

Precision half-life measurements of mirror transitions at the Nuclear Science Laboratory

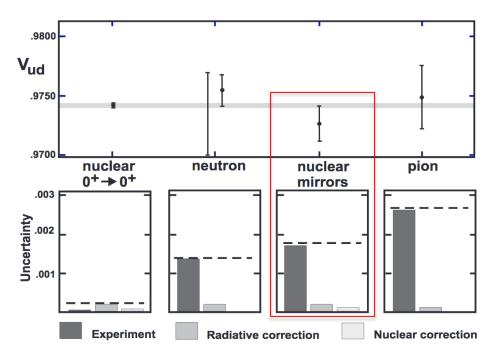
Maxime Brodeur University of Notre Dame

Unitarity test of the SM

- The Standard Model (SM) can be tested via the CKM matrix unitarity.
- CKM matrix: relates the quark weak and regular eigenstates.

$$\begin{pmatrix} |d_w\rangle \\ |s_w\rangle \\ |b_w\rangle \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} |d_s\rangle \\ |s_s\rangle \\ |b_s\rangle \end{pmatrix}$$

- SM: CKM matrix should be unitary $\sum_i |V_{ui}|^2 = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ Non-unitarity could lead to new physics: $+|V_{ux}|^2$
- - Extra quark generation
 - Extra Z boson
 - Supersymmetry
 - Or erroneous experimental data or theoretical corrections...
- V_{ud}: largest element and obtained from beta decays

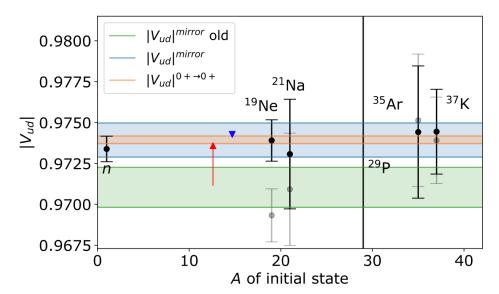


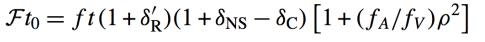
Obtaining the V_{ud} element

- For a reliable CKM matrix unitarity test, V_{ud} need to be precise and accurate.
- Accuracy tested by a determination of V_{ud} using multiple systems.

J.C. Hardy and I.S. Towner, arXiv:1807.01146v1 [nucl-ex] (2018)

- Pure Fermi transitions
 - Most precise determination
 - Need nuclear corrections
- Pion decay
 - No nuclear corrections
 - Very low branching ratio
- Neutron decay
 - No nuclear corrections
 - Lifetime issues
 - Need Fermi-GT mixing ratio
- Mixed transitions


Currently fall short from unitarity by 3σ.


V_{ud} from mixed transitions

- Only 5 nuclei
- One more parameter needed than pure Fermi:
 - ✓ Half-life
 - ✓ Branching ratios ft-value
 - ✓ Q-values
 - Fermi-to-Gamow
 Teller mixing ratio ρ

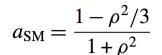
L. Hayen, PRD **103**, 113001 (2021)

$$=\frac{K}{G_{\rm F}^2 V_{ud}^2 (1+\Delta_{\rm R}^V)},$$

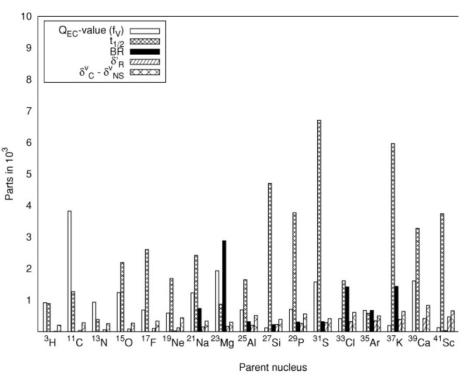
ρ determined by measuring either:

- β asymmetry parameter A_{β}
- ν asymmetry parameter B_ν
- β - ν angular correlation $a_{\beta\nu}$

 V_{ud} from mirror transitions is currently 6x less precise than $0^+ -> 0^+$


Short term: reduce sources of uncertainties in the ft-values

Need to improve ft-values



$$\mathcal{F}t_{0} = ft(1 + \delta'_{R})(1 + \delta_{NS} - \delta_{C}) \left[1 + (f_{A}/f_{V})\rho^{2}\right]$$

$$= \frac{K}{G_{F}^{2}V_{ud}^{2}(1 + \Delta_{R}^{V})},$$

Assuming 0.5% uncertainty on a

		a	
Parent nucleus	ΔV_{ud}	$(\Delta V_{ud})^{ m limit}$	Factor $\Delta \mathcal{F}t$
³ H	0.0011	0.0010	2.1
¹¹ C	0.0025	0.0016	4.0
^{13}N	0.0017	0.0017	1.0
¹⁵ O	0.0020	0.0016	2.4
17 F	0.0019	0.0013	3.1
¹⁹ Ne	0.0011	0.0010	1.5
²¹ Na	0.0022	0.0017	2.7
23 Mg	0.0025	0.0018	3.1
²⁵ Al	0.0019	0.0018	1.7
²⁷ Si	0.0029	0.0018	4.1
^{29}P	0.0026	0.0018	3.4
31 S	0.0038	0.0018	5.9
³³ Cl	0.0021	0.0018	2.0
³⁵ Ar	0.0019	0.0018	1.1
37 K	0.0034	0.0017	5.8
³⁹ Ca	0.0024	0.0016	3.5
⁴¹ Sc	0.0029	0.0022	2.7

