Mauro Mezzetto, Istituto Nazionale di Fisica Nucleare, Sezione di Padova

" Beta Beams: Physics"

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 1/30

Mauro Mezzetto, Istituto Nazionale di Fisica Nucleare, Sezione di Padova

" Beta Beams: Physics"

Most of the material of this talk comes from M. Lindroos, M. Mezzetto "Artificial Neutrino Beams: Beta Beams", Imperial College Press, in preparation.

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 1 / 30

Ultimate neutrino beams will be very challenging . . .

Searches for Leptonic CP Violation will require neutrino beams with:

- The highest possible intensity
- Very few or no intrinsic backgrounds
- Very good control of systematics

. and probably they will hit their intrinsic limitations

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 2 / 30

. . . these limitations are overcome if secondary particles become primary

Collect, focus and accelerate the neutrino parents at a given energy. This is impossible within the pion lifetime, but can be tempted within the muon lifetime **(Neutrino Factories)** or within some radioactive ion lifetime **(Beta Beams)**:

- Just one neutrino flavor in the beam
- Energy shape defined by just two parameters: the endpoint energy of the beta decay and the Lorenz boost γ of the parent ion.
- Flux normalization given by the number of ions circulating in the decay ring.
- **•** Beam divergence given by γ .

Beta Beams (P. Zucchelli: Phys. Lett. B532:166, 2002)

- 1 ISOL target to produce He⁶, 100 μ A, \Rightarrow 2.9 \cdot 10¹⁸ ion decays/straight session/year. \Rightarrow $\overline{\nu}_e.$
- 1 ISOL target to produce Ne^{18} , 100 μA , \Rightarrow 1.1 \cdot 10¹⁸ ion decays/straight session/year. ⇒ *ν*e.

Some scaling laws in Beta Beams

- Accelerators can accelerate ions up to $Z/A \times$ the proton energy.
- Lorentz boost: end point of neutrino energy ⇒ 2*γ*Q
- \bullet In the CM neutrinos are emitted isotropically \Rightarrow neutrino beam from accelerated ions gets more collimated $\propto \gamma^2$. But $L \propto E_{\nu}/\Delta m^2 \propto \gamma Q$ and flux $\propto L^{-2} \Rightarrow \quad \Phi \propto Q^{-2}$. ν cross section $\propto E_{\nu} \propto \gamma Q$.
- Merit factor for an experiment at the atmospheric oscillation maximum: $\mathcal{M} = \frac{\gamma}{Q}$
- Ion lifetime must be:
	- As long as possible: to avoid ion decays during acceleration
	- As short as possible: to avoid to accumulate too many ions in the decay ring

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 5 / 30

- \Rightarrow optimal window: lifetimes around 1 s.
- Decay ring length scales ∝ *γ*.
- Two body decay kinematics : going off-axis the neutrino energy changes (feature used in some ECB setup and in the low energy setup)

A single ¹⁸Ne target is not enough

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 6 / 30

So far a single target is estimated to produce about $1/10$ of the needed 18 Ne ions. Possible wayouts:

A single ¹⁸Ne target is not enough

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 6 / 30

So far a single target is estimated to produce about $1/10$ of the needed 18 Ne ions. Possible wayouts:

Build 7 targets in parallel \rightarrow need 7 times more protons (1 MW proton beam at 1-2 GeV), proof of principle already tested at CERN.

A single ¹⁸Ne target is not enough

So far a single target is estimated to produce about $1/10$ of the needed 18 Ne ions. Possible wayouts:

Build 7 targets in parallel \rightarrow need 7 times more protons (1 MW proton beam at 1-2 GeV), proof of principle already tested at CERN.

The merits of the "short baselines"

SPS can accelerate ⁶He up to $\gamma = 150$ \Rightarrow baseline up to 300 km. Frejus is the only realistic possibility to accomodate a Megaton detector, 130 km away from CERN. The CERN-Frejus scenario, not necessarely the optimal one, is for $\gamma = 100$ and $L = 130$ km.

