First characteriztion of Short-Range Correlations (SRC) in an expotic nucleus at $R^{3} B$

Universite
Andrea Lagni CEA Saclay
andrea.lagni@cea.fr

Outline

Introduction

- Short Range Correlations (SRC);
- Motivation and goals of the experiment.

Experimental Set-up
 - $\quad R^{3} B$ Set-up and ($p, 2 p$) kinematics.

Data analysis

- Fragments identification with Multi-Dimensional Fit functions;
- ($p, 2 p$) analysis.

Perspectives

PROBING SRC

- High relative momentum and low centre of mass (c.m.) momentum pairs;
- mainly proton-neutron (pn) pairs;
- pp/pn ratio does not change with A;
- The fraction of high momentum protons increases with N / Z.

O. Hen et al. (CLAS Collaboration), Science, 346 (6209):614, 2014.

PROBING SRC

Direct Kinemalics

- $\mathrm{P}_{\text {miss, }}, E_{\text {miss }}, \mathrm{P}_{\text {recoil; }}$
$\square \mathrm{P}_{\mathrm{cm}}$ (indirectly);
X Fragment ID.

Inverse kinemalics

$\square P_{\text {miss }}, E_{\text {miss, }} P_{\text {recoil }}$
$\square \mathrm{P}_{\mathrm{cm}}$ (directly);
『 Fragment ID;
■ Exotic nuclei;
■ Higher cross-section for protons;

- ISI/FSI challenges data interpretation.

PROBING SRC

Proton scabtering experiments

- BM@N (JINR) pilot experiment (2018);
- $R^{3} B$ (GSI) Experiment (May 2022);
- Probe SRC in an exotic nucleus for the first time.

Motivalions

- Existing trend based on a few points;
- behaviour can depend on shell structure (open/closed shell effects);
- mass and N/Z excess cannot be disentangled with stable nuclei.
- New measurement at $N / Z=1.67\left({ }^{16} C\right)$, above the largest available N / Z and at a much smaller mass.
M.Patsyuk,Nature Physics, volume 17, pages 693-699 (2021)

$R^{3} B$ Experimental Set-up

O Fragment analysis: MDF Tracking cea irfu

Mulki-Dimensional Fit (MDF)

* Find an expression to correlate the independent observables (positions) with dependent quantity (momentum) via a least squares fitting procedure;
* The function can then be used to compute the quantity of interest (mass, momentum and angles).

16C Fragments PID

O Fragment analysis: MDF Tracking cea irfu

12C Fragments PID

Mulki-Dimensional Fit (MDF)

* Find an expression to correlate the independent observables (positions) with dependent quantity (momentum) via a least squares fitting procedure;
* The function can then be used to compute the quantity of interest (mass, momentum and angles).

(p,2p) analysis for ${ }^{12} C$

- Vertex obtained using FOOT silicon trackers and CALIFA calorimeter;
- Minimum distance and matching with CALIFA angles;
- $(p, 2 p)$ kinematics investigation with selection on ${ }^{11} B$;
- Very strong effect for ISI/FSI events rejection.

(p,2p) kinemakical region after VERTEX reconseruction

$(p, 2 p)$ analysis for ${ }^{12} C$

M.Patsyuk,Nature Physics, volume 17, pages 693-699 (2021)

- The ${ }^{11} B$ detection is shown to select the QE part of the reaction;
- Similar to BM@N (JINR) experiment.

(p,2p) analysis for ${ }^{12} C$

Perspectives

Identification of SRC using $P_{\text {miss }}$ and $A-2$ fragment selection;
($\mathrm{p}, 2 \mathrm{pN}$) ratio ${ }^{16} \mathrm{C} /{ }^{12} \mathrm{C}$ and $\mathrm{pp} / \mathrm{pn}$ ratio estimation;

Bound final states: investigation in A-2 fragments;

Unbound final states: fragment break-up investigation after SRC removal;

Quenching of $(p, 2 p)$ cross section at high momentum transfer.

Advances in Radioactive Isotope Science (ARIS) 2023 cea irfu

cea 23B FAlR

$A 1 \underbrace{}_{\text {Physique des } 2}$ Infinis etdes oigines

Backup slides

INTRODUCTION

INDEPENDENT PARTICLES

- Neutrons and protons move independently in well-defined quantum orbits;
- Alpha clustering, Hoyle state;
- Di-neutron correlation;

CLUSTERING

$\rho \ll \rho_{0}$

SHORT RANGE

CORRELATIONS

- High relative momentum and low centre of mass (c.m.) momentum pairs;

INTRODUCTION

- Neutrons and protons move independently in well-defined quantum orbits;
$\rho_{0}=0.16$ nucleons.fm