N. Severjins et al., PRC **78**, 055501 (2008)

N. Severjins & O. Naviliat-Cuncic, Phys. Scr. T152, 014018 (2013)

Half-life measurements @ ND

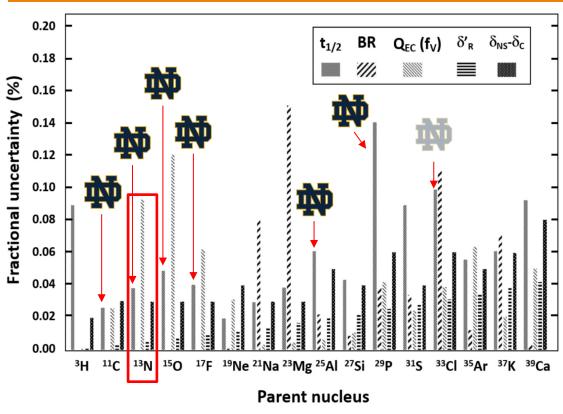
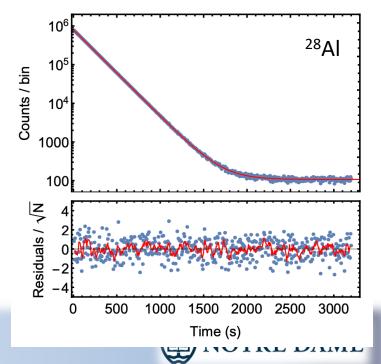


Figure from N. Severjins et al., arXiv:2109.08895 [nucl-ex] (2021)

¹⁷F: M. Brodeur *et al.* PRC **93** 025503 (2016). ²⁵Al: J. Long *et al.* PRC **96**, 015502 (2017) .

¹¹C: A. Valverde *et al.* PRC **97**, 035503 (2018).

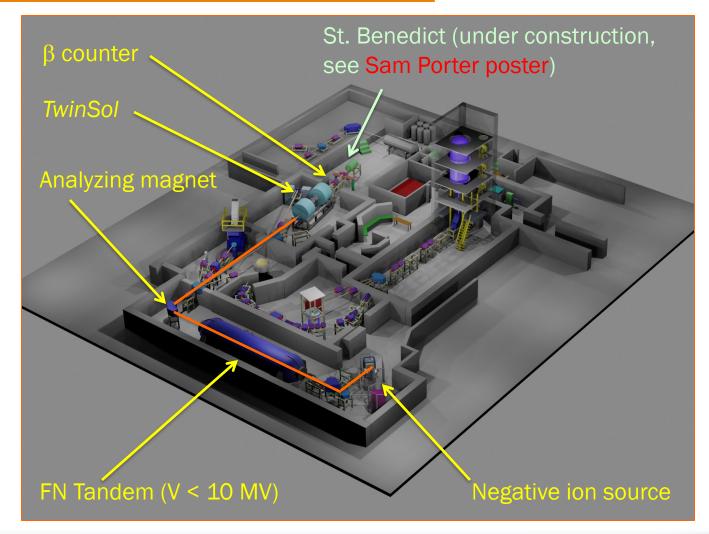
²⁰F: D.P. Burdette *et al.* PRC **99**, 015501 (2019).


¹⁵O: D.P. Burdette *et al.* PRC **101** 055504 (2020).

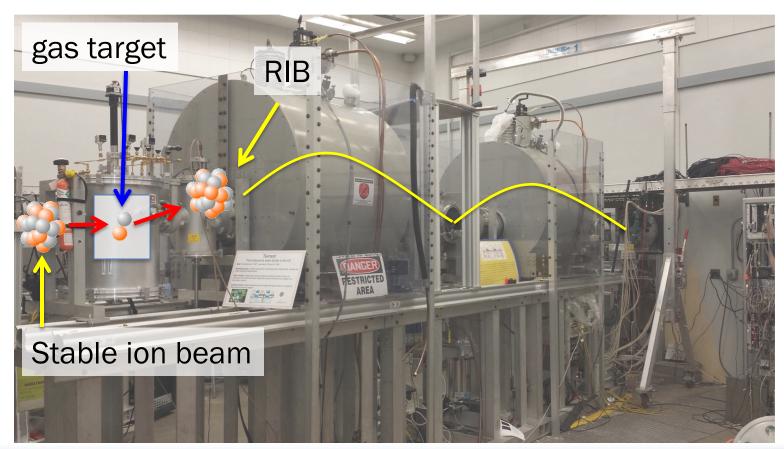
²⁹P: J. Long et al. PRC **101**, 015501 (2020).

