

Recent Nuclear Structure Studies at N=50 Through Masses of Isomeric States

Lukas Nies^{1,2} for the ISOLTRAP Collaboration

¹CERN, Switzerland ²University of Greifswald, Germany

Atomic physics methods probe nuclear properties

Nuclear Binding Energy

$$M_{atom}(Z,N) = M_{nuc}(Z,N) + Zm_e - B_e(Z)$$

$$M_{nuc}(Z,N) = \frac{Zm_p}{c^2} + \frac{E(Z,N)}{c^2}$$

Nuclear Structure

"Mass filters"
Shell model, *ab initio*, etc.
Many-body interactions

Nuclear Astrophysics

Nucleosynthesis Light curves Neutron star compositions

Weak Interaction Physics

Unitarity of CKM Matrix V_e mass searches

ISOLTRAP at CERN/ISOLDE

NUCLEAR STRUCTURE OF 99In

SHAPE COEXISTENCE NEAR 78Ni

ISOLTRAP Mass Spectrometer

Multi-Reflection Time-of-Flight Device

ISOLTRAP at CERN/ISOLDE

NUCLEAR STRUCTURE OF 99In

SHAPE COEXISTENCE NEAR 78Ni

Mougeot et al., Nature Physics 17, p. 1099–1103 (2021)

Neutron deficient In isotopes as 100 Sn core with single p-hole and gradual $vg_{7/2}$ - $vd_{5/2}$ filling

- ⇒ single-particle states in ¹⁰⁰Sn
- core-excitation dependent energy shifts
- particle-hole interactions

Excitation energy constant over many mass numbers

First direct measurement of ^{99m,gs}In [1]

Most sensitive experiment at ISOLTRAP yet (~ 10⁻¹/s)

LSSM

core-exc. leads to more accurate trend

ab-initio

- monopole int. between proton hole and gradual neutron filling in g_{7/2}-d_{5/2} orbits important
- very little variation between N=50 and N=82

DFT-HF

- Validation of calculations with recent moment measurements from [2]
- Exc. energy depends directly on spinorbit interaction

How will magnetic moments evolve towards N=50?

LSSM

core-exc. leads to more accurate trend

ab-initio

- monopole int. between proton hole and gradual neutron filling in g_{7/2}-d_{5/2} orbits important
- very little variation between N=50 and N=82

DFT-HF

- Validation of calculations with recent moment measurements from [2]
- Exc. energy depends directly on spinorbit interaction

How will magnetic moments evolve towards N=50?

ISOLTRAP at CERN/ISOLDE NUCLEAR STRUCTURE OF 99In

SHAPE COEXISTENCE NEAR 78Ni

Taniuchi et al., Nature **569**, p.53–58 (2019)

Evidence for shape coexistence near 78Ni

- Shape coexistence: appearance of spherical and deformed states at similar excitation energies
- Intruder configurations: multiparticle multi-hole excitations across closed shells
- Evidence for shape coexistence from
 - decay spectroscopy [1]
 - laser spectroscopy [2,3]
 - mass measurements [4]
- Excitation energy and half-life of ½⁺ state in ^{79m}Zn only indirectly measured
- [1] Gottardo et al., PRL **116,** 18201 (2016)
- [2] Yang et al, PRL **116**, 182502 (2016)
- [3] Wraith et al., PLB **771** (2017) 385-391
- [4] Welker et al., PRL **119** 192502 (2017)
- [5] Garrett, Zielinska, Clément, PPNP **124** (2022) 103931

PFSDG-U for accurate observables at N=49

08/06/2023

slide 10

- g-factors of both states well produced for N<49
- At N=49, 1p-2h has 40% neutron occupancy
 - -> larger valence space
 - -> more accurate g-factor
 (PFSDG-U interaction [2])

[1] Wraith et al, PLB **771** (2017) 385-391

[2] Nowacki et al, PRL **117**, 272501 (2016)

[3] Nies, Dao, Kankainen, Lunney, Nowacki et al., in preparation

PFSDG-U for accurate observables at N=49

- g-factors of both states well produced for N<49
- At N=49, 1p-2h has 40% neutron occupancy
 - -> larger valence space
 - -> more accurate g-factor
 (PFSDG-U interaction [2])
- PFSDG-U resolves state inversion, reduces exc. energy

[1] Wraith et al, PLB **771** (2017) 385-391

[2] Nowacki et al, PRL **117**, 272501 (2016)

