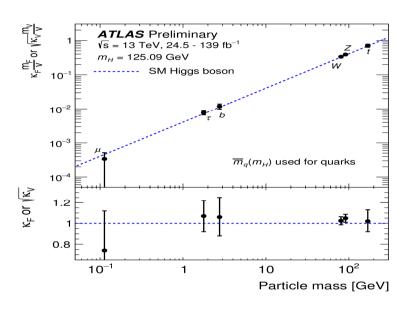
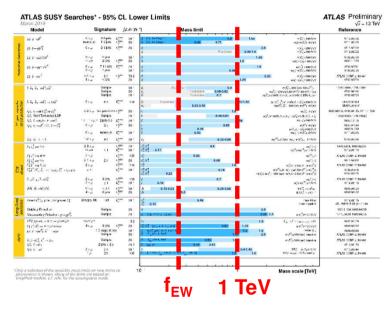
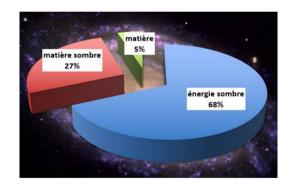
Direct searches for Dark Matter with DarkSide and MadMax experiments


Fabrice Hubaut, Pascal Pralavorio

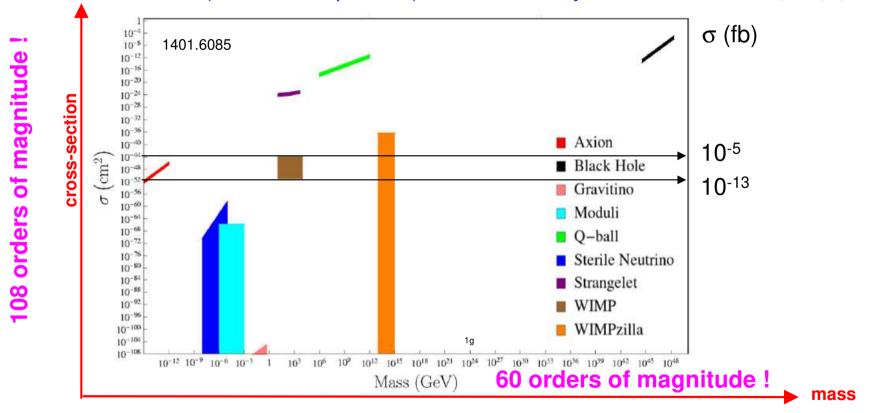

CPPM/IN2P3 - Aix-Marseille Université

- 1- Scientific context
- 2- Scientific opportunities for WIMP and axion searches
- 3- Technical opportunities and first achievements at CPPM
- 4- Conclusions and perspectives


Introduction (1/3)

☐ After LHC runs 1 and 2, Standard Model is stronger than ever...

□ ... but only describes ~5% of the Universe content

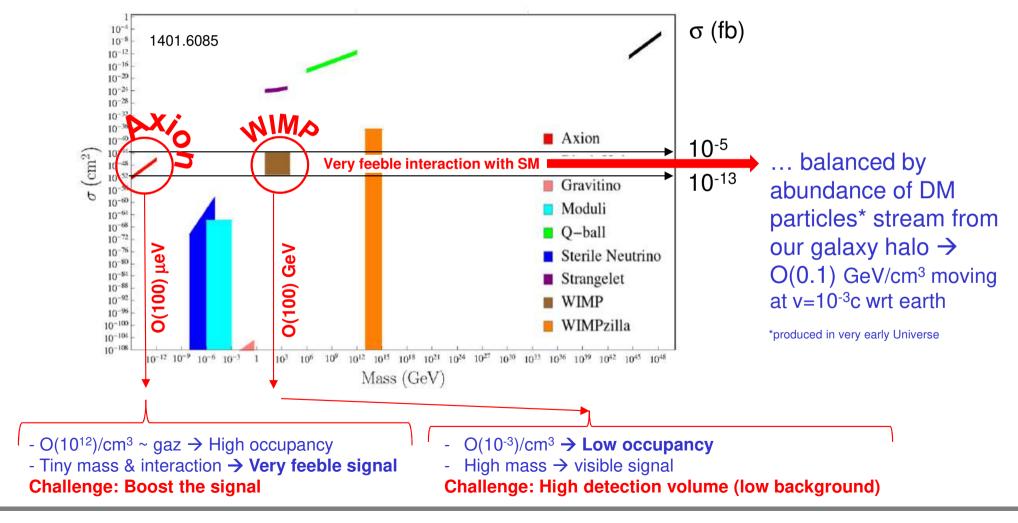


→ Dark Matter is one of the main puzzle of today's fundamental physics

Introduction (2/3)

■ Many dark matter candidates in a gigantic phase space

- No known particle within the SM of particle physics has the required properties to be DM
- → all candidates (new **stable** particle) come from Beyond SM theories...[except primordial black holes]

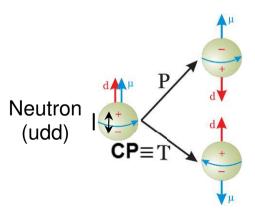


■...but only a few of them are **also strongly motivated by particle physics**, i.e. solving current theoretical SM problems → **WIMP** (hierarchy pb), **Axion** (~no CP violation in strong interaction)

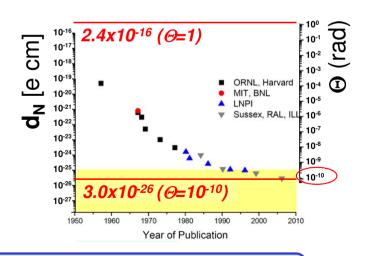
[lightest sterile N (neutrino masses and mixing), but only indirect search through X-ray emission line N $\rightarrow \nu\gamma$, E $_{\gamma}$ =m $_{N}$ /2]