¹³N: J. Long *et al.* PRC **106**, 045501 (2022).

²⁸Al: B. Liu *et al.* In preparation.


³³Cl: P.D. O'Malley *et al.* under analysis.

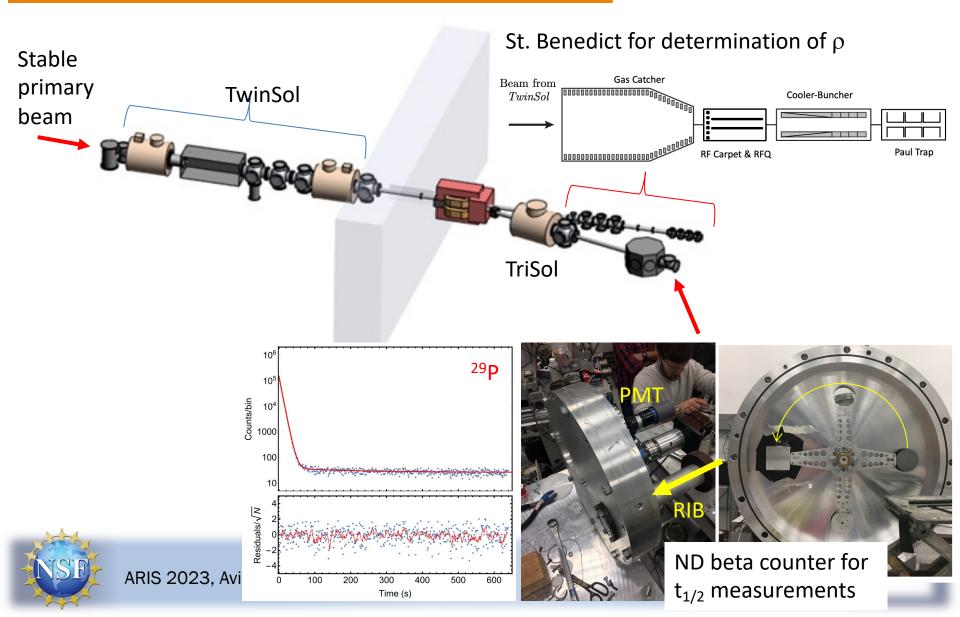
Nuclear Science Laboratory



TwinSol facility

Oldest RIB facility still operational

F.D. Becchetti *et al.*, NIM A **505**, 377 (2003)



RIBs at the NSL

RIB produced at TwinSol

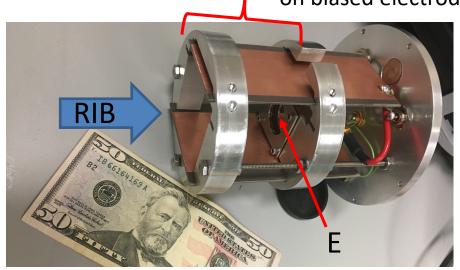
-																														
	z	36Sc 37Sc 38Sc 39Sc 40Sc 42Sc 43Sc 44Sc 44Sc 458									45Sc	46Sc	47Sc	48Sc	49Sc	50Se														
											34Ca	35Ca	36Ca	37Ca	38Ca	39Ca	40Ca	41 Ca	42Ca	43Ca	44 Ca	45Ca	46Ca	47Ca	48Ca	49Ca				
:	L9									32K	33K	34K	35K	36K	37K	35K	39K	40K	41K	42K	43K	44K	45K	46K	47K	48K				
													30 A r	31 A r	32 A r	33 A r	34 A r	35 A r	36 A r	37 A r	38 A r	39Ar	40Ar	41Ar	42Ar	43Ar	44 A r	45Ar	46Ar	47Ar
:	L7											2801	29Cl	30Cl	31 CJ	3201	33(01	34Cl	35Cl	seci	37Cl	38Cl	39Cl	40Cl	41 Cl	42Cl	43Cl	44Cl	45Cl	46Cl
											265	278	288	298	308	318	325	335	348	358	365	378	385	398	408	418	428	438	448	458
:	L5									24P	25P	26P	27P	28P	*	*	31P	Isotope				Reaction				Rate (pps/μA)				
									22Si	23Si	24Si	25Si	26Si	27Si	28Si	29Si	30Si	11	¹¹ C ¹⁰ B(d,n)				1)		2.4x10 ⁵					
:	L3								21 A l	22 A l	23Al	24Al	2AAl	26 U	27Al	2841	29 A l	13			¹² C(d,n)			8.1x10 ⁵						
								19Mg	20 M g	21 M g	22Mg	23Mg	24Mg	25 M g	26 M g	27Mg	28Mg	13	'IN		·	12C	(a,r	1)		8.I	ΧΤС) ⁵		
:	L1							18 N a	19 N a	20 N a	21 N a	22Na	23 N a	24Na	25 N a	26 N a	27 N a	: 15	0			¹⁴ N	(d,ı	n)		5.0	x10)6		
							16Ne	17Ne	18Ne	19Ne	20 Ne	21 Ne	22 N e	23Ne	24Ne	25 N e	26 N e	17	'F			¹⁶ O	(d,ı	n)		1.5	x10) 6		
	9					14F	15F	16F	*	₹	19F	21F	21F	22F	23F	24F	25F	25	ΔI				-							
					120	130	140	*	160	170	180	190	200	210	220	230	240		Αl				•	d,n)		3.0	ΧΙ() ²		
	7			1010	11N	12N	TAN	14N	15N	16N	17N	18N	19N	20 N	21N	22N	23N	29	P		:	²⁸ Si	(d,	n)		2.0	x10)5		
			8C	9C	*	*	120	13C	140	15C	16C	170	180	190	20C	21C	22C	33	CI			³³ S(d,r	1)		9x1	.0 ³			
	5	6B	7B	8B	98	10B	118	128	13B	148	15B	16B	17B	18B	198	20B	21B	41	Sc			⁴⁰ Ca				4x1	n 3			
		1		3		5		7		9		11		13		15			3 C			<u> </u>	a(u	,11)		→ ∨7	.0			