- Absolutely negligible matter effects: the cleanest possible environment for direct leptonic CP violation and *θ*¹³ searches.
- Almost all the events are quasi elastics.
- Reasonable energy shape information.
- \bullet Degeneracies don't influence θ_{13} and LCPV discovery potential.

On the other hand

- Mass hierarchy cannot be directly measured. A not trivial sensitivity on $\mathrm{sign}(\Delta m^2_{13})$ can however been recovered combining accelerator neutrino signals with the atmospherics' (see the following).
- Small cross sections, loosely known and with important **influence of nuclear effects**
Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 7 / 30
	-

The synergy with SPL Super Beam

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 8 / 30

A Beta Beam has the same energy spectrum than the SPL SuperBeams and consumes 5% of the SPL protons.

The two beams could be fired to the same detector \Rightarrow LCPV searches through CP and T channels (with the possibility of using just neutrinos).

Access to CPTV direct searches.

Yearly Fluxes

*θ***¹³** sensitivity at 3 *σ*

From Campagne, Maltoni, Mezzetto, Schwetz, JHEP **0704** (2007) 003 **Sensitivity to a non-zero** θ **¹³ at 3**σ

Line width: 2% and 5% systematic errors.

Mauro Mezzetto, INFN Padova ()	Physics with β B	APC meeting 07/05/09 9/30
--------------------------------	------------------------	---------------------------

Mauro Mezzetto, INFN Padova () **Physics with** *β***B** APC meeting 07/05/09 10 / 30

The synergy with atmospheric neutrinos

Huber, Maltoni, Schwetz, Phys. Rev. D 71, 053006 (2005) Combining Long Baseline data with atmospheric neutrinos (that come for free in the megaton detector):

- Degeneracies can be canceled, allowing for better performances in *θ*¹³ and LCPV searches
- The neutrino mass hierarchy can be measured
- The θ_{23} octant can be determined.

The main reasons are:

- **Octant** e-like events in the Sub-GeV data is \propto cos² θ_{23}
- **Sign** e-like events in the Multi-GeV data, thanks to matter effects, especially for zenith angles corresponding to neutrino trajectories crossing the mantle and core where a resonantly enhancement occurs.

NOTE: LBL and atmospherics are a true synergy. They add to each other much more that a simple gain in statistics. Atmospherics alone could not measure the hierarchy, the octant, *θ*¹³ and LCPV. While the Beta Beam at short baselines could not measure the hierarchy as well as the octant.

In the following sensitivities of the Beta Beam combined with the atmospherics are taken from J.E.Campagne, M.Maltoni, M.M., T.Schwetz, JHEP **0704** (2007) 003 (hep-ph/0603172)

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 11 / 30

*β*B plus atmospherics: degeneracy removal

*β*B plus atmospherics: mass hierarchy and octant

Other Beta Beam options

Several different beta-beam setups have been proposed in literature. Chronologically:

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 14 / 30

- High Energy Beta Beams
- Electron capture Beta Beams producing monochromatic neutrino beams
- Beta Beams based on ${}^{8}B/{}^{8}Li$ ions
- High Energy ⁸B /⁸Li Beta Beams

Ways to improve beta-beam performances

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 15 / 30

Ways to improve beta-beam performances

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 15 / 30

More neutrinos in the far detector

Ways to improve beta-beam performances

- More neutrinos in the far detector
- Longer baselines (higher *γ* or higher ion Q) to have improved sensitivities to mass hierarchy.

