

Revisiting velocity distribution uncertainties (application to capture by the Sun)

A. Nuñez-Castiñeyra V. Bertin, E. Nezri [arXiv:1906.11674]

Lacroix, Nunez-Castineyra, Stref, Lavalle, Nezri in prep Nunez-Castineyra, Nezri, Devriendt, Teyssier in prep

Marseille, October 2019

Three main ways to approach f(v)

• Take the standard halo model (SHM)

(V_sun=220 km/s ; ρ_{sun} ~ 0.4-0.3 GeV/cm³; v_{esc} =544 km/s ; f(v)=Maxwellian distribution)

- Direct extrapolation by fiting f(v) from Cosmological "Milky-Way like" simulations
- Dynamical phase space prediction using MW macro features

e.g Eddington (Eddington, lacroix 2018), Action angle (Binney , Posti) etc.

Three main ways to approach f(v)

• Take the standard halo model (SHM)

(V_sun=220 km/s ; $\rho_{sun} \sim 0.4$ -0.3 GeV/cm³; v_{esc} =544 km/s ; f(v)=Maxwellian distribution)

- Maxwellian exhibit problems with the tail and hat of the f(v)
- \circ Assumes an isothermal halo density profile ρ \propto $r^{\text{-2}}$
- Degenerations in other values
- Direct extrapolation by fiting f(v) from Cosmological "Milky-Way like" simulations
- Dynamical phase space prediction using MW macro features

e.g Eddington (Eddington 1916, Lacroix 2018), Action angle (Posti 2015) etc.

2. Cosmological simulations

To extrapolate data o use fits on f(v) obtained in simulations of "MW-like galaxy"**

**: how MW-like can a simulation be?

Ingredients

Different fluids are modelled using different techniques.

- 1. **Dark matter** as a collisionless fluid (Vlasov equation)
- 2. **Gas** as a compressible ideal gas (Euler equations)
- 3. **Stars** as a collisionless fluid (Vlasov equation)
- 4. Various chemical species as passive scalars and associated reactions

Possible extra ingredients:

- 5. Metals and dust grains as passive scalars or as new fluids
- 6. Massive neutrinos as a quasi-relativistic fluid
- 7. Magnetic fields as a divergence free vector field
- 8. Supermassive black holes as individual accreting particles
- 9. Cosmic rays as an additional energy variables or as a new fluid

Zoom-in Simulations

- 1. detect one halo of interest in a cosmological simulation.
- 2. compute the Lagrangian volume in the low resolution IC
- 3. generate high-resolution IC by adding high frequency waves to the low resolution initial Gaussian random field
- 4. use the Lagrangian volume as a map to initialize high resolution particles.
- 5. do the high resolution simulation and check for contamination
- 6. eventually, compute a better initial Lagrangian volume and re-do the simulation

Star formation

Schmidt law for star formation:

$$\dot{\rho}_* = \epsilon_* \frac{\rho_g}{t_{\rm ff}} \text{ for } \rho > \rho_*$$

Option 1: constant efficiency (Krumholz & Tan (2007)) Option 2: calculated efficiency (Federrath & Klessen (2012))

$$p(s) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left(-\frac{\left(s + \frac{1}{2}\sigma_s^2\right)^2}{2\sigma_s^2}\right)$$

Among some of the models we use: Krumholtz & McKee (2005)

$$\sigma_s^2 = \ln\left(1 + b^2 \mathcal{M}^2\right)$$
 $\mathcal{M} = \frac{\sigma_{\rm T}}{c_s}$

Feedback

2. Cosmological simulations

Extrapolate data o use fits on f(v) obtain in simulations of "MW-like galaxy"** at 8 kpc**

: how MW-like can a simulation be?*: what is the meaning of 8 kpc in your simulations with respect to 8kpc in the MW

We use 2 cosmological simulations of spiral galaxies in a **MW size** halo

- Simulated with AMR code RAMSES
- Similar baryonic physics implementation
 - Star formation
 - SN feedback
- Ingredients:
 - Dark Matter
 - Gas
 - Stars

 Usual comparisons with MW are done in their respective publications: RC, TF, SHMR, SFR.. we present here extra checks