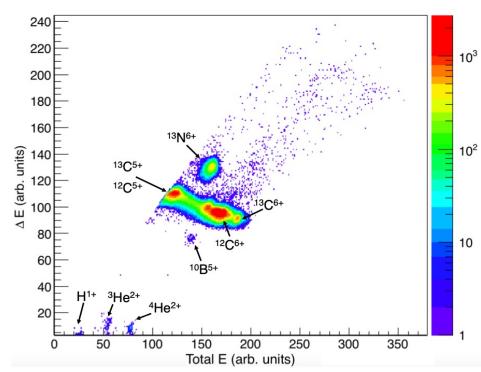
Energy choice

 ^{13}N

- Tandem operated at 6.8 MV
- ¹²C⁴⁺ primary beam at 34 MeV
- E(after foil) = 29.6 MeV
- Deuterium target at 832 torr
- No major radioactive contaminant to be expected

Reaction Products	Q-Value (ke	V)	Threshold (keV)
¹⁴ N + γ	10272.3		0	
¹³ C + p	2721.7		0	
$^{12}C + d$	0.0		0	
¹³ N + NN	-281.1	3	1965.6	21
¹⁰ B + α	-1339.8		9368.5	
¹² C + NN + p	-2224.6		15555.4	
⁶ Li + 2α	-5801.0		40563.1	
$\alpha + d + 2\alpha$	-7274.7		50867.8	
⁸ Be + d + α	-7366.6		51510.4	
⁹ Be + p + α	-7926.6	1	55426.2	7

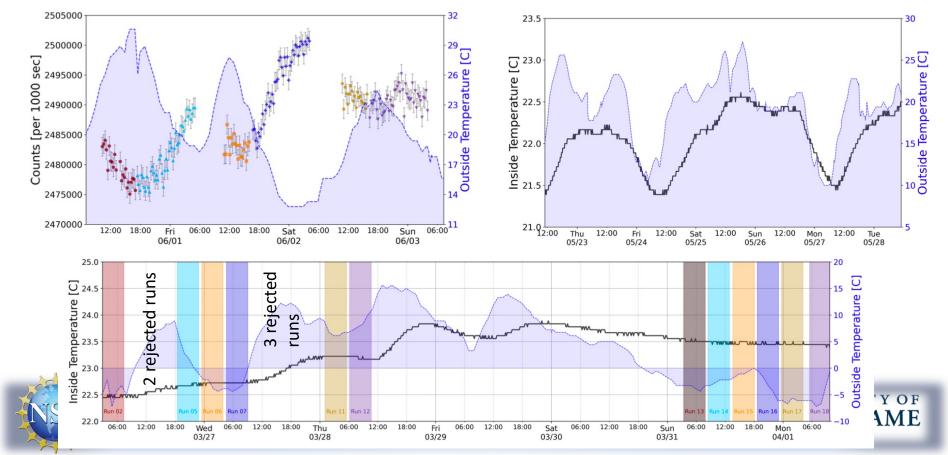



Particle identification with "Akbar"