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 15 / 30

Ways to have more neutrinos in the far detector

Ways to have more neutrinos in the far detector

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 16 / 30

. More ions

Ways to have more neutrinos in the far detector

. More ions

. . .² Higher *γ*

Neutrino flux at a far detector placed at a distance *L*: Φ $\propto \frac{\gamma^2}{L^2}$ (neutrino emission angle, in the laboratory frame, $\propto \gamma^{-1}$). $\nu_e \to \nu_\mu \ \propto \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{E_\nu} \Rightarrow \text{optimal } L: \ L \propto E_\nu / \Delta m^2, \ E_\nu \propto \gamma E_0$

$$
\Phi \propto \frac{(\Delta m^2)^2}{E_0^2} \quad \text{(no γ dependence)}.
$$

Interacting neutrinos at the far detector: $I = \sigma \Phi$, neutrino cross section $\sigma \propto E_{\nu}$

Merit Factor $\mathcal{M} \propto \frac{\gamma}{E_0}$

Performances of a beta-beam scale as *γ* and are inversely proportional to the end-point energy E_0 .

(End point energy of a muon decay $= 68$ MeV. End point energy of 6 He $=$ 3.7 MeV Merit factor of a beta-beam about 20 times better than the merit factor of a Neutrino Factory.)

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 16 / 30

Other Beta Beam options

Several different beta-beam setups have been propose in literature. Chronologically:

• High energy Beta Beams

Mezzetto, INFN Pado

- Electron capture Beta Beams producing monochromatic neutrino beams
- Beta Beams based on ${}^{8}B/{}^{8}Li$ ions
- High Energy $\rm{^{8}B/^{8}Li}$ Beta Beams

The high energy options

- J. Burguet-Castell et al., Nucl. Phys. B **695**, 217 (2004), Nucl. Phys. B 725, 306 (2005)
- F. Terranova et al., EPJC 38 (2004) 69. A. Donini et al., EPJC 48 (2006) 787.
- P. Huber, M. Lindner, M. Rolinec and W. Winter, Phys. Rev. D 73,053002, 2006
- S. Agarwalla, S. Choubey, A. Raychaudhuri, Nucl. Phys. B **771** (2007) 1
- D. Meloni, O. Mena, C. Orme, S. Palomares-Ruiz and S. Pascoli, arXiv:0802.0255 [hep-ph].
- W. Winter, arXiv:0804.4000 [hep-ph].
	- Need a proton machine of 1 TeV energy (LHC cannot be used at such high fluxes), only possible candidate: SPS+: an upgrade of SPS studied in view of a possible energy upgrade of LHC.

Assume the same ion decay rates of $3.×10^{18}$ the SPS option. Requiring an improved 2.5×1018 Annual rate

- \bullet decay ring configuration, otherwhile 2×1018 decay rates scale inversely to the ion γ ^{1.5×1018}
- The decay ring length rises linearly with $\gamma \rightarrow$ high energy Beta Beams require developments of high field, big aperture, radiation hard superconducting magnets to keep short the decay ring.

200 300 $-$ 400 500

6He

Gamma

mo Mezzetto, INFN Padova ()

The high energy options (cont.)

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 19 / 30

Greater *γ* for the same ion decay rate/yr → increase *ν* rates $\propto \gamma$. (Merit factor: $\mathcal{M} = \frac{\gamma}{Q}$)

A water Čerenkov detector

properly reconstructs the energy only for QE events \rightarrow the fraction of badly reconstructed events scales with energy \rightarrow kind of saturation of performances at high *γ*s.

Other detector technologies as iron magnetized detectors, totally active scintillators and liquid argon have been considered in literature for high energy beta beams.

from J. Burguet-Castell et al., Nucl. Phys. B 725, 306 (2005)

Another high energy option

"High" energy *ν^µ* events can be efficiently detected by an iron-RPC detector.

A. Donini et al., EPJC 48 (2006) 787 (see also, F. Terranova, A. Marotta, P. Migliozzi and M. Spinetti, Eur. Phys. J. C **38** (2004) 69.) studied the case of a 40 kton iron detector (4 cm thick iron slabs interleaved with glass RPCs) to be placed at 732 km from a $\gamma = 350$ Beta Beam.