Halo B Boxsize = 20 Mpc M_{DM} =0.6x10¹² M_{star} =7x10¹⁰ Resolution = 150 pc Mollitor et al [arXiv:1405.4318] Mochima

Boxsize = 36 Mpc M_{DM} =0.9x10¹² M_{star} =3x10¹⁰ Resolution = 35 pc Nunez-Castineyra et al. in prep

We use 2 cosmological simulations of spiral galaxies in a **MW size** halo

- Simulated with AMR code RAMSES
- Similar baryonic physics implementation
 - Star formation
 - SN feedback
- Ingredients:
 - Dark Matter
 - Gas
 - Stars

• Usual comparisons with MW are done in their respective publications: RC, TF, SHMR, SFR.. we present here extra checks

Halo B Boxsize = 20 Mpc M_{DM} =0.6x10¹² M_{star} =7x10¹⁰ Resolution = 150 pc Mollitor et al [arXiv:1405.4318]

Mochima

Boxsize = 36 Mpc M_{DM} =0.9x10¹² M_{star} =3x10¹⁰ Resolution = 35 pc Nunez-Castineyra et al. in prep

Local DM density

Check of the local density value in the simulation with analytical predictions and observations in two volumetric selection

- Ring
- Shell

Centered at r = 8 kpc and a thickness of 2 kpc

Check for equilibrium

Usually assumed for the MW

• Local density over time

• f(v) over time

Take your favorite fitting formula and go ahead...

 $f(\vec{v}) = \frac{1}{N} e^{-(\vec{v}^2/v_0^2)}$

Classical Maxwellian

Generalized Maxwellian

Tsallis

 $f(\vec{v}) = \frac{1}{N} e^{-(\vec{v}^2/v_0^2)^{\alpha}} \qquad f(\vec{v}) = \frac{1}{N} \left(1 - (1-q)\frac{\vec{v}^2}{v_0^2} \right)^{q/(1-q)}$

$$f(\vec{v}) = \frac{1}{N} e^{-(\vec{v}^2/v_0^2)}$$

Classical Maxwellian

Generalized Maxwellian

Tsallis

 $f(\vec{v}) = \frac{1}{N} e^{-(\vec{v}^2/v_0^2)^{\alpha}} \qquad f(\vec{v}) = \frac{1}{N} \left(1 - (1-q)\frac{\vec{v}^2}{v_0^2} \right)^{q/(1-q)}$

Arturo Núñez-Castiñeyra | LAM-CPPM

Introducing v_{esc}

$$v_{\rm esc} \equiv \sqrt{2\Psi(r)}$$
 $\Psi(r) = \Phi(R_{\rm max}) - \Phi(r)$

Take your favorite fitting formula and go ahead...

$$f(\vec{v}) = \frac{1}{N} e^{-(\vec{v}^2/v_0^2)}$$

Classical Maxwellian

Generalized Maxwellian

Tsallis

 $f(\vec{v}) = \frac{1}{N} e^{-(\vec{v}^2/v_0^2)^{\alpha}} \qquad f(\vec{v}) = \frac{1}{N} \left(1 - (1-q)\frac{\vec{v}^2}{v_0^2} \right)^{q/(1-q)}$

Take your favorite fitting formula and go ahead... now including v_{esc}

$$f(\vec{v}) = \frac{1}{N} \left(e^{-(\vec{v}^2/v_0^2)} - e^{-(v_{\rm esc}^2/v_0^2)} \right) \quad f(\vec{v}) = \frac{1}{N} \left(e^{-(\vec{v}^2/v_0^2)^{\alpha}} - e^{-(v_{\rm esc}^2/v_0^2)^{\alpha}} \right)$$

Classical Maxwellian

Generalized Maxwellian

Tsallis

 $f(\vec{v}) = \frac{1}{N} \left(1 - (1-q)\frac{\vec{v}^2}{v_0^2} \right)^{q/(1-q)}$

Arturo Núñez-Castiñeyra | LAM-CPPM

$$q = 1 - (v_0^2 / v_{\rm esc}^2)$$

Three main ways to approach f(v)

• Take the standard halo model (SHM)

(V_sun=220 km/s ; $\rho_{sun} \sim 0.4$ -0.3 GeV/cm³; v_{esc} =544 km/s ; f(v)=Maxwellian distribution)

- Maxwellian exhibit problems with the tail and hat of the f(v)
- \circ Assumes an isothermal halo density profile ρ \propto r^2
- Degenerations in other values
- Direct extrapolation by fiting f(v) from Cosmological "Milky-Way like" simulations
 - No warranty that of the "Milky-way likeness" of the simulation
 - The meaning of 8kpc in the simulation
- Dynamical phase space prediction using MW macro features

e.g Eddington (Eddington 1916, lacroix 2018), Action angle (Posti 2015) etc.