Introduction (3/3)

■ Many dark matter candidates in a gigantic phase space



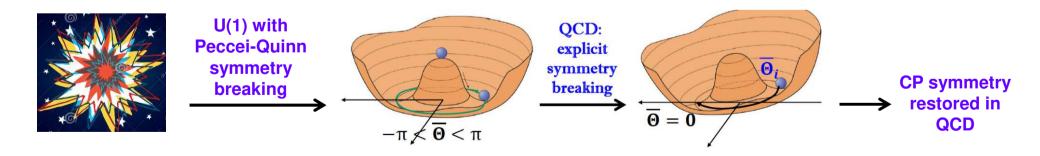
Axion (1/5)



☐ (Short) Theoretical motivations

- Studies of C,P, T symmetries in particle physics : major subject since >60 years
- CP violation in weak interaction: observed in 1964 in the kaon system
 - ✓ CP violation appears via complex phases in fermion mass matrices
 - \rightarrow δ_{13} ~ **1.2 rad in CKM**. To be measured in PMNS (DUNE, T2K)
- CP violation in strong interaction ?
 - \checkmark CP-violating term in QCD Lagrangian (controlled by Θ) is allowed and should exist
 - ✓ ... but Θ < 10⁻¹⁰ from neutron electric dipole moment

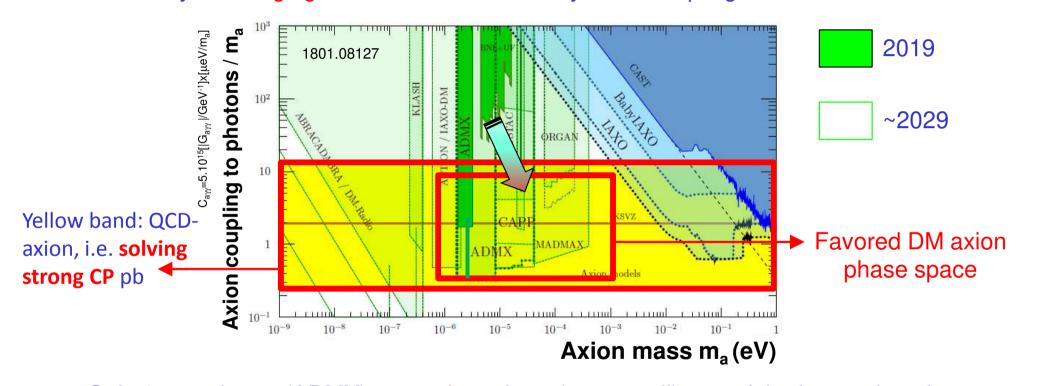
- Electric dipole moment: $d_N = e \cdot I$
- If strong CP : $d_N \sim \Theta \times 10^{-16} \, e \cdot cm$
- Experimental results today:
 → d_N < 3x10⁻²⁶ e·cm → Θ < 10⁻¹⁰


→ Strong CP Problem = naturalness problem. Why is Θ so small?

Axion (2/5)

☐ Solution to Strong CP problem

- Mechanism: new global U(1) symmetry (Peccei-Quinn, 1977) spont. broken at scale $f_a >> f_{EW}$
 - \rightarrow Makes Θ a dynamical variable ($\Theta = a/f_a$), with a = pseudo-scalar boson
 - \rightarrow Cancels CP-violating term in the Lagrangian ($\Theta_{\rm eff} \rightarrow \Theta$ a/f_a): explains absence of CP strong
- Consequence: Goldstone boson of the new theory = axion (Weinberg-Wilczek, 1978)
 - → Properties are all known given the scale of symmetry breaking f_a [mass $m_a \approx m_\pi f_\pi/f_a << eV$]
 - → Couplings to SM particles suppressed by f_a: very weak interaction with SM
- Cosmology: Non-thermal axion production at T~f_a (can occur before or after inflation)

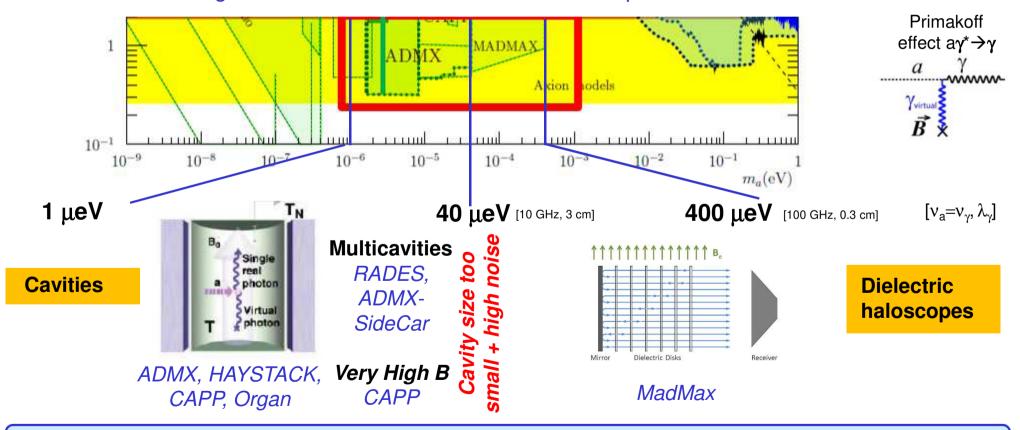


 \rightarrow Axion = natural candidate for DM for m_a=1-10³ μ eV (i.e. f_a =10¹²-10⁹ GeV >> f_{EW})

Axion (3/5)

☐ Status and prospects for direct searches

Extremely challenging because of extraordinary weak coupling of axions [muucchh lower than neutrinos]

