Understanding Cross-shell Interaction in Exotic Nuclei: Case of ³⁶Al and ³⁶Si Rebeka Sultana Lubna Facility for Rare Isotope Beams(FRIB) #### **Evolution of Nuclear Shell Structure** - Nuclear shell gaps and hence the structure changes for varying N/Z. - Isotopes with N >> Z are rich testing ground for the models. - Onset of deformation. - Disappearance of canonical magic numbers. - Emergence of new magic numbers. #### **Evolution of Nuclear Shell Structure** - Systematic study to understand the evolution of nuclear shell structure. - Pinpoint different components of nuclear force. - Nuclear shell gaps and hence the structure changes for varying N/Z. - Isotopes with N >> Z are rich testing ground for the models. - Onset of deformation. - Disappearance of canonical magic numbers. - Emergence of new magic numbers. #### Structure of ³⁶Al and ³⁶Si - Even-mass Al isotopes exhibit β-decaying isomer. - Structure of ³⁶Al is not well known. #### Structure of ³⁶Al and ³⁶Si - Even-mass Al isotopes exhibit β-decaying isomer. - Structure of ³⁶Al is not well known. - Negative parity trend of even-mass Si isotope shows evidence of N=20 shell gap evolution. - How about N>20? No negative parity level is known for ³⁶Si. - β-decay of ³⁶Al (g.s.) will populate them. #### **Experiment at FRIB** Photo credit: FDSi collaboration - FDSi: FRIB Decay Station initiator. - Primary beam ⁴⁸Ca impinged on a ⁹Be target. - FDSi: YSO implant detector, 11 HPGe, 15 LaBr₃ and VANDLE for neutron detection. - Scintillator and PIN for particle identification. #### **Experiment at FRIB** Photo credit: FDSi collaboration - FDSi: FRIB Decay Station initiator. - Primary beam ⁴⁸Ca impinged on a ⁹Be target. - FDSi: YSO Implant detector, 11 HPGe, 15 LaBr₃ and VANDLE for neutron detection. - SiPM and PIN for particle identification. - PID from the first FRIB experiment. - Center of the secondary beam was ⁴²Si. - ³⁶Mg and ³⁶Al were populated whose β-decay descendant nuclei are not well known. H.L.Crawford et al., Phys. Rev. Lett. 129, 21250 ### **Experiment at NSCL** impinged on a ⁹Be target. CeBr₃ implant detector, 16 SeGA, 15 LaBr₃ detectors. **NSCL** β -decay station. Primary beam ⁴⁸Ca - Two PIN detectors for particle identification. - Cocktail bean center was ³³Na. #### Particle ID (NSCL) #### Particle ID (NSCL) Preferentially populates 1⁺ state of ³⁶Al via allowed β decay Preferentially populates 1⁺ state of ³⁶Al via allowed β decay Preferentially populates negative parity states of 36 Si via allowed β decay Preferentially populates 1⁺ state of ³⁶Al via allowed β decay Preferentially populates negative parity states of ³⁶Si via allowed β decay - Valence protons in sd shell, neutrons in fp shell. - Populate opposite parity states of the first descendant via allowed β decay. ## β-decay of ³⁶Mg #### β-decay of ³⁶Mg 35AI 36AI ³⁶Mg - One y-ray candidate of ³⁶Al at 657 keV. - Observe ³⁶Si 2⁺ to g.s. transition and a new candidate at 1109 keV. - γ-γ coincidence confirms the 1109 keV peak belongs to ³⁶Si. - Observed descendants from the β -delayed neutron emissions. Peaks labeled in red are newly assigned # β-decay of ³⁶Al ### β-decay of ³⁶Al - Observed ³⁶Si 2⁺ to g.s. transition at 1408 keV and a new candidate at 2316 keV. - Weak presence of the 1109 keV peak. Peaks labeled in red are newly assigned #### β-decay of ³⁶Al - Observed ³⁶Si 2⁺ to g.s. transition at 1408 keV and a new candidate at 2316 keV. - Weak presence of the 1109 keV peak. - Discrepancy