This detector can be hosted inside an existing LNGS hall.

A full detector simulation shows that the main limiting factor of this setup are backgrounds from NC events. Fraction of NC backgrounds: 5*.*6 · 10[−]³ @ *γ* = 350. 8*.*8 · 10[−]³ @ *γ* = 580. CERN-Frejus has 2 · 10[−]³ , other studies on magnetic detectors assume NC background at 10[−]⁴ for *γ* ≥ 350.

Overall performances (slightly) worse than the CERN-Frejus scenario (but better $\mathrm{sign}(\Delta m^2_{13})$ sensitivity) (N.B. An iron detector have opposite problems than water Čerenkov : high threshold to detect muons (around 1 GeV))

Electron capture beams

Radioactive ions can produce neutrinos also through electron capture. **Monochromatic, single flavor neutrino beams!**

J. Bernabeu, J. Burguet-Castell, C. Espinoza and M. Lindroos, JHEP **0512**, 014 (2005) [arXiv:hep-ph/0505054]. J. Bernabeu and C. Espinoza, arXiv:0712.1034 [hep-ph]. J. Sato, Phys. Rev. Lett. 95(2005)131804. M. Rolinec and J. Sato, JHEP **0708**, 079 (2007) [arXiv:hep-ph/0612148].

- The same complex could run either beta or electron capture beams.
- No way to have $\overline{\nu}_e$ beams (possible wayout: bound state *β* decays, see A. Fukumi et al. arXiv:hep-ex/0612047)
- Ions should be partially (and not fully) stripped. Technologically challenging.
- Ion candidates are much heavier than beta candidates and have longer lifetimes (far more difficult to stack them in the decay ring)

${}^8\text{B}/{}^8\text{Li}$ Beta Beams

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 23 / 30

- C. Rubbia et al., NIM A568 (2006) 475
- Y. Mori,NIM A562 (2006) 591
- C. Rubbia hep-ph/0609235
- D. Neuffer, FNAL NFMCC-doc-516 (2007)

- It could deliver up to two order of magnitudes more radioactive ions than the Eurisol targets.
- If realistic, this production method could bring to a completely different Beta Beam optimization scheme.
- Specific aspects of this innovative technology will be studied within the EuroNu design study, funded by EU and by the European funding agencies.

${}^8\text{B}$ / ${}^8\text{Li}$ Beta Beams (cont.)

Can produce a neutrino beam 4.7 times more energetic than ${}^{6}\text{He}/{}^{18}\text{Ne}$, with a shorter decay ring. \Rightarrow cover longer baselines with the same accelerator. For a given baseline, they provide a smaller flux $\propto 1/Q^2$ (since $\mathcal{M}=\frac{\gamma}{Q})$ For a given accelerator, optimal baseline, a smaller flux \propto $\frac{Z}{A}$ */Q*

C. Rubbia, 2006: ${}^{8}B/{}^{8}Li/{}^{3}B$ based on the Fermilab Main Injector, ($\gamma({}^{8}B) = 80$ and $\gamma(^{8}{\rm Li\,})$ = 48) and a 50-100 kton liquid argon detector at Soudan (732 km baseline)

A. Donini, E. Fernandez-Martinez Phys.Lett. B641, 432 (2006): possibility of mixing $^{6}{\rm He~}$ / $^{18}{\rm Ne}$ ions to $^{8}{\rm B~}$ / $^{8}{\rm Li}$ ions \Rightarrow neutrinos at the first and at the second oscillation maximum in the same detector \Rightarrow not competitive with $^{6}\text{He}/^{18}\text{Ne}$ high energy beta-beam.