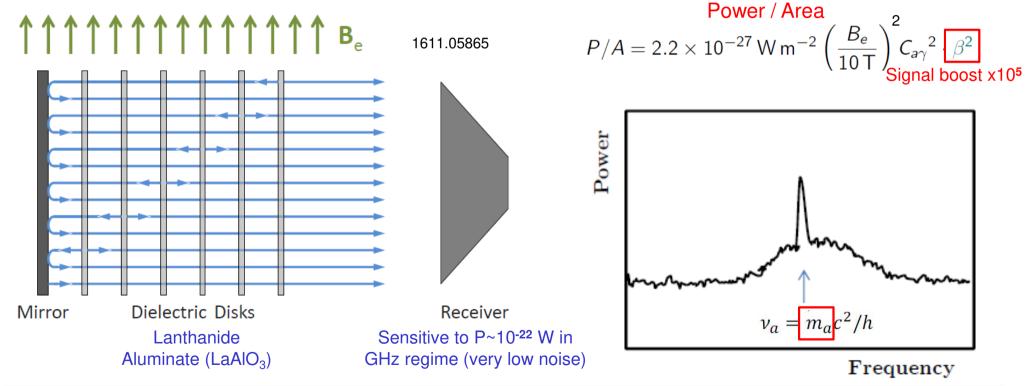

- Only 1 experiment (ADMX) currently probe a (very small) part of the interesting phase space
- Vast R&D program to improve signal sensitivity and expand range of axion mass search

→ Next decade will be decisive, probing axion most favorable region

Axion (4/5)

■ Main challenges for direct searches

- Convert axions into photons [E field of $O(10^{-12})$. $\frac{B}{10 \text{ T}}$) V/m] → high magnetic field >> 1T
- Boost photon field [up to $P\sim 10^{-22}$ W] → resonant cavities or emission at dielectric interfaces
- Scan over range of axion mass → need tunable set-up

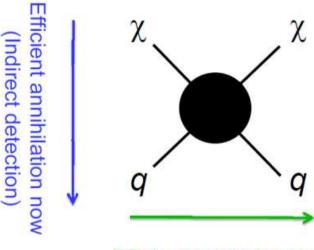


> New ideas of last decade coming to maturity to scan preferred mass range

Axion (5/5)

□ Dielectric haloscope → MadMax experiment

- Novel experimental concept to alleviate cavity limitation at high m_a (V~1/m_a³)
- Stack of dielectric disks with mirror on one side, inside B field → wave emission at interfaces
- Adjustable distance between disks → constructive interferences → tune to scan over m_a
 [spacing 20 mm for 40 μeV and 2 mm for 400 μeV]


→ MadMax only capable to explore m_a=40-400 µeV (favored by post-inflation theory)

WIMP (1/6)

☐ Short reminder on Dark Matter WIMPs

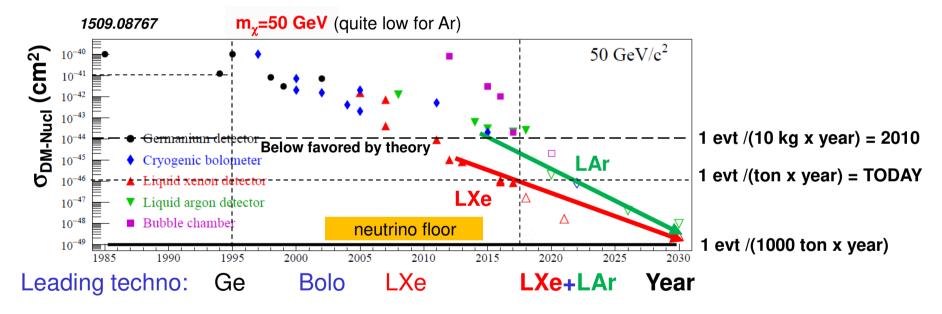
- WIMP "miracle" (80's): A 10-10000 GeV weakly interactive particle can solve the hierarchy problem and explain dark matter (thermally produced in the early Universe)
- Can be experimentally accessed in 3 ways:

in astrophysical objects, e.g. with KM3NeT, CTA

Efficient production now (Particle colliders)

pp → Higgs → invisible, E_T^{miss}+X (and other SUSY searches)

(Direct detection)

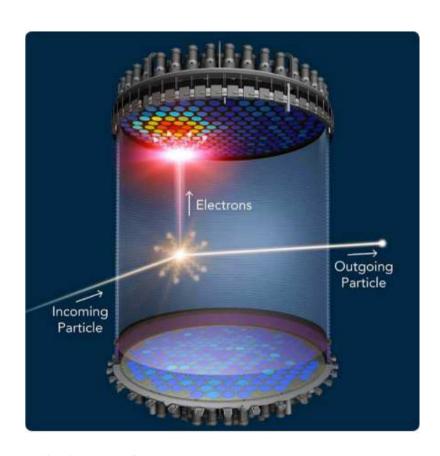

with galaxy halo WIMPs on SM particles

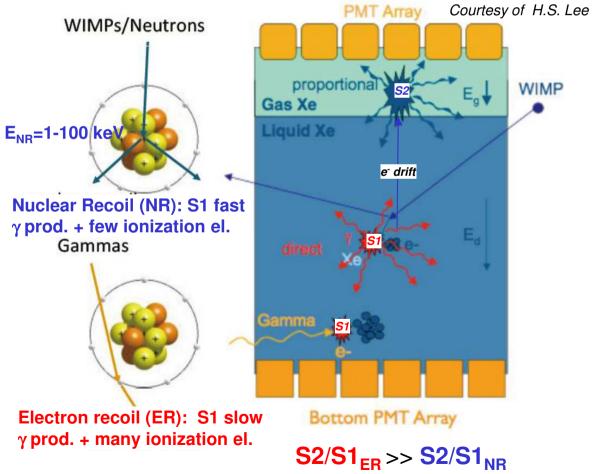
→ complementary approaches to discover WIMPs

