Spin-independent couplings of WIMPs to nucleons

Laurent Lellouch

Centre de Physisque Théorique CNRS & Aix-Marseille U.

Budapest-Marseille-Wuppertal collaboration (BMWc) OCEVU "Lattice QCD enlightens DM" (in progress/preliminary)

Direct WIMP dark matter detection

 $\mathcal{L}_{q_{\chi}} = \sum_{q} \lambda_{q}^{\Gamma} [\bar{q} \Gamma q] [\bar{\chi} \Gamma \chi] \longrightarrow \mathcal{L}_{N_{\chi}} = \lambda_{N}^{\Gamma} [\bar{N} \Gamma N] [\bar{\chi} \Gamma \chi]$

 $\begin{array}{l} \mbox{Quark are confined within nucleons} \\ \rightarrow \mbox{nonperturbative QCD tool} \end{array}$

WIMP-nucleus spin-independent cross section

In low-E limit

$$\frac{d\sigma_{\chi_{Z}}^{SI}}{dq^{2}} = \frac{1}{\pi v^{2}} \left[Z f_{p} + (A - Z) f_{n} \right]^{2} |F_{X}(q^{2})|^{2}$$

w/ $F_X(\vec{q} = 0) = 1$ nuclear FF and χN couplings (N = p, n)

$$\frac{f_N}{M_N} = \sum_{q=[ud],s} f_q^N \frac{\lambda_q}{m_q} + \sum_{Q=c,b,t} f_Q^N \frac{\lambda_Q}{m_Q}$$

such that $(f = u, d, s, c, b, t \text{ and } \langle N(\vec{p}') | N(\vec{p}) \rangle = (2\pi)^3 \delta^{(3)}(\vec{p}' - \vec{p}))$

 $f_{ud}^{N}M_{N} = \sigma_{\pi N} = m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle, \qquad f_{f}^{N}M_{N} = \sigma_{fN} = m_{f} \langle N | \bar{f}f | N \rangle$

For heavy Q = c, b, t (Shifman et al '78)

$$m_Q \, ar{Q} Q = -rac{1}{3} rac{lpha_s}{4\pi} G^2 + Oig(lpha_s, rac{\mathcal{O}_6}{m_O^2}ig)$$

Heavy quark contributions

Then obtain f_Q^N in terms of f_q^N through to $M_N = \langle N | \theta^{\mu}{}_{\mu} | N \rangle$, w/

$$\theta^{\mu}{}_{\mu} = (1 - 2\gamma_m(\alpha_s)) \left[\sum_{q=u,d,s} m_q \bar{q}q + \sum_{Q=c,b,t} m_Q \bar{Q}Q \right] + \frac{\beta(\alpha_s)}{2} G^2$$

Find, Q = (c, b), t,

$$f_{Q}^{N} \equiv \frac{\langle N | m_{Q} \bar{Q} Q | N \rangle}{M_{N}} = -\frac{2}{3} \frac{\alpha_{s}}{\tilde{\beta}(\alpha_{s})} \left(1 - \sum_{q = \lfloor ud \rfloor, s} f_{q}^{N}\right) + O(\alpha_{s}, \frac{\Lambda_{QCD}^{2}}{m_{Q}^{2}})$$

w/ $\tilde{\beta}(\alpha_{s}) = -\tilde{\beta}_{0}\alpha_{s} + O(\alpha_{s})$ and $\tilde{\beta}_{0} = \beta_{0} + \frac{2}{3}N_{Q} = 11 - \frac{2}{3}N_{q} = 9$

- Need to measure or compute nonperturbative QCD quantities $f_q^N M_N = \sigma_{qN} = m_q \langle N | \bar{q}q | N \rangle$, $q = u, d, s(, c) \rightarrow$ Lattice QCD
- If only *t*, *b* obtained w/ HQE, syst on $f_{(t/b)}^N$ is $\sim O(\Lambda_{QCD}^2/m_b^2) \sim 0.005$, and if *c* is also, syst on $f_{(t/b/c)}^N$ is $\sim O(\Lambda_{QCD}^2/m_c^2) \sim 0.06$

σ -terms from LQCD: matrix element (ME) method

 $\sigma_{\pi N} = m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle \qquad \sigma_{fN} = m_f \langle N | \bar{f}f | N \rangle$

Extract directly from time-dependence of 3-pt fns:

Desired matrix element appears at leading order

- X Must compute more noisy 3-pt fn
- X Quark-disconnected contribution very challenging, though generally suppressed
- $\times m_q \bar{q} q$ renormalization challenging (Wilson fermions)

