

irfu

First characterization of Short-Range Correlations (SRC) in an exotic nucleus at R^3B

Andrea Lagni
CEA Saclay
andrea.lagni@cea.fr

UNIVERSITE PARIS-SACLAY

Outline

Introduction

- Short Range Correlations (SRC);
- Motivation and goals of the experiment.

Experimental Set-up

 R^3B Set-up and (p,2p) kinematics.

Data analysis

- Fragments identification with Multi-Dimensional Fit functions;
- (p,2p) analysis.

Perspectives

3

PROBING SRC

- High relative momentum and low centre of mass (c.m.) momentum pairs;
- mainly proton-neutron (pn) pairs;
- pp/pn ratio does not change with A;
- The fraction of high momentum protons increases with N/Z.

O. Hen et al. (CLAS Collaboration), Science, 346 (6209):614, 2014.

R.Saubedi, Science, Vol 320, (2008)

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.

PROBING SRC

Direct kinematics

- Pmiss, Emiss, Precoil;
- ☑ P_{cm} (indirectly);
- X Fragment ID.

Inverse kinematics

- Pmiss, Emiss, Precoil;

- ISI/FSI challenges data interpretation.

PROBING SRC

Proton scattering experiments

- BM@N (JINR) pilot experiment (2018);
- R^3B (GSI) Experiment (May 2022);
 - Probe SRC in an exotic nucleus for the first time.

Motivations

- Existing trend based on a few points;
- behaviour can depend on shell structure (open/closed shell effects);
- mass and N/Z excess cannot be disentangled with stable nuclei.
- New measurement at N/Z = 1.67 (^{16}C), above the largest available N/Z and at a much smaller mass.

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.

\bigcirc R^3B Experimental Set-up

Fragment analysis: MDF Tracking

Multi-Dimensional Fit (MDF)

- * Find an expression to correlate the independent observables (positions) with dependent quantity (momentum) via a least squares fitting procedure;
- * The function can then be used to compute the quantity of interest (mass, momentum and angles).

Fragment analysis: MDF Tracking

Multi-Dimensional Fit (MDF)

- * Find an expression to correlate the independent observables (positions) with dependent quantity (momentum) via a least squares fitting procedure;
- * The function can then be used to compute the quantity of interest (mass, momentum and angles).

\bigcirc (p,2p) analysis for ^{12}C

- Vertex obtained using FOOT silicon trackers and CALIFA calorimeter;
- Minimum distance and matching with CALIFA angles;
- (p,2p) kinematics investigation with selection on ${}^{11}B$;
- Very strong effect for ISI/FSI events rejection.

\bigcirc (p,2p) analysis for ^{12}C

 $E_{\rm miss}$ [GeV]

M.Patsyuk, Nature Physics, volume 17, pages 693-699 (2021)

- \bullet The ¹¹B detection is shown to select the QE part of the reaction;
- Similar to BM@N (JINR) experiment.

\bigcirc (p,2p) analysis for ^{12}C

- Selectivity of the QF mechanism: proton missing mass M_{miss} and missing momentum P_{miss};
- Missing momentum important to constrain SRC kinematical region.

O Perspectives

Bound final states: investigation in A-2 fragments;

Unbound final states: fragment break-up investigation after SRC removal;

Quenching of (p,2p) cross section at high momentum transfer.

Backup slides

INTRODUCTION

 Neutrons and protons move independently in well-defined quantum orbits;

Alpha clustering, Hoyle state;

Di-neutron correlation;

SHORT RANGE CORRELATIONS

 High relative momentum and low centre of mass (c.m.) momentum pairs;

INTRODUCTION

INDEPENDENT PARTICLES

 Neutrons and protons move independently in well-defined quantum orbits;

Alpha clustering, Hoyle state;

Di-neutron correlation;

 High relative momentum and low centre of mass (c.m.) momentum pairs;

INTRODUCTION

INDEPENDENT PARTICLES

 Neutrons and protons move independently in well-defined quantum orbits;

Alpha clustering, Hoyle state;

Di-neutron correlation;

SHORT RANGE CORRELATIONS

 $\rho >> \rho_0$

 High relative momentum and low centre of mass (c.m.) momentum pairs;

FOOT DETECTORS:

- New single-sided silicon tracking system used for the first time in R^3B for proton tracking, fragments ID and vertex reconstruction;
- 640 strips, $10x10 cm^2$ active area;
- 150 um thick;

FOOT Mapping s509/s522

FOOT

- In order to decrease the multiplicity we decided to use FOOT energy correlations;
- New s522/s509 calibration for Energy-eta dependence;
- Energy correlation FOOT 0 and FOOT 1 (in beam FOOT);

FOOT - TOFD correlation

- FOOT0 multiplicity one;
- TOFD plane 1 and multiplicity one.

Vertex reconstruction CALIFA

 θ_1, ϕ_1 CALIFA

Z[mm]

(p,2p) VERTEX reconstruction

Challenges

- High beam energy and intensity;
- High background and noise level (delta electrons and baseline fluctuations);
- Low proton energy deposited.
- ✓ Minimum distance between al possible combinations of FOOT tracks from the left arm and right arm;
- ✓ Matching with CALIFA angles.

Vertex reconstruction CALIFA

 θ_c, ϕ_c

- Removed condition on number of strip hit per detector;
- Decrease the threshold in the FootMap2Cal task from 3 to 2 sigma;
- Implemented correlations with CALIFA to select proper track in FOOT.

 $|\theta_1 - \theta| < 3^{\circ}$ $|\phi_1 - \phi| < 3^{\circ}$

- FOOT θ , ϕ :
 - From tracking;
- CALIFA θ 1, ϕ 1:
 - From aligned geometry file;

(x,y,z) vertex

(x,y,z) CALIFA geometry

Vertex¹⁶C

- X-Z correlation;
- No conditions applied;
- Two structure, target region and ring of the target;
- Beam was very close to the ring of the target.

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;

Vertex ^{16}C x,y vertex

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;
- X vertex distribution centered at -10.01 mm;
- Ring of the target starts at -15 mm.

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;
- Y vertex distribution centered at -3.09 mm;

Vertex ¹²C

- X-Z correlation;
- No conditions applied;
- One structure associated with the target region;
- Beam was more centred at the centre of the target.

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;

Vertex ^{12}C x,y vertex

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;
- X vertex distribution centered at -3.03 mm;
- Ring of the target starts at -15 mm.

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;
- Y vertex distribution centered at -4.03 mm;

Vertex ¹⁶C plots

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;
- Z vertex distribution;

- Condition on TOFD charge 5;
- Condition on minimum distance < 0.5 mm;
- Target beam spot;

P_{miss} and M_{miss}

$$P_{miss}^{\mu} = P_1^{\mu} + P_2^{\mu} - P_{target}^{\mu}$$

$$E_{miss} = m_p - P_{miss}^0$$

$$M_{miss}^2 = E_{miss}^2 - \vec{P}_{miss}^2$$

S522 Tracker

- Developed Tracker code for S522;
- Initially incoming with FOOT detectors-> High humber of global tracks multiplicity;
- Use vertex-> Not so much statistics but clean selection of the fragments (following slides);
- Put together tracks from Fib31 and Fib33;
- Input a fake vertex for each event to have a view of the fragments detected and have an idea on the number of fragments.