WIMP (2/6)

☐ Direct detection of Dark Matter WIMPs

- Scattering of galaxy halo WIMPs on SM particles (direct search)
 - ✓ Very large volume → need scalable technologies
 - ✓ Very low background → low noise electronics + detector under control

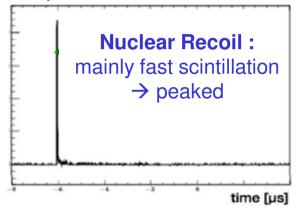

- Gained 5 orders of magnitude in sensitivity in last 20 years
- By end of next decade : should reach neutrino floor

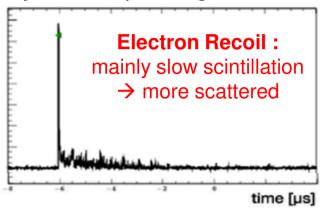

 \rightarrow LXe / LAr dual phase TPC are now leading the race [m_{χ} >O(1 GeV)]

WIMP (3/6)

☐ Principles of noble liquid/gas TPC experiments

- Cryostat hosting a Time Projection Chamber (TPC) equipped with photo-multipliers
- Dual phase TPC → scintillation signal (S1,~8 γ/keV*) followed by ionization one (S2,~50 e⁻/keV*)

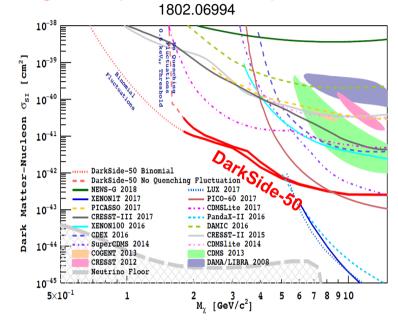




*for electron recoils

WIMP (4/6)

- ☐ LAr technology starts to be mature ...
 - High removal of Electron Recoils → Background free at high WIMP mass
 - ✓ S1 pulse shape discrimination : additional rejection depending on nuclear properties

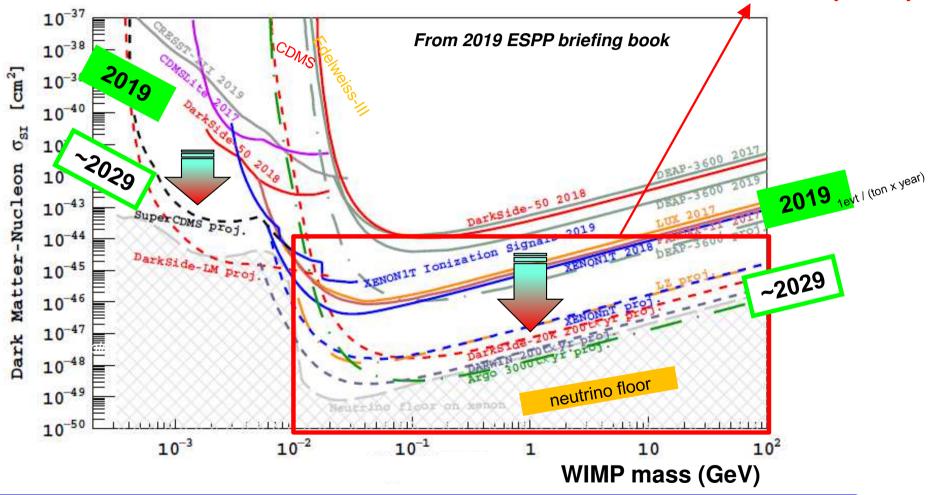

- In Xenon, slow scintillation is actually quite fast (27 ns instead of 6 ns for fast scint.)
- > In Argon, large difference between slow (1000 ns) and fast (6 ns) scintillations
- → Discrimination with rejection >108 (~none with LXe) thanks to intrinsic properties of Argon
- ✓ TPC filled with Underground Argon (less ³⁹Ar) + Further purification (³⁹Ar, ⁸⁵Kr, O, H₂O)
- Merging of all world-wide LAr experiments in 2017 (DEAP3600, DarkSide-50, miniCLEAN, ArDM → DarkSide-20k): most advanced technology from each experiments

WIMP (5/6)

- ☐ ... demonstrating high level performance with 50 kg LAr (DarkSide-50)
 - Best observed exclusion limits @ O(GeV) mass
 from DarkSide-50 with pioneering S2-only analysis

IN2P3 news (26/02/2018)

Une contribution fondamentale à ce résultat vient de l'expérience ARIS (Argon Response Ionization and Scintillation) qui a permis la caractérisation détaillée de la réponse de l'argon liquide. L'expérience ARIS, qui utilise un faisceau de neutrons, a été réalisée au laboratoire ALTO (Orsay) sous la direction des équipes françaises de l'APC et du LPNHE en collaboration avec l'IPNO. La modélisation précise de la réponse du détecteur et du bruit de fond a été le fruit du développement de plusieurs années d'une simulation Monte Carlo détaillée des détecteurs de la famille DarkSide, mise au point par les équipes de l'APC et du LPNHE.