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 24 / 30

High Energy ${}^{8}B/{}^{8}Li$ Beta Beams

- S. K. Agarwalla, S. Choubey and A. Raychaudhuri, Nucl. Phys. B **771**, 1 (2007), Nucl. Phys. B **771**, 1 (2007) and arXiv:0711.1459 [hep-ph].
- S. K. Agarwalla, S. Choubey, A. Raychaudhuri and W. Winter, JHEP **0806** (2008) 090
- P. Coloma et al. arXiv:0712.0796 [hep-ph].
- For $\mathcal{L}=\sqrt{2}\pi/G_\mathsf{F}$ Y_e any δ_CP dependence disappears from $P_{\mathsf{e}\mu}$ allowing to measure $\mathrm{sign}(\Delta m^2_{13})$ effects without any degenerate solution.
- $L_{\text{magic}} \simeq 7690$ km. The resonance energy for matter effects is:

$$
E_{\rm res} \equiv \frac{|\Delta m^2_{31}| \cos 2\theta_{13}}{2\sqrt{2} G_F N_e} \simeq 7 \text{ GeV}
$$

 $(|\Delta m_{31}^2| = 2.4 \cdot 10^{-3} \text{ eV}^2$, sin² $2\theta_{13} = 0.1$).

In this regime flux of oscillated events scales as 1*/*L and not 1*/*L 2 , merit factor to be revised in favor of high Q ions.

Proposed by the India-based Neutrino Observatory (INO), where a 50 kton iron magnetized calorimeter (ICAL) is set to come up (S. Goswami talk) CERN-INO baseline: 7152 km.

Beta Beams vs Neutrino Factory

Comparison made within the International Scoping Study (ISS) framework, arXiv:0710.4947 [hep-ph]. (Not including ⁸B / ⁸Li *β*B)

See K. Long talk.

0

GLoBES 2006

0.2 0.4

10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹
True value of sin² 2θ₁₃

Line widths reflect different possible assumptions about machin configurations, neutrino fluxes, detector performances, systematic errors. යි 0.6 | 0.8 1 SPL
T2HK
WBB
NF
BB **Fraction** Sensitivity to LCPV Sensitivity to mass hierarchy Sensitivity to $\bm{\theta}_{13}^-$

> 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} True value of $\sin^2 2\theta_{13}$

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 26 / 30

 10^{-4} 10^{-3} 10^{-2} 10^{-1} True value of $\sin^2 2\theta_{13}$

Other comparisons

The following two tables compare beta-beams with neutrino factories under the following hypothesis

Green field beta beam with two iron detectors at the oscillation maximum and at the magic baseline compared with the optimized Neutrino Factory set-up with two improved golden detectors (50 kton each) placed at 4000 km & 7500 km respectively. $E_{\mu} = 20$ GeV & total 5 \times 10²¹ decays for μ^- & μ^+ each. Computed at the nominal beta beam ion decay rate and at 10 times the nominal fluxes.

From S. K. Agarwalla, S. Choubey and A. Raychaudhuri, arXiv:0711.1459 [hep-ph].

• "Minimal" beta beam configuration in case of large θ_{13} (in the reach of Double Chooz capable of measuring i) $\sin^2 2\theta_{13} > 0$ at 5σ , ii) mass hierarchy at 3σ for any value of δ_{CP} and iii) LCPV at 3σ for 80% of the allowed values of δ_{CP} . From W. Winter, arXiv:0804.4000 [hep-ph].

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 27 / 30

Green Field Beta Beams vs Neutrino Factory

Minimum wish list

 \blacksquare Assume that Double Chooz finds θ_{13}

(Sim. from hep-ph/0601266; 1.5 yr far det. $+ 1.5$ yr both det.)

- \blacksquare Minimum wish list easy to define:
	- 5 σ independent confirmation of θ_{13} > 0
	- 3 σ mass hierarchy determination for any (true) δ_{CP}
	- 3 σ CP violation determination for 80% (true) δ_{CP}
	- For any (true) θ_{13} in 90% CL D-Chooz allowed range!
- \triangleright What is the minimal (effort) beta beam for that?
- \blacksquare NB: Such a minimum wish list is non-trivial for small θ_{13}
- \blacksquare NB: CP fraction 80% comes from comparison with IDS-NF baseline etc.