in the relative intensities between 1109 and 1408-keV peaks. - Absence and presence of 2316 keV peak in two β-decay paths. - Indication of a β -decaying isomer in 36 Al. #### Half-lives of ³⁶Mg and ³⁶Al **NSCL** data #### ³⁶Mg decay half-life #### ³⁶Al decay half-life - Half-life of ³⁶Mg extracted as 6.9(10) ms from the 657 keV γ-gated time distribution. - Half-life extracted for ³⁶Al was 14.7(10) ms and 12.0(20) ms from the full time distribution and the 2316 keV γ-gated time distributions - Half-life of ³⁶Al was reported before as 90(40) ms. #### Half-life of ³⁶Al Isomer #### **NSCL** data - Half-life of the isomer in 36Al has been measured from the γ transition gated time distribution. - From the 1408 keV gate, half-life is extracted as 6.9(11) ms. - From the 2316 keV gate, half-life is extracted as 7.0(12) ms. #### **Proposed Decay Schemes of Mass A=36** National Science Foundation Michigan State University - β-decay of ³⁶Mg populates the 1⁺ state of ³⁶Al which decays via isomeric state. - The isomeric state decays via βparticle and populates 2518 keV state of ³⁶Si. - **β-decay of ³⁶Al ground state** populates 3725 keV state of ³⁶Si. - 3725 keV state will be of negative parity if populated by the allowed **B** transition. Relative ordering of g.s. and isomeric state in ³⁶Al could not be determined. #### Nuclear Shell-model Predictions, ³⁶Al - Shell model calculations performed by using FSU interaction. - Unmixed 0p0h (negative) and 1p1h (positive) calculations were performed to predict states of ³⁶Al. - Predicted 2⁻ and 4⁻ levels closely spaced in energies, one of them can be the ground state. - 1p1h excitation calculates the lowest states as 1⁺ with 440 keV. *Black: previously confirmed Red: Suggested from this work #### Nuclear Shell-model Predictions, ³⁶Si - Shell model calculations performed by using FSU interaction. - No mixing was allowed to calculate the positive and negative parity states. - The first predicted negative parity state is above 4 MeV. - No good negative parity candidate for the 2518 keV. - Predicted 2^+ 2686 keV level can be the theoretical counterpart the 2518 keV state. This can be populated by a forbidden β -decay or fed by a state above. *Black: previously confirmed Red: Suggested from this work # Systematic of the Negative-parity States of Even-mass Si Isotopes - Experimentally observed negative-parity states of even-mass Si isotopes compared with that predicted by using FSU interaction. - Trends are well reproduced by the calculations. - According to the trend, the first negative parity of ³⁶Si is expected to be around 4 MeV. - Do we have intruder/ opposite parity states for the higher mass isotopes? - Are we ready to populate them and interpret their structure with the existing theoretical models? #### **Summary** - Investigated structure of ^{36}AI via β -decay of ^{36}Mg . - Strong indication of a long-lived βdecaying isomeric state. - Predictions with the FSU interaction supports the existence of an isomer and well predicts the 1⁺ state. #### **Summary** - Investigated structure of ³⁶Al via β-decay of ³⁶Mg. - Strong indication of a long-lived βdecaying isomeric state. - Predictions with the FSU interaction supports the existence of an isomer and well predicts the 1⁺ state. - Investigated structure of ³⁶Si via β-decay of ³⁶Mg and ³⁶Al. - More precise half-life measured. - Negative parity intruder state was suggested to be around 4 MeV. - Theoretical predictions made