- □... and expect more in the next 10 years with 20 t LAr (DarkSide-20k):
 - Strong discovery potential for high mass (>30 GeV) in an almost background free mode
 (~0.1 background event expected in 5 years [100 t.yr])
 - Very complementary in case of discovery by LXe (currently leading the race)
 - → Liquid Argon technology promising and complementary with LXe

WIMP (6/6)

☐ Situation and prospects for WIMP searches

Phase space favored by theory

→ Next decade will be decisive, probing WIMP most favorable region

Scientific Opportunities (1/2)

- ☐ Two DM candidates motivated by particle physics since 40 years ...
 - Axion : very low mass (m_a=1-10³ μeV) → Conversion to photon field
 - WIMP: high mass $(m_{\gamma}=10-10000 \text{ GeV}) \rightarrow \text{Elastic scattering on nucleon}$
- ☐ ... can be discovered / excluded in the next O(10) years
 - Recently, sensitivity in the theory-favored region in 2010 (WIMP) and 2018 (axion)
 - Will now be extended to most of the range with very promising new experiments
 - ✓ Axion → MadMax: only capable to explore phase space favored by theory
 - ✓ WIMP → DarkSide: leader at O(GeV) + background-free at high mass.
 - DarkSide and MadMax are preparing their prototype now → physics in early 2020's

	2019	2020	2021	2022	2023	2024	2025	≥2026	
MadMax	Preparation Proto	Construction Proto		Exploitation proto		Construction final detector		Exploitation final detector	
DarkSide	Construction Proto		itation oto	Constru Final de		Exploitation final detector			

Scientific Opportunities (2/2)

☐ Scientific council IN2P3 (28-Oct 2018)

http://old.in2p3.fr/actions/conseils_scientifiques/media/2018_octobre/Rapport-2018-10-final.pdf

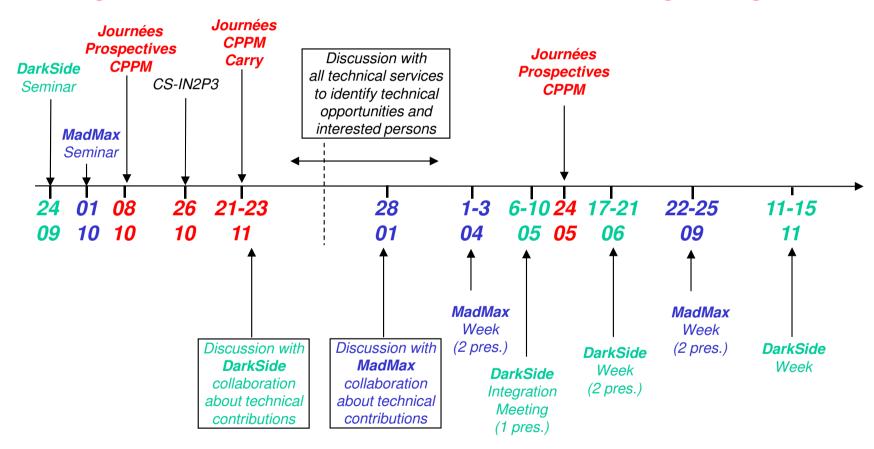
DarkSide: CS-IN2P3 very positive

Aujourd'hui, parmi les projets de détection directe de matière noire présentés, seuls XENON et DarkSide-50 sont opérationnels et au niveau de la rude concurrence internationale, dans des domaines de masse différents. La participation à ces projets est à soutenir et à renforcer en développant les équipes actuelles. [APC+LPNHE]

Avis et recommandations

Le programme DarkSide présenté par ces groupes est ambitieux et vise une participation à toutes les étapes du projet, de DS-50 à GADMC. Le conseil recommande que le groupe se focalise sur quelques points clés de manière à maximiser son impact dans la collaboration. Le conseil recommande de trouver des forces humaines supplémentaires pour s'engager plus avant dans un projet de cette envergure.

CPPM: strengthen french activity with technical contributions (calibration)

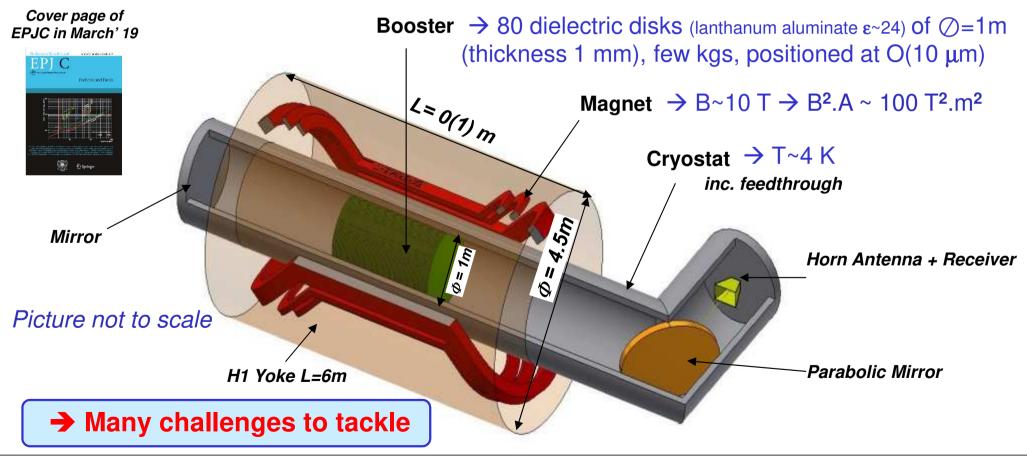

Axions: no participation from IN2P3

Il faut noter que les axions sont un candidat générique à la matière noire, également physiquement motivé, et ce depuis plusieurs dizaines d'années. L'un des piliers des WIMPs étant mis à mal par l'absence de signe de nouvelle physique dans les résultats du LHC, cette alternative doit être gardée à l'esprit, en parallèle à l'élargissement du domaine de paramètres du candidat de type WIMP.