ΔE P-10, charge collection on biased electrode

Silicon detector

No sign of radioactive contamination



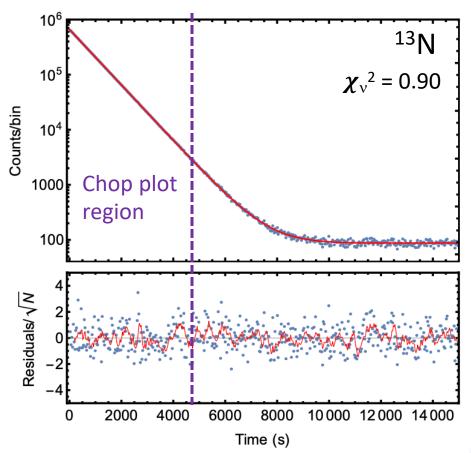
PMT stability

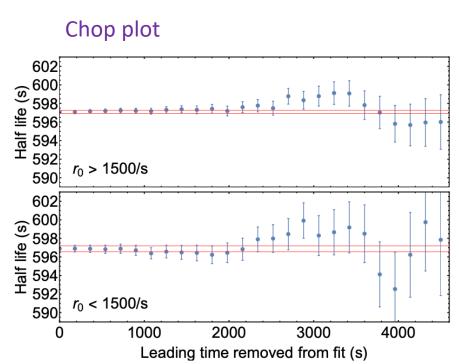
- With the 13 N $t_{1/2}$ ~ 10 minutes, need to ensure that measured count rate is stable over periods of time on order of 2-3 hours.
- Recorded rate from 90 Sr ($t_{1/2} \sim 28.9 \text{ y}$) source over several days.
- Saw strong correlation between measured rate and temperature.
- As result, only kept in analysis runs for which temperature varied by < 0.1C.

Measurement procedure

Typical procedure:

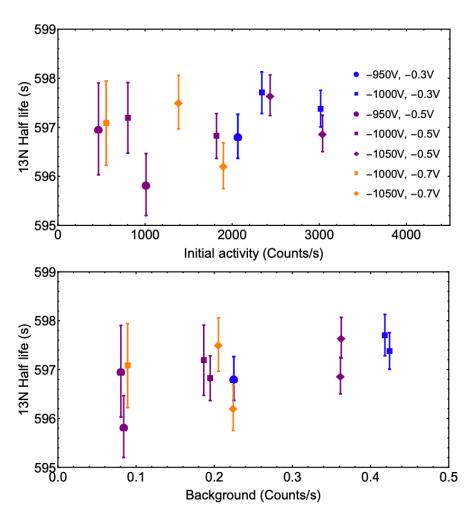
- 1) Implant ion beam on a Ta foil for \sim 3 $t_{1/2}$.
- Deflect beam entering tandem.
- 3) Rotate foil in front of 1 mm plastic scintillator coupled to a PMT.
- 4) Count for \sim 25 t_{1/2}.
- 5) Rotate back to implant position, turn on the beam and repeat.

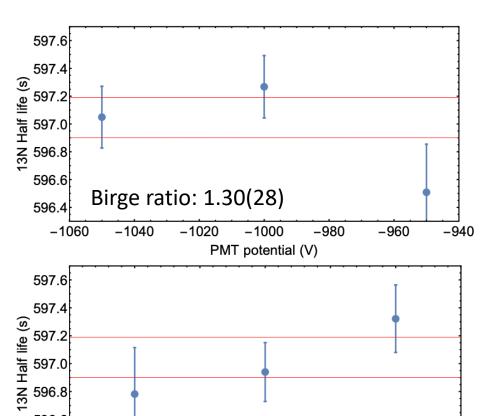




Sum fit & chop plot

- Fitted using techniques from: V.T. Koslowsky et al., NIM A 401, 289 (1997)
 - G. Grinyer et al., PRC **71**, 044309 (2005)





Individual runs & grouping by setting

596.6

596.4

-0.8

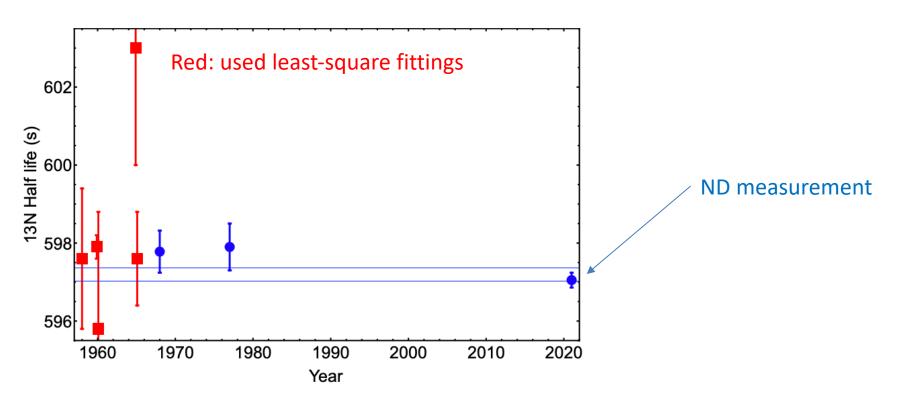
-0.7

-0.6

-0.5

Threshold potential (V)