σ -terms from LQCD: Feynman-Hellmann (FH) method

Feynman-Hellmann (FH) theorem gives

$$\langle N|m_q \bar{q}q|N
angle = m_q \left. \frac{\partial M_N}{\partial m_q} \right|_{m_q^{(\phi)}}$$

 $(t-\underline{t_i}) \rightarrow \infty$

On lattice get M_X from time-dependence of 2pt-fn, e.g.:

 $\langle 0|N|N\rangle\langle N|\bar{N}|0
angle\exp\left\{-M_{N}(t_{f}-t_{i})
ight\}$

- Only simpler and less noisy 2pt-fn is needed
- No difficult quark-disconnected contributions
- No difficult renormalization
- X m_{ud}-dependence not very large

$$M_N \simeq 939 \,\mathrm{MeV} \simeq 895 \,\mathrm{MeV} + O(m_{ud})$$

- \rightarrow must extract correction precisely
- X m_s and even more so m_c dependences are even smaller around their physical values

Strategy of calculation

For f_q^N , q = u, d, s, use lattice QCD and Feynman-Hellmann theorem

$$f_{q}^{N}M_{N} = \langle N|m_{q}\bar{q}q|N\rangle = m_{q} \left.\frac{\partial M_{N}}{\partial m_{q}}\right|_{m_{q}^{(\phi)}}$$

Method:

- Perform many high-statistics simulations with various m_q around physical values, various $a \leq 0.1$ fm and various $L \geq 8$ fm
- For each compute M_{π} (\rightarrow m_{ud}), $M_{K_{\chi}} = \sqrt{2M_{K}^2 M_{\pi}^2}$ (\rightarrow m_s), M_{D_s} (\rightarrow m_c) and M_N (\rightarrow Λ_{QCD})
- Study dependence of m_q , q = ud, s, c and M_N on M_{π}^2 , $M_{K_{\gamma}}^2$, M_{D_s} , a and L
- For each simulation determine a, m^(φ)_q's such that M_π,...take their physical value in a → 0 and L → ∞ limit
- Compute, at physical point

$$f_q^N = \sum_{P=\pi, K_{\chi}} \frac{\partial \ln M_P^2}{\partial \ln m_q} \frac{\partial \ln M_N}{\partial \ln M_P^2}$$

Lattice details

- N_f = 2 + 1 + 1 4-stout staggered fermions on tree-level improved Symanzik gluons
- 3 $a \in [0.064, 0.095]$ fm and $LM_{\pi} > 4$

Improvements over BMWc, PRL '16

- Charm in sea
- \checkmark \gtrsim \times 100 in statistics
- \checkmark \gtrsim \times 2 lever arm in m_s

- N_f = 1 + 1 + 1 + 1 3-HEX clover fermions on tree-level improved Symanzik gluons
- 4 $a \in [0.064, 0.102]$ fm and $LM_{\pi} > 12$
- Like PRL '16 FH in terms of quark and not meson masses
- X No physical m_{ud} for $\frac{\partial \ln M_N}{\partial \ln M_P^2}$, but small enough and know M_N from experiment

Determination of Jacobian (preliminary)

Laurent Lellouch Search for dark matter, CPPM, 10-11 Oct. 2019

Results for Jacobian (preliminary)

= LO χ PT

- statistical error
- systematic error

Side product:

 $\frac{m_s}{m_{ud}} = 27.29(33)(8)$

(see FLAG '19 $m_s/m_{ud} = 27.31(10)(10)$)

$M_{\pi}^2 \sim m_{ud}$ dependence of M_N (preliminary)

$M_{K_{\gamma}} \sim m_s$ dependence of M_N (preliminary)

Finite-volume effects

- Correct for leading FV effects: $\frac{M_{\chi}(L)-M_{\chi}}{M_{\chi}} = cM_{\pi}^{1/2}L^{-3/2}e^{-M_{\pi}L}$
- c = 35(13)(5)GeV⁻² compatible with χ PT expectation (Colangelo et. al. '10)

SU(2) isospin relations for $f_{u/d}^{p/n}$

[BMWc, PRL 116 (2016), see also Crivellin et al '14]