CPPM: open this thematic with technical contributions (innovative R&D)

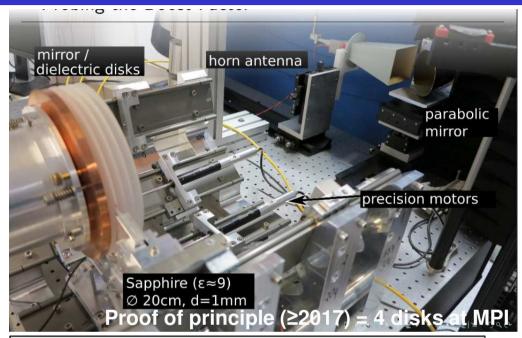
Technical Opportunities

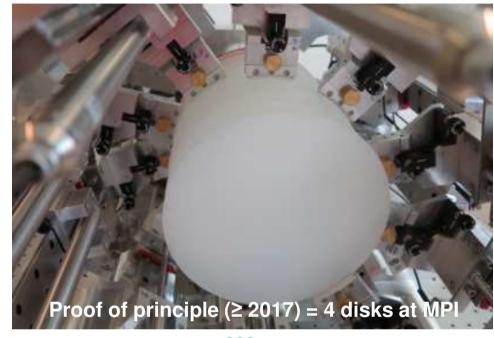
- ☐ Started as prospects in our lab in 2018 ...
- ... and get involved (MadMax and DarkSide) since beginning of 2019

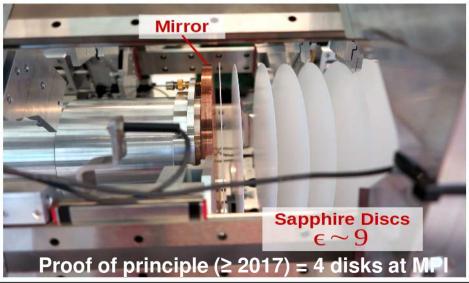

→ Identified technical opportunities + first achievements in last 9 months

Opportunities in MadMax (1/4)

White Paper [EPJC 79 (2019) 186, 1901.07401]


□ ~30 collaborators. Main contacts: MPI-Münich, U-Hamburg, DESY, CEA

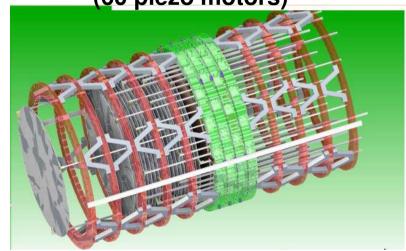

	2019	2020	2021	2022	2023	2024	2025	≥2026	
MadMax	Preparation prototype	Const	ruction otype	Exploit proto		Constr final de		Exploitation final detector	@DESY axion hub (IAXO, ALPS, MadMax)



Opportunities in MadMax (1/4)

White Paper [EPJC 79 (2019) 186, 1901.07401]

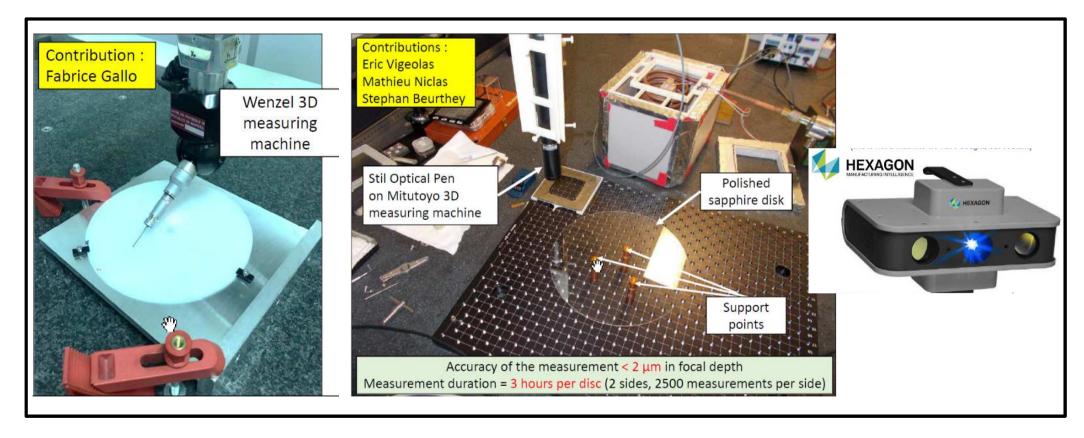
Opportunities in MadMax (2/4)


☐ Best match for CPPM: mechanics of the prototype booster

- Prototype booster composed of 20 disks of 30 cm diameter
- Need to control precisely disk thickness 1 mm +/10 μm
- Need to position precisely disks (10 μm) with piezo motors
- → The whole set-up is embedded in a cryostat T~4K and B~2T

Sapphire disks at MPI

Mechanics of the prototype booster (60 piezo motors)

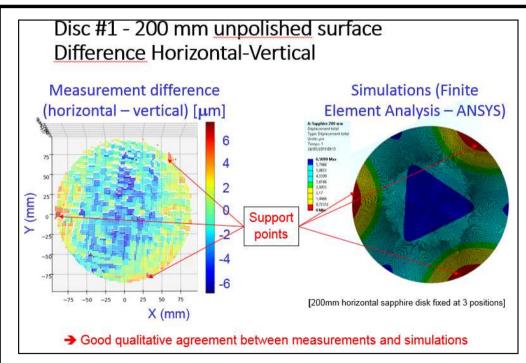


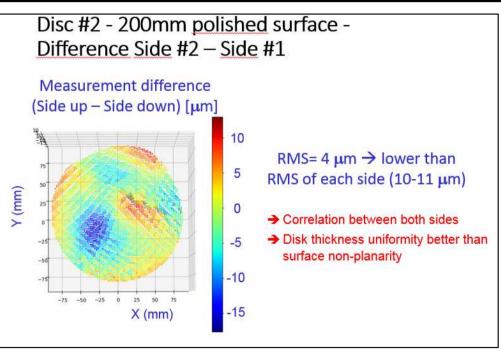
Innovative R&D ongoing → many technical opportunities

Opportunities in MadMax (3/4)

□ First CPPM contributions on mechanics

• Profit from the precision measurement infrastructure of the lab to control disk planarity and thickness with 3 different set-up, with precision <10 μm