Luminosity scaling for fixed L

 \blacksquare What is the minimal LSF $x \gamma$?

 \blacksquare (Ne,He): $LSF = 1$ possible (B,Li): (B,Li): $LSF = 1$ not sufficient

But: If $LSF \geq 5$: γ can be lower for (B,Li) than for (Ne,He), because MH measurement dominates there (requires energy!)

500 $(1^8$ Ne, 6 He) to TASD
 $(1^8$ Ne, 6 He) to TASD
 $(1^8$ B, 8 Li) to WC $(500kt)$
 $(100kt)$
 $(100kt)$
 $(100kt)$
 $(100kt)$
 $(100kt)$
 $(100kt)$ 400 300 Minimal γ 200 100 $\overline{oply}_{\gamma\subset I\mathcal{S}_O}$ $\sin^2 2\theta_{13} = 0.08$, L=1290 km GLoBES 2008 0 0.3 0.5 \overline{c} 3 5 20 10 40 Luminosity scaling factor (L)

June 30, 2008 NuFact 08 - Walter Winter 18

Minimal effort beta beam

\blacksquare Minimal effort \blacksquare

- One baseline only
- $-$ Minimal γ
- Minimal LSF
- Any L (green-field!)
- **Example: Fix LSF and** optimize $L-\gamma$
	- \triangleright Sharp cutoff by MH from left, from CPV from bottom
	- \triangleright Use fixed L \ge = 730 km to avoid fine-tuning

Sensitivity for entire Double Chooz allowed range!

Minimal beta beam at the CERN-SPS? (γ fixed to maximum at SPS)

In case of large *θ***¹³**

Conclusions

- The CERN-Frejus scenario is already a very good player in the context of future neutrino oscillation experiments
- An increase of neutrino fluxes would be highly beneficial for the beta-beam discovery potential. Duty cycle can be sacrified to have higher neutrino fluxes.
- In case of "high" θ_{13} values an upgraded CERN-Frejus configuration could represent the ultimate neutrino oscillation set-up.
- In case of small $θ$ ₁₃ values higher $γ$ are needed
- For very small θ_{13} a setup including a magic baseline experiment and a "short" baseline experiment is the only competitor to neutrino factories.

Mauro Mezzetto, INFN Padova () Physics with *β*B APC meeting 07/05/09 30 / 30 / 30 Å APC meeting 07/05/09 30 / 30

The MODULAr project

Astroparticle Physics 29 (2008) 174-187 and 2009 Jinst 4 P02003

- 21.5 kton of Liquid Argon in 4 modules "600 ton" like.
- At shallow depth, 7 or 10 km off-axis from CNGS.
- Modified CNGS optics and target to lower the mean *νµ*energy.
- Assume 1*.*² *·* ¹⁰²⁰ pot/yr (CNGS-1, 0.5 MW) or 4*.*⁴ *·* ¹⁰²⁰ pot/yr (CNGS-2, 1.6 MW). At present, CNGS: $4.5 \cdot 10^{19}$ pot/yr.

Mauro Mezzetto, INFN Padova () [Next Challenge in Neutrino Physics, the](#page-0-0) θ13 angle Neutel 09, 12/03/09 28 / 30

The MODULAr project, new configuration (Preliminary)

Thanks to A. Guglielmi

- Place the detector **on surface**, at the LNGS Assergi site, 7 km off-axis.
- CNGS neutrinos are detectable on surface:
	- Full drift time, 2.7 ms, less than one crossing muon every 2 m^2 .
	- The PMTs allow to reduce the window to the 10*.*5 *µ*s SPS time window, 0.5 cosmic events per spill per semi-module.
	- Additional reduction of a factor 2 by splitting the PMTs upstream and downstream the semimodule.

