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Quasinormal modes of the Schwarzschild black hole
Moulin, A.B., Martineau, Universe 5 (2019) no.9, 202
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Testing the No-Hair Theorem with GW150914
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We analyze gravitational-wave data from the first LIGO detection of a binary black-