Results presented at MadMax meetings in 2019

Opportunities in MadMax (3/4)

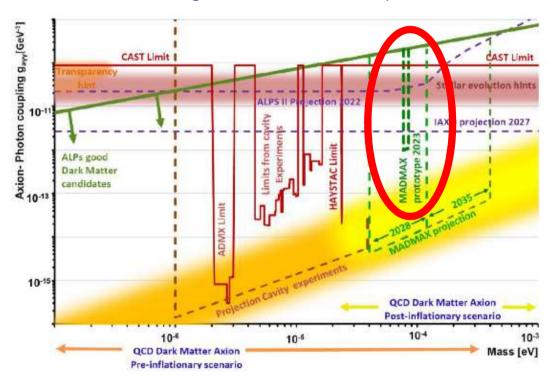
☐ First CPPM contributions on mechanics

• Profit from the precision measurement infrastructure of the lab to control disk planarity and thickness with 3 different set-up, with precision <10 μm

- ➤ We included the measurements in the MadMax simulation code → increased realism.
- → Entry point in MadMax identified and work started with reduced manpower

Opportunities in MadMax (4/4)

■ We proposed the prototype to be operated at CERN


■ Identified ATLAS testbeam magnet → can be used during LHC shutdowns (2021/22 + 22/23)

Cooling system

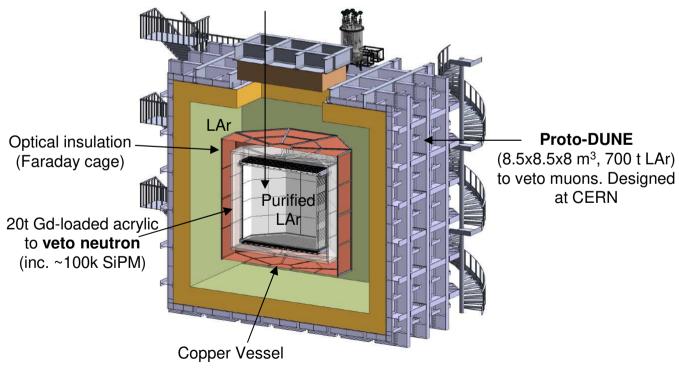
Iron Yoke

Coil
(2 face-toface saddle
shaped coils)

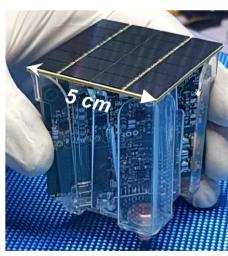
- Lol submitted to SPSC in June
- Can already probe unexplored region of phase space (ALPs) with the prototype
- → Can do physics at short term at CERN

Opportunities in DarkSide (1/4)

White Paper (1707.08145)


□ ~300 collaborators. Main contacts: APC, LPNHE, INFN, LNGS, Princeton, Triumf

	2019	2020	2021	2022	2023	2024	2025	≥2026
DarkSide	Construction	Explo	itation otype	Constru Final de		Exploitati	ion final	detector


@ GranSasso

+ CERN recognized experiment (RE 37)

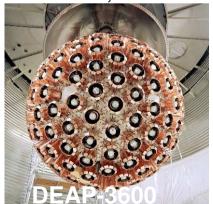
Acrylic TPC (3.5x3.5x3.5 m³, 50t purified LAr) read by 8300 PDMs (~200k SiPM)

1 PDM = 24 SiPM

Developed by FBK (Fondazione Bruno Kessler company) in Trento and then produced by LFoundry

Opportunities in DarkSide (1/4)

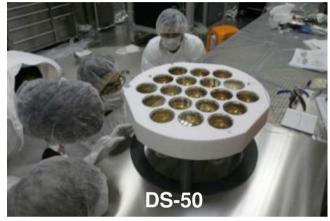
☐ Liquid Argon (LAr) Dark Matter experiments



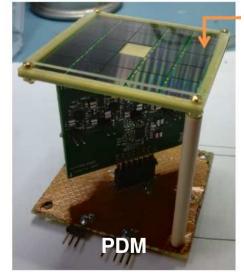
2010

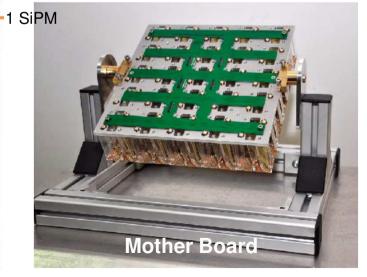
3.6t LAr, SNOLab

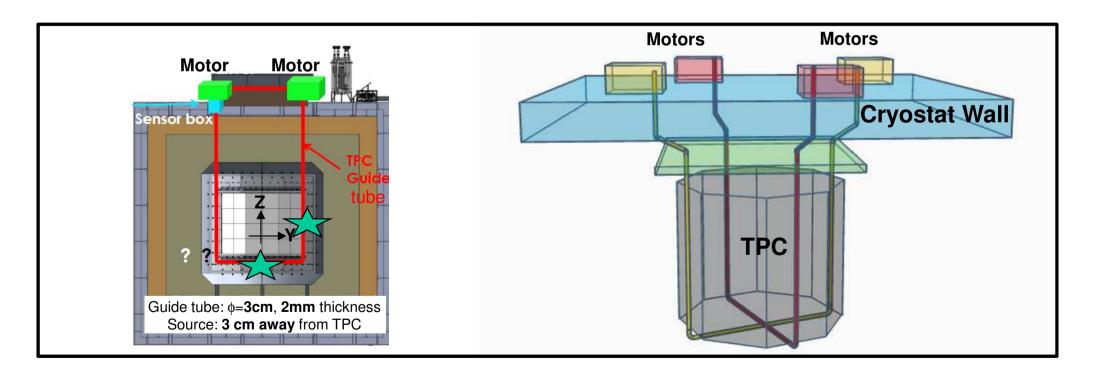
ARGO 400t LAr, Snolab


2030

Opportunities in DarkSide (1/4) White Paper (1707.08145)