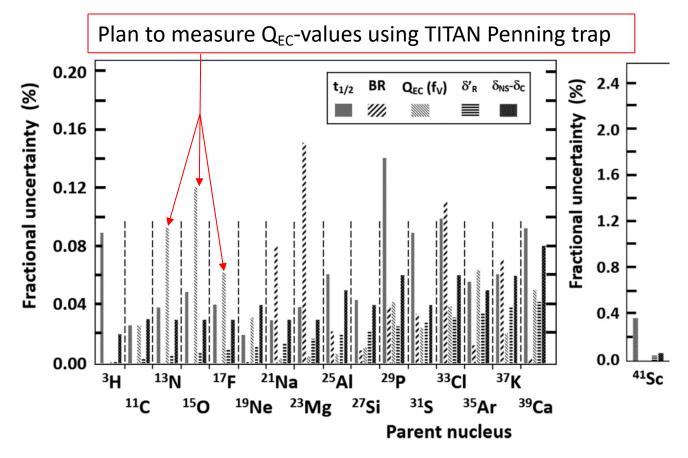
Birge ratio: 1.05(28)


-0.3

-0.2

-0.4

Past ¹³N half-lives measurements



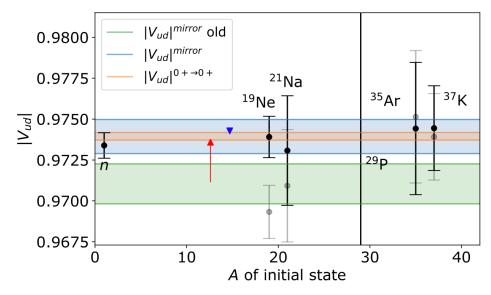
Future ft-value measurements

Half-lives at ND:

- Finish analysis of ³³Cl
- Measure ³¹S, ⁴¹Sc

N. Severjins, PRC 107, 015502 (2023)

V_{ud} from mirror transitions


O. Naviliat-Cuncic & N. Severijns, PRL 102, 142302 (2009)

- V_{ud}: 0.9739(10)
- 6 times less precise than pure Fermi

- Only 5 nuclei
- One more parameter needed:
 - ✓ Half-life
 - Branching ratios
 - ✓ Q-values
 - Fermi-to-Gamow
 Teller mixing ratio ρ

determined by measuring either:

L. Hayen, PRD 103, 113001 (2021)

- eta asymmetry parameter A_eta
- v asymmetry parameter B_v
- β - ν angular correlation $a_{\beta\nu}$
- To do: Long term: expand the list of transitions from which V_{ud} can be extracted
 - Short term: reduce sources of uncertainties in the ft-values

Need to determine ρ

$$\mathcal{F}t_{0} = ft(1 + \delta'_{R})(1 + \delta_{NS} - \delta_{C}) \left[1 + (f_{A}/f_{V})\rho^{2}\right] \qquad a_{SM} = \frac{1 - \rho^{2}/3}{1 + \rho^{2}}$$

$$= \frac{K}{G_{F}^{2}V_{ud}^{2}(1 + \Delta_{R}^{V})},$$

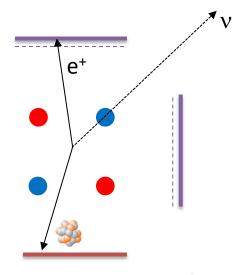
Sensitivity of ρ to $a_{\beta\nu}$

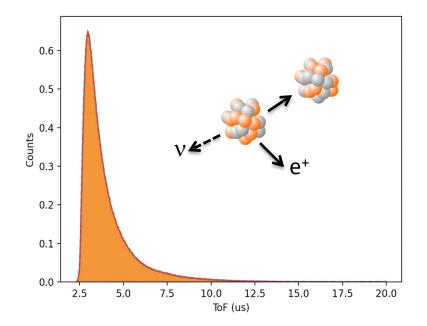
Nucleus	n	$^{3}\mathrm{H}$	¹¹ C	^{13}N	¹⁵ O	$^{17}\mathrm{F}$	¹⁹ Ne
ρ	-2.20	-2.10	0.75	0.56	-0.63	-1.28	1.60
J	1/2	1/2	3/2	1/2	1/2	5/2	1/2
$\delta A_{eta}/A_{eta}$	4.0	5.1	0.04	0.04	0.7	-0.06	-12.6
$\delta a_{eta u}/a_{eta u}$	3.6	4.6	-1.2	-0.7	-0.9	-3.6	-13.1

Table I. Calculated sensitivities to $\delta \rho/\rho$ for the lowest mass mirrors, with approximate ρ values taken from [10] and the leading order expressions.