for the systematic of Si isotopes supports the argument. #### **Summary** - Investigated structure of 36 Al via β -decay of 36 Mg. - Strong indication of a long-lived βdecaying isomeric state. - Predictions with the FSU interaction supports the existence of an isomer and well predicts the 1⁺ state. - Investigated structure of ³⁶Si via β-decay of ³⁶Mg and ³⁶Al. - More precise half-life measured. - Negative parity intruder state was suggested to be around 4 MeV. - Theoretical predictions made for the systematic of Si isotopes supports the argument. #### **Future:** - More exciting data coimg from FRIB, are we ready?. - Experimental data will provide stringent test to the theoretical models as well as will be invaluable inputs to improve them. # Thank You #### **Collaboration:** ``` R. S. Lubna, S. N. Liddick, T. H. Ogunbeku, A. Chester, J. M. Allmond, Soumik Bhattacharya, C. M. Campbell, M. P. Carpenter, K. L. Childers, P. Chowdhury, J. Christie, B. R. Clark, R. M. Clark, I. Cox, II H. L. Crawford, B. P. Crider, A. A. Doetsch, I. II P. Fallon, A. Frotscher, T. Gaballah, T. J. Gray, R. Grzywacz, U. J. T. Harke, A. C. Hartley, R. Jain, T. T. King, 4 N. Kitamura, ¹⁰ K. Kolos, ¹² F. G. Kondev, ⁷ E. Lamere, ⁹ R. Lewis, ^{8,2} B. Longfellow, ^{8,11,12} S. Lyons, ^{8,*} S. Luitel, M. Madurga, R. Mahajan, M. J. Mogannam, C. Morse, S. K. Neupane, W.-J. Ong, 2 D. Perez-Loureiro, ¹⁰ C. Porzio, ⁶ C. J. Prokop, ¹⁴ A. L. Richard, ^{8,†} E. K. Ronning, ^{1,2} E. Rubino, ^{1,†} K. Rykaczewski, D. Seweryniak, K. Siegl, U. Silwal, M. Singh, D. P. Siwakoti, D. C. Smith, M. K. Smith, S. L. Tabor, T. L. Tang, Vandana Tripathi, A. Volya, T. Wheeler, 1, 11 Y. Xiao, and Z. Xu¹⁰ ¹Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA ²Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA ³Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, USA ⁴Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ⁶Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁷ Argonne National Laboratory, Argonne, Illinois 60439, USA ⁸National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁹Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA ¹⁰Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA ¹¹ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ¹²Lawrence Livermore National Laboratory, Livermore, California 94550, USA ¹³Brookhaven National Laboratory, Upton, New York 11973, USA ¹⁴Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ``` # Thank You for Your Attention #### Work supported by: - U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC02-06CH11357(ANL), No. DE-AC02-98CH10946(BNL), No. DE-AC02-05CH11231(LBNL), No. DE-AC52-07NA27344(LLNL), No. DE-C0020451(Michigan State), No. DE-SC0014448(Mississippi State), No. DE-AC05-00OR22725(ORNL), No. DE-FG02-96ER40983(UTK) and No. DE-FG02-94ER40848(UML). U.S. National Science Foundation under Grants No. PHY-2012522(FSU), No. PHY-1848177(CAREER) (Mississippi State) and No. PHY-1565546(NSCL). - U.S. Department of Energy, National Nuclear Security Administration under Award No. DE-NA0003180(Michigan State) and the Stewardship Science Academic Alliances program through DOE Awards No. DE-NA0003899(UTK) and No. DOE-DE-NA0003906(Michigan State), No. DE-SC0009883(FSU) - NSF Major Research Instrumentation Program Award No. 1919735(UTK). - Discussions with B. A. Brown (FRIB, MSU) are gratefully acknowledged. # Back Up ## Half-lives and P_n of ³⁶Mg and ³⁶Al measured at RIKEN Table 1. Preliminary