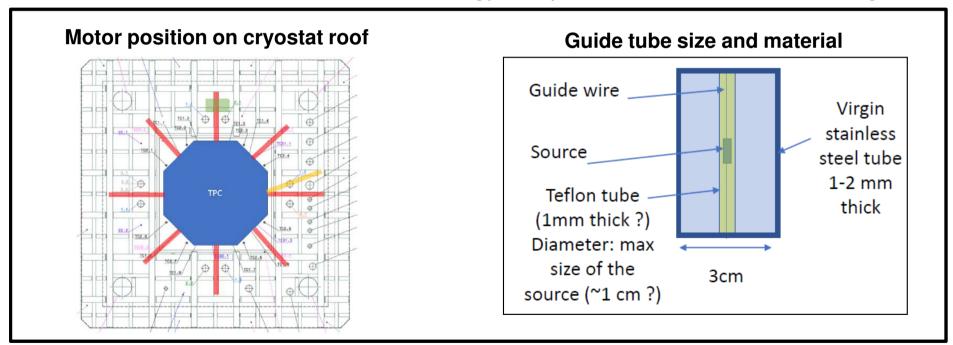






Opportunities in DarkSide (2/4)

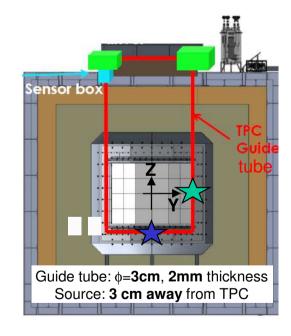
■ Best match for CPPM: detector calibration

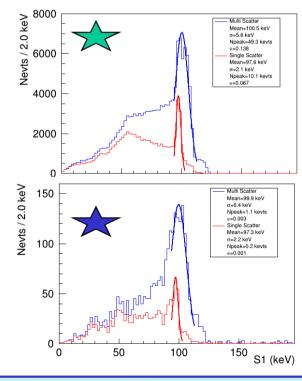

- Central and rich program, in line with CS-IN2P3 of Oct. 2018
- Benefit from expertise of APC and LPNHE + add technical contributions → IN2P3 dynamics
- Guide tube system that will circulate neutron and gamma sources in the final detector

Opportunities in DarkSide (3/4)

☐ First CPPM contributions on detector calibration

- Central and rich program, in line with CS-IN2P3 of Oct. 2018
- Benefit from expertise of APC and LPNHE + add technical contributions → IN2P3 dynamics
- In 2019, conceptual design of guide tube system that will circulate neutron and gamma sources in the final detector → used for energy and position calibration + MC tuning


Results presented at DarkSide meetings in 2019

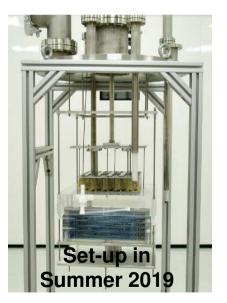

Opportunities in DarkSide (3/4)

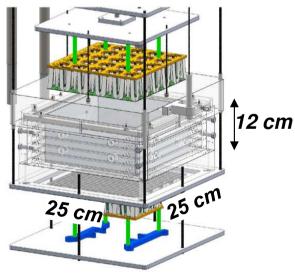
☐ First CPPM contributions on detector calibration

- Central and rich program, in line with CS-IN2P3 of Oct. 2018 → IN2P3 dynamics
- Conceptual design of the guide tube system
- Currently working on optimization of the guide tube system using simulations (example below for ⁵⁷Co) → Propose a complete calibration strategy

⁵⁷Co source (122 keV γ) in guide tube

→ Entry point in DarkSide identified and work started with reduced manpower


Opportunities in DarkSide (4/4)


□ Participation to data analysis of prototype at CERN

- Two prototypes will be built at CERN and tested with calibration sources
- Supervised one CERN summer student (shared with proto-DUNE project)

proto-0 (2kg LAr, 1.2k SiPM)

- → First validation of SiPM
- → Run scheduled in Nov. 2019

proto-1 ton (1 ton LAr, 9k SiPM)

- → Full scaled-down version of final detector
- → Operational in Summer 2020

→ Can do physics at short term at CERN

Synergies

- □ Dark matter experiments at the technological frontier
 - DarkSide: Medical Imaging PET10ps, SiPM FCC LAr, ...
 - MadMax: Receiver (Josephson Parametric Amplifier), Tile laser welding, ...
- □ Some natural connections
 - Theoreticians
 - Experimental indirect searches
 - DUNE via v platform @ CERN
 - CERN infrastructure

Conclusions

☐ Dark Matter direct searches : dynamic research field in next decade

- WIMP and axion searches entering the phase space favored by theory
- Identified one promising experiment for each candidate, with large discovery potential in the next 10 years → consistency and complementarity

□ Strong associated opportunities & Rising activities at CPPM

- <u>Technical</u> entry points in both collaborations identified :
 - ✓ MadMax: challenging R&D in disk booster mechanics
 - ✓ **DarkSide**: calibration → reinforce IN2P3 activity as recommended by CS-IN2P3
- Early <u>physics</u> (beg. 2020's) with prototypes operated at CERN
- + Interesting synergies identified

Short term Opportunities (scientific & technical) on a fundamental question of particle physics with a strong discovery potential

More details in contributions submitted to IN2P3 prospectives :

https://www.cppm.in2p3.fr/~hubaut/ProspectivesIN2P3/Prosp IN2P3 MADMAX.pdf, https://www.cppm.in2p3.fr/~hubaut/ProspectivesIN2P3/Prosp IN2P3 DarkSide.pd