2. Predictions from dynamics

Eddington inversion

Predictions from the Eddington method as studied by Lacroix et al. (Binney - Tremaine) of f(v)

VS

fully consistent objects build in a Zoom-in Cosmological Simulation.

Density profile \rightarrow Eddington inversion $\rightarrow f(\varepsilon) \rightarrow f(v)$

 $f(\vec{r}, \vec{v}) = f(\mathcal{E}, L)$

Eddington prediction vs Maxwellian approach

Two ways of building the mean of maxwellian f(v)

1) From the contained mass as

$$v_0 = v_c(r) = \sqrt{\frac{GM(r)}{r}}$$

 By solving the Jeans equation for the velocity using the contain mass again.

HALO B

Some more Eddington results

What about baryonic physics in the simulation (SF, Feedback)

Point of emphasis on the variability of the f(v)

DM capture by the Sun

The number of captured WIMPs evolved as

$$\frac{\mathrm{d}N_{\chi}}{\mathrm{d}t} = C - 2\Gamma_A = C - C_A N_{\chi}^2$$

Once you solve it, it can be proved that

 $\Gamma_A = \frac{1}{2}C \tanh^2(t/\tau)$

(A. Gould 1987) (Jungman, Kamionkowski 1996)

DM capture by the Sun

(A. Gould 1987) (Garani & Palomares-Ruiz 2017)

←(n/p) ≪

Arturo Núñez-Castiñeyra | LAM-CPPM

OBJ

DM capture by the Sun

Capture in Sun: Low velocity part Direct Detection: High velocity tail

 $u \, [\rm km/s]$

Arturo Núñez-Castiñeyra | LAM-CPPM

←(n/p)

OBJ

DM capture by the Sun

Capture in Sun: Low velocity part Direct Detection: High velocity tail

 $u \, [\rm km/s]$

Arturo Núñez-Castiñeyra | LAM-CPPM

←(n/p)

Intrinsic uncertainty

[[]arxiv:1906.11674]

Results on Capture

- Departure from capture/annihilation equilibrium during periods of low capture is an unlikely scenario. The Sun is safely in equilibrium for WIMPs with m χ . few TeV.

- The peak/hat and the tail of the simulations f(v) are usually hard to fit. Adding the escape velocity in the fits improves the consistency with the tail of the distribution.

- The f(v)s obtained with the Eddington approach bring additional information on the possible distributions that can be assumed. (have better agreement with simulations data thand the standard Maxwellian VDF)

-The merger history of the halo could leave specific features in the f(v) that out of reach for usual functions.

- The level of **variability** on the capture rate can reach up to 20% depending on the assumptions f(v)
- The intrinsic errors, the variance, of the capture rate leads to dramatic uncertainties, especially for m_>30 GeV.

Point of emphasis on the variability of the f(v)

In simulations the implementation of baryonic physics will have an effect on the final distribution. Nunez-Castineyra et al. in prep

Three main ways to approach f(v)

- Take the standard halo model (SHM)
 - Maxwellian exhibit problems with the tail and hat of the f(v)
 - \circ Assumes an isothermal halo density profile ρ \propto $r^{\text{-2}}$
 - Degenerations in other values
- Direct extrapolation by fiting f(v) from Cosmological "Milky-Way like" simulations
 - No warranty that of the "Milky-way likeness" of the simulation
 - The meaning of 8kpc in the simulation
- Dynamical phase space prediction using MW macro features
- e.g Eddington (Eddington 1916, lacroix 2018), Action angle (Posti 2015) etc.
 - Requires validation from simulations. Lacroix et al in prep
- **Spectives**: GAIA era will bring strong progresses + (directional) direct detection experiment and neutrino telescopes

Thank you

Capture boost

Arturo Núñez-Castiñeyra | LAM-CPPM

Capture boost