results on β -delayed neutron emission probabilities P_n . | nucleus | P_n (%) | nucleus | P_n (%) 55 ± 11 | | |------------------|-------------|------------------|-------------------|--| | 31 Na | 82 ± 42 | ³⁷ Al | | | | 32Na | 59 ± 17 | 38Al | 84 ± 19 | | | 33Na | 136 ± 34 | ³⁹ Al | 97 ± 22 | | | 32 Mg | 6 ± 4 | 37Si | 15 ± 8 | | | ³³ Mg | 50 ± 18 | ³⁸ Si | 28 ± 7 | | | 34Mg | 58 ± 12 | 39Si | 60 ± 13 | | | 35 Mg | 52 ± 11 | ⁴⁰ Si | 53 ± 12 | | | ³⁶ Mg | 48 ± 12 | 41Si | 103 ± 48 | | | 34 Al | 30 ± 6 | 41 P | 71 ± 21 | | | 35 Al | 43 ± 9 | 42 P | 57 ± 13 | | | 36A1 | 55 ± 11 | 43 p | 84 ± 47 | | # Half-lives of ³⁶Mg and ³⁶Al Isomer for 100 ms Correlation ## ³⁶Mg β-delayed γ-ray spectrum (NSCL) **Background subtracted** # $^{34}Mg -> ^{34}Al -> ^{34}Si$ #### Mg and Al Half-lives Systematics - In Mg isotopes, the half-lives decreases for the increasing ratio of N/Z. - The measured half-life in the current analysis follows the trend. - Al isotopes also follow the trend of more exotic nuclei have shorter half-lives, except for ³⁶Al. - The current measured half-life is far different from the previously measured one but falls right on the trend with the other Al isotope half-lives. ### Areas of γ-peaks **Expected counts** | Decaying parent | γ-transition | Area | | |------------------|--------------|------|--| | ³⁶ Mg | 1109 | 237 | | | | 1408 | 373 | | | | 2316 | 134 | | | ³⁶ AI | 1109 | 80 | | | | 1408 | 126 | | | | 2316 | 45 | | | | | | | | decay | gate | peak | area gate | eff_gate | eff_peak | expected area peak | |-------|------|------|-------------|----------|----------|--------------------| | | keV | keV | coincidence | | | | | | | | spectrum | | | | | 36Mg | 657 | 910 | 156.00 | 0.04 | 0.04 | 5.66 | | | 1408 | 2316 | 228.49 | 0.03 | 0.02 | 4.89 | | | 1408 | 1109 | 228.49 | 0.03 | 0.03 | 7.59 | | 36AI | 1408 | 1109 | 118.87 | 0.03 | 0.03 | 3.95 | | | 1408 | 2316 | 118.87 | 0.03 | 0.02 | 2.54 | ### ³⁴Si: Transitional Nucleus along N = 20 - Compared the experimental levels with some modern theoretical models. - FSU, SDPF-U-MIX and VS-IMSRG well predicts the first excited 0+ and 2+ with the $2\hbar\omega$ excitation. 34Si negative parity • The first negative parity 3-, 4-, 5- states are dominated by the $1\hbar\omega$ excitation with the dominant configuration $\left(\nu d_{\frac{3}{2}}\right)\mathbf{1}\otimes\left(\nu f_{\frac{7}{2}}\right)\mathbf{1}$ #### Rare Isotopes via Projectile Fragmentation Isotope production process during projectile fragmentation. - Produce exotic isotopes. - Production occurs at very high energies (~100 MeV/nucleon). - Many isotopes are produced simultaneously. Ground State (g.s.) configuration of ³⁶Mg, Spin 0⁺ $$\nu 0d_{3/2} \stackrel{\beta^{\text{-}}}{\rightarrow} \pi 0d_{5/2}$$ Strongly populates 1⁺ (intruder) state of ³⁶Al via allowed β transition $\frac{5}{2} \otimes \frac{3}{2} \rightarrow 1^{+}$ Ground State (g.s.) configuration of 36 Al. Spin, $\frac{5}{2}\otimes\frac{3}{2}\to 1^--6^-$ $\nu 0d_{3/2} \stackrel{\beta^{-}}{\rightarrow} \pi 0d_{5/2}$ Populates intruder, negative parity states of 36 Si via allowed β transition. Levels of 36 Si will also be populated from the β decay of 36 Mg. - With N>20, both will populate the intruder states of the first descendant nuclei. - No experimental information on ³⁶Al is available except for the half-life. - No experimental information on ³⁶Si from the β-decay of ³⁶Al is available. ³⁶Si known level scheme of y-transitions