- Alpha clustering, Hoyle state;
- Di-neutron correlation;

SHORT RANGE
CORRELATIONS

- High relative momentum and low centre of mass (c.m.) momentum pairs;

INTRODUCTION

INDEPENDENT PARTICLES

$\rho_{0}=0.16$ nucleons.fm ${ }^{-3}$

SHORT RANGE CORRELATIONS

- Neutrons and protons move independently in well-defined quantum orbits;
- Alpha clustering, Hoyle state;
- Di-neutron correlation;
- High relative momentum and low centre of mass (c.m.) momentum pairs;

Radius

FOOT DETECTORS:

- New single-sided silicon tracking system used for the first time in $R^{3} B$ for proton tracking, fragments ID and vertex reconstruction ;

640 strips, $10 \times 10 \mathrm{~cm}^{2}$ active area;

150 um thick;

FOOT Mapping s509/s522

- In order to decrease the multiplicity we decided to

use FOOT energy correlations;

- New s522/s509 calibration for Energy-eta dependence;
- Energy correlation FOOT 0 and FOOT 1 (in beam FOOT);

FOOT - TOFD correlation

- FOOT0 multiplicity one;
- TOFD plane 1 and multiplicity one.

Vertex reconstruction CALIFA

($p, 2 p$) VERTEX reconstruction

Challenges

- High beam energy and intensity;
- High background and noise level (delta electrons and baseline fluctuations);
- Low proton energy deposited.
\checkmark Minimum distance between al possible combinations of FOOT tracks from the left arm and right arm;
\checkmark Matching with CALIFA angles.

Vertex reconstruction CALIFA

- Removed condition on number of strip hit per detector;
- Decrease the threshold in the FootMap2Cal task from 3 to 2 sigma;
- Implemented correlations with CALIFA to select proper track in FOOT.

Not using vertex position

- FOOT θ, ϕ :
$\left|\theta_{1}-\theta\right|<3^{\circ}$
+ From tracking;

$$
\left|\phi_{1}-\phi\right|<3^{\circ}
$$

- CALIF $01, \phi 1$:
+ From aligned geometry file ;

Now using vertex position

(x, y, z) vertex
θ_{c}, ϕ_{c}
(x, y, z) CALIFA geometry

Vertex ${ }^{16} C$

- X-Z correlation;
- No conditions applied;
- Two structure, target region and ring of the target;
- Beam was very close to the ring of the target.
- Condition on TOFD charge 5;
- Condition on minimum distance <0.5 mm;

Vertex ${ }^{16} \mathrm{C} x, y$ vertex

- Condition on TOFD charge 5;
- Condition on minimum distance $<0.5 \mathrm{~mm}$;
- X vertex distribution centered at -10.01 mm ;
- Ring of the target starts at -15 mm .

- Condition on TOFD charge 5;
- Condition on minimum distance $<0.5 \mathrm{~mm}$;
- Y vertex distribution centered at -3.09 mm ;

Vertex ${ }^{12} C$

- X-Z correlation;
- No conditions applied;
- One structure associated with the target region;
- Beam was more centred at the centre of the target.
- Condition on TOFD charge 5;
- Condition on minimum distance <0.5 mm;

Vertex ${ }^{12} C x, y$ vertex

- Condition on TOFD charge 5;
- Condition on minimum distance $<0.5 \mathrm{~mm}$;
- X vertex distribution centered at -3.03 mm ;
- Ring of the target starts at -15 mm .

- Condition on TOFD charge 5;
- Condition on minimum distance $<0.5 \mathrm{~mm}$;
- Y vertex distribution centered at -4.03 mm ;

Vertex ${ }^{16} \mathrm{C}$ plots

- Condition on TOFD charge 5;
- Condition on minimum distance $<0.5 \mathrm{~mm}$;
- Z vertex distribution;
- Condition on TOFD charge 5;
- Condition on minimum distance $<0.5 \mathrm{~mm}$;
- Target beam spot;

$P_{\text {miss }}$ and $M_{\text {miss }}$

$P_{\text {miss }}^{\mu}=P_{1}^{\mu}+P_{2}^{\mu}-P_{\text {target }}^{\mu}$
$E_{m i s s}=m_{p}-P_{m i s s}^{0}$
$M_{m i s s}^{2}=E_{m i s s}^{2}-\vec{P}_{m i s s}^{2}$

S522 Tracker

- Developed Tracker code for S522;
- Initially incoming with FOOT detectors-> High humber of global tracks multiplicity;
- Use vertex-> Not so much statistics but clean selection of the fragments (following slides);
- Put together tracks from Fib31 and Fib33;
- Input a fake vertex for each event to have a view of the fragments detected and have an idea on the number of fragments.

