spectroscopy with radioactive isotope (RI) beams. It was recently upgraded as the world's first beamline characterized by the energy-degrading of RI beams with a followed magnetic spectrometer for fragment analysis. The high-resolution property of the system was fully demonstrated in the direct atomic mass measurements by using the TOF-B ρ method. We recently reported the atomic masses of $^{55-57}$ Ca and $^{58-62}$ Ti for the first time using the OEDO-SHARAQ system in RIBF [1,2]. In this talk we would like to discuss the shell evolution in the neutron $p_{1/2}$, $f_{5/2}$ and $g_{9/2}$ orbitals in this region and the similarities or differences to a region around 24 O and 32 Mg. The energy-degrading operation of the system began experiments in the spring of 2017. This beamline was designed to decelerate the intermediate-energy RI beam produced by the BigRIPS separator down to 10-50 MeV/u. A radio-frequency electric ion-optical element is installed in the beamline, which provides unique ion optics of time-dependent beam focusing [3]. Additionally, an angle-tunable wedge-shaped energy degrader is utilized for the compression of RI-beam energy [4]. The combination of these key equipment enables OEDO to achieve simultaneously good beam focusing and energy compression on the secondary target. Thus, the RI beams provided by the OEDO-SHARAQ system widely cover the energy range for pre-compound, pre-equilibrium, and/or direct reactions. After OEDO's construction, we performed measurements utilizing such reaction mechanisms. Recent achievements include low-energy cross-section studies of spallation reactions on RIs, especially long-lived fission products (LLFPs) 93 Zr and 107 Pd. The results report the lowest beam energy measurements for these LLFPs and are essential when designing reduction schemes for nuclear waste management [5]. Also, experimental studies on the astrophysical neutron-capture process were done. Amplitudes of neutron-capture processes are essential for nucleosynthesis in explosive sites. OEDO-SHARAQ provides the experimental opportunity to determine survival probabilities from unbound states via a pre-compound neutron-transfer reaction. We recently measured 130 Sn(d,p) and 56 Ni(d,p) reactions to study the neutron captures in r- and νp -processes, respectively. Data analyses are ongoing. We will show here tentative achievements mainly regarding the experimental technique. This presentation will introduce the multifaceted performances of the OEDO-SHARAQ system in intermediateenergy high-resolution spectroscopy and low-energy inverse-kinematics reaction measurements and report the recent experimental results of the system. We also discuss perspectives about future physics programs. **Author:** MICHIMASA, Shin'ichiro (Center for Nuclear Study, The University of Tokyo) **Co-auteurs:** SUZUKI, Daisuke (RIKEN Nishina Center); HWANG, Jongwon (CNS, the University of Tokyo); DO-ZONO, Masanori; IMAI, Nobuaki; YOKOYAMA, Rin (Center for Nuclear Study, the University of Tokyo); OTA, Shinsuke (Center for Nuclear Study, the University of Tokyo); SHIMOURA, Susumu (Center for Nuclear Study, the University of Tokyo); CHILLERY, Thomas Orateur: MICHIMASA, Shin'ichiro (Center for Nuclear Study, The University of Tokyo) Classification de Session: plenary 09