[3] Nies, Dao, Kankainen, Lunney, Nowacki et al., in preparation

PFSDG-U for accurate observables at N=49

- g-factors of both states well produced for N<49
- At N=49, 1p-2h has 40% neutron occupancy
 - -> larger valence space
 - -> more accurate g-factor (PFSDG-U interaction [2])
- PFSDG-U resolves state inversion, reduces exc. energy
- Large valence space (up to 10p-10h) accurately matches direct measurements [3]

08/06/2023 slide 11

[1] Wraith et al, PLB **771** (2017) 385-391

[2] Nowacki et al, PRL **117**, 272501 (2016)

[3] Nies, Dao, Kankainen, Lunney, Nowacki et al., in preparation

DNO expansion of SM wave functions

08/06/2023

slide 11

- g-factors of both states well produced for N<49
- At N=49, 1p-2h has 40% neutron occupancy
 - -> larger valence space
 - -> more accurate g-factor (PFSDG-U interaction [2])
- PFSDG-U resolves state inversion, reduces exc. energy
- Large valence space (up to 10p-10h) accurately matches direct measurements [3]
- **DNO-SM** expansion [4] shows similarities of 1/2⁺ and 5/2⁺ in ⁷⁹Zn to deformed 0₂+ state in 80Zn

[2] Nowacki et al, PRL **117** 272501 (2016)

Summary

- Indium campaigns 2018 and 2021 highly successfull, first-time measurement of ^{99m}In
- Nuclear theory calculations challenged through ^{99m}In and ^{101m}In, revealing constant excitation energy behavior across N=50
- Direct excitation energy measurement of intruder ½ isomeric state in ⁷⁹Zn validates PFSDG-U interaction and DNO-SM expansion reinforces evidence for shape coexistence in ⁷⁸Ni region

TECHNISCHE

UNIVERSITÄT

DARMSTADT

199192

UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

D. Atanasov, K. Blaum,

J. Karthein, D. Lange, Yu. Litvinov,

D. Lunney, V. Manea,

M. Mougeot, L. Nies, Ch. Schweiger,

MAX-PLANCK-GESELLSCHAFT **ENSA** R

Grants No.: 05P15ODCI

05P15HGCI

L. Schweikhard, F. Wienholtz, et al.

ISOLDE at CERN

- Isotope Separator OnLine DEvice
- Produces Radioactive Ion Beams (RIBs)
- Approved by the CERN council in 1964
 - Initially used 600 MeV protons from SC
 - Then used 1.0 GeV (later 1.4 GeV) protons from the PSB
- ~0.1% of the CERN budget
- ~7% of the CERN scientists
- **~50% of the CERN protons**

Production: Modern-day alchemy

High energy (1.4 GeV) protons are impacted onto a thick target e.g. 238U

The protons split up the heavy nucleus in one of three ways

Fission

Fragmentation

Spallation

Spallation

Production: Modern-day alchemy

High energy (1.4 GeV) protons are impacted onto a thick target e.g. 238U

The protons split up the heavy nucleus in one of three ways

- Fission
- Fragmentation
- Spallation

6000 isotopes predicted by theory
 3000 isotopes already discovered
 1000 isotopes produced by ISOLDE
 74 different elements available

Production: Modern-day alchemy

ISOLDE at CERN

Tandem Penning Trap

Back to binding energies: Q-value questions...

- Mass of ¹⁰⁰Sn improved by 60 keV based on Q-value to ¹⁰⁰In [1-2]
- in-accurate mass for ¹⁰³Sn derived from Q-values rejected from AME2020
- extrapolated masses yield more consistent behavior
- direct mass-measurement to confirm expected behavior of mass filters

DNO expansion of SM wave functions

- g-factors of both states well produced for N<49
- At N=49, 1p-2h has 40% neutron occupancy
 - -> larger valence space
 - -> more accurate g-factor
 (PFSDG-U interaction [2])
- PFSDG-U resolves state inversion, reduces exc. energy
- Large valence space (up to 10p-10h) accurately matches direct measurements [3]
- DNO-SM expansion [4] shows similarities of 1/2⁺ and 5/2⁺ in ⁷⁹Zn to deformed 0₂⁺ state in ⁸⁰Zn
- [1] Wraith et al, PLB **771** (2017) 385-391
- [2] Nowacki et al, PRL **117** 272501 (2016)