L. Hayen & A.R. Young, arXiv:2009.11364 (2020)

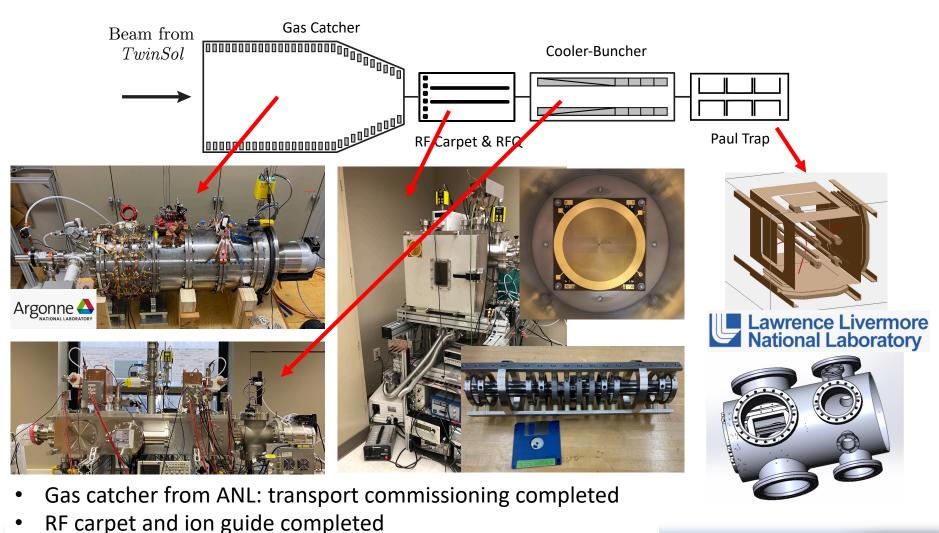
- The 17 F ρ has a similar sensitivity to $a_{\beta\nu}$ as the neutron.
- TwinSol produce 2x10⁶ pps of ¹⁷F
- Will be able to greatly improve on the previous determination of ρ (N. Severjins et al., PRL 63, 1050 (1989)) based on a measurement of A (poor sensitivity to ρ (O. Navviliat-Cuncic & N. Severijns, PRL 102, 142302 (2009))
- Choice of first isotope will depend on chemistry in the gas cell...




Measuring $a_{\beta\nu}$ using a Paul trap

- ρ will be determined from a measurement of $a_{\beta\nu}$
- $a_{\beta\nu}$ can be inferred from shape of energy spectra of positron and the TOF of recoil after decay of trapped nuclei.
- A Paul trap holds any kind of ions in well-defined region of space.

DSSD / Plastic : purple Position sensitive MCP: red



Superallowed Transisiton Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict)

See Sam Porter's poster!

NOTRE DAME

Paul trap on its way to ND from LLNL

Cooler/buncher commissioning completed

Summary

- CKM matrix unitarity is one possible test of the SM.
- There is currently a 3σ tension with unitarity.
- Superallowed mixed beta transitions can be used to improve accuracy on V_{ud}.
- Measured the half-life of 7 different such transitions at ND including ¹³N resulting in an improvement of their ft-values.
- Future half-life measurements will include ³¹S and ⁴¹Sc.
- St. Benedict currently under construction at ND. Aim to measure $a_{\beta\nu}$ in many superallowed mixed transition for the first time.

Acknowledgements

Dan Bardayan

Roy Bualuan

Dan Burdette

Alec Cannon

Jason Clark

Dorothy Gan

Aaron Gallant

Alicen Houff

Jim Kolata

Biying Liu

Jacob Long

Catherine Nicoloff

Patrick O'Malley

Sam Porter

Caleb Quick

Ryan Ringle

Fabio Rivero

Guy Savard

Adrian Valverde

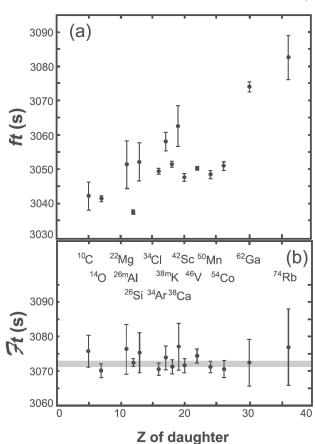
Abe Yeck

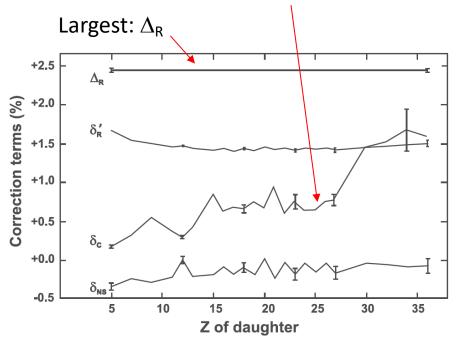
Regan Zite

+ rest of TwinSol collaboration

Thank you!

UG students
G students
Former G students

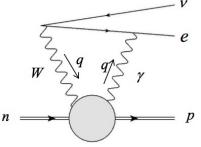



Superallowed pure Fermi

$$\mathscr{F}t \equiv ft(1 + \delta_R')(1 + \delta_{NS} - \delta_c) = \frac{K}{2G_F^2|V_{ud}|^2(1 + \Delta_R^V)}$$

Biggest Z-dependence: δ_{c}

J.C. Hardy and I.S. Towner, PRC **102**, 045501 (2020)


Issues with Δ_{R}

Recent transition-independent radiative corrections results are systematically higher than previous calculations.