- Input: f_{ud}^N , $\Delta_{\text{QCD}}M_N = 2.52(17)(24)$ MeV (BMWc, Science 15) & $r \equiv m_u/m_d = 0.46(2)(2)$ (FLAG 17)
- SU(2) relations w/ $\delta m = m_d m_u$

$$\begin{split} H &= H_{\rm iso} + H_{\delta m} , \quad H_{\delta m} = \frac{\delta m}{2} \int d^3 x \left(\bar{d} d - \bar{u} u \right) \\ \\ \Delta_{\rm QCD} M_N &= \delta m \langle p | \bar{u} u - \bar{d} d | p \rangle \end{split}$$

lead to

$$f_u^{p/n} = \left(\frac{r}{1+r}\right) f_{ud}^N \pm \frac{1}{2} \left(\frac{r}{1-r}\right) \frac{\Delta_{\text{QCD}} M_N}{M_N} + O((\delta m)^2, m_{ud} \delta m)$$

$$f_d^{p/n} = \left(\frac{1}{1+r}\right) f_{ud}^N \pm \frac{1}{2} \left(\frac{1}{1-r}\right) \frac{\Delta_{\text{QCD}} M_N}{M_N} + O((\delta m)^2, m_{ud} \delta m)$$

Huge improvement on usual SU(3)-flavor approach

Strategy for charm sigma term

- 9 dedicated $N_f = 2 + 1 + 1$, 4-stout staggered fermion simulations on tree-level improved Symanzik gluons
- 3 $a \in [0.095, 0.118]$ fm and $LM_{\pi} > 4$
- For each *a*, fix m_{ud} and m_s to physical values and consider 3 charm masses: $\frac{3}{4}m_c^{\Phi}$, m_c^{Φ} , $\frac{5}{4}m_c^{\Phi}$
- Get σ_{cN} through finite differences

Continuum extrapolation of f_{CN}

For systematic error estimate associated w/ $a \rightarrow 0$, use differences between:

- constant fit in a² to two finest lattice results
- Iinear fit in a² to all lattice results
- quadratic fit in a² to all lattice results

Sources of systematic error (preliminary)

Use extended frequentist approach (BMWc '08, '15): perform large number of plausible analyses and use variation to get systematic error

Systematic and statistical errors (preliminary)

- Perform large number of plausible analyses
- Combine into pdf using associated probability
- Mean over pdf gives central value
- Variance over pdf gives systematic error
- Different weights possible
- Crosscheck agreement
- Statistical error obtained from variance of central value over resampled samples

Heavy-quark sigma terms

Use HQ expansions of QCD w/ $N_f \leq 4$ to $O(\alpha_s^3)$ (Hill et al '15)

Results for all σ -terms (preliminary)

- All σ terms have total errors less than 15%
- $f_c^N f_c^N|_{HQ} = 0.0002(45)(55)$ consistent with $O(\Lambda^2/m_c^2)$
- Low energy N-h coupling is $f_{hN} \times M_N$ w/ $f_{hN} = \sum_{q=u,\dots,t} f_q^N = 0.3090(58)(61)$
- N-h coupling is 31% or nucleon mass insead of 100% for fundamental particles
- 87% (resp. 68%) of that coupling comes for sea s, c, b, t (resp. c, b, t) quarks

Comparison

BACKUP

Finite difference approximations for σ_{cN}

At fixed *a*, define:

$$\Delta^{+} M_{N} = M_{N} (m_{c} = \frac{5}{4} m_{c}^{(\phi)}) - M_{N} (m_{c} = m_{c}^{(\phi)})$$
$$\Delta^{-} M_{N} = M_{N} (m_{c} = m_{c}^{(\phi)}) - M_{N} (m_{c} = \frac{3}{4} m_{c}^{(\phi)})$$

Combine in two ways:

• Standard finite difference formula (error: $O((\delta m_c/m_c)^2) = O(1/16))$

$$\sigma_{cN} = m_c \frac{\partial M_N}{\partial m_c} = 2 \frac{\Delta^+ M_N + \Delta^- M_N}{M_N^{(\phi)}}$$

• Based on HQ behavior (error: $O((\sigma_{cN}/M_N^{(\phi)})^3) = O(3 \times 10^{-4}))$

$$\sigma_{cN} = \frac{1}{\log \frac{5}{4} \log \frac{4}{3} \log \frac{5}{3}} \left(\log^2 \frac{4}{3} \Delta^+ M_N + \log^2 \frac{5}{4} \Delta^- M_N \right)$$

Nucleon		Individual <i>p</i> and <i>n</i>	
f_{ud}^N	0.0398(32)(44)	f ^p	0.0142(12)(15)
f_s^N	0.0577(46)(33)	f_d^p	0.0242(22)(30)
f_c^N	0.0734(45)(55)	f_u^n	0.0117(11)(15)
f _b ^N	0.0701(7)(8)	f_d^n	0.0294(22)(30)
f_t^N	0.0679(6)(7)		

Side product: M_N in SU(2) and SU(3) chiral limits

 $M_{N_{\chi}}^{\rm SU(2)} = 895(2)(4) \,{
m MeV}$ $M_{N_{\chi}}^{\rm SU(3)} = 845(5)(6) \,{
m MeV}$