$$\mathscr{F}t \equiv ft(1+\delta_R')(1+\delta_{NS}-\delta_c) = \frac{K}{2G_F^2|V_{ud}|^2(1+\Delta_R')}$$
0.0250
C.-Y. Seng, X. Feng, M. Gorchtein & L. Jin, PRD **101**, 111301(R) (2020)
C.-Y. Seng, M. Gorchtein, H.H. Patel & M.J. Ramsey-Musolf, PRL **121**, 241804 (2018)
Czarnecki, Marciano & Sirlin, Phys. Rev. D **100**, 073008 (2019)
L. Hayen, arXiv:2010.07262v3 [hep-ph] (2021)
0.0235
Marciano & Sirlin, PRL **96**, 032002 (2006)
2005
2010
2015

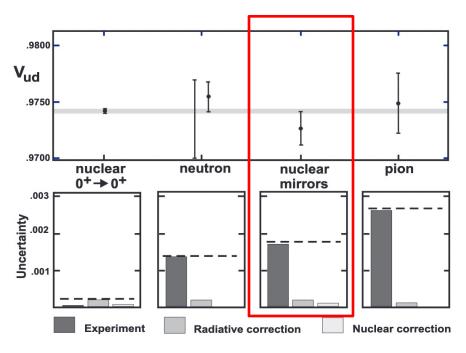
Year

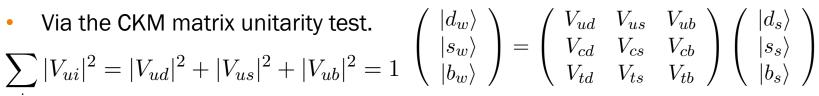
$$V_{ud} = 0.97370(25)$$
 $ightharpoonup 2020 \ H\&T$ $V_{us} = 0.2245(8)$ $V_{ub} = 0.00382(24)$ PDG

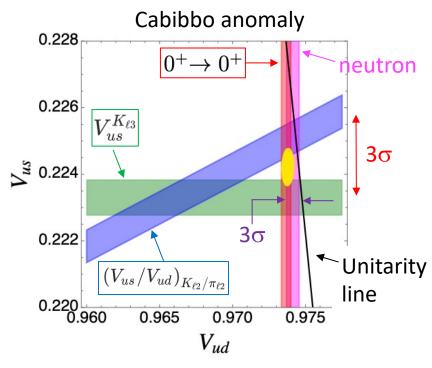
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$$

= 0.9985(6)

 2.5σ tension with unitarity




Cabibbo anomaly



$$\sum_{i} |V_{ui}|^2 = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \quad \left| \begin{array}{c} |s_w| \\ |b_w| \end{array} \right|$$

J.C. Hardy and I.S. Towner, arXiv:1807.01146v1 [nucl-ex] (2018)

V. Cirigliano et al., PLB 838, 137748 (2023)

Aside

Besides being one more system that can be used to extract V_{ud} and improve its accuracy, mirror decays can also be used to:

- Search for scalar and tensor currents
- If right-handed neutrinos are introduced, then C_S , C_T are no longer equal to C_S and C_T , and adding mirror nuclei data to the global beta-decay fit improve the results appreciably.

$$v^{2} \begin{pmatrix} C_{V}^{+} \\ C_{A}^{+} \\ C_{S}^{+} \\ C_{T}^{+} \end{pmatrix} = \begin{pmatrix} 0.98501_{(-114)}^{(+75)} \\ -1.2544_{(-11)}^{(+14)} \\ -0.0007_{(-14)}^{(+29)} \\ -0.0010_{(-22)}^{(+33)} \end{pmatrix}, \qquad \begin{pmatrix} v^{2}|C_{V}^{-}| < 0.053 \\ v^{2}|C_{A}^{-}| < 0.063 \\ v^{2}|C_{S}^{-}| < 0.050 \\ v^{2}|C_{T}^{-}| \in [0.072, 0.099] \end{pmatrix}$$

Here, adding the mixed decay data was vital in obtaining meaningful fit results and improves the uncertainty on the various coefficients by a factor of 2.

There is a hint of a BSM tensor coupling to RH neutrinos at the 3.2σ -level.

A. Falkowski, M.Gonzalez-Alonso & O. Naviliat-Cuncic, JHEP 04, 126 (2021)

Table of uncertainties

Source	Uncertainty (ms)
Dead time	35
Contamination	41
Clock time	6
Binning	11
Total Systematic Uncertainty	55
Statistical Uncertainty	144

Effect of ft-value parameters

Parameter	This work	With Previous $t_{1/2}$
$t_{1/2}$	$597.19(22)\mathrm{s}$	$597.88(23)\mathrm{s}$
$f_v t$	$4616.3(45){\rm s}$	$4621.3(47)\mathrm{s}$
$\mathscr{F}t^{mirror}$	$4676.3(48){\rm s}$	$4681.4(49)\mathrm{s}$
ho	0.5591(14)	0.5578(14)
a_{SM}	0.6825(12)	0.6836(13)
A_{SM}	-0.33308(4)	-0.33304(4)
B_{SM}	-0.6506(13)	-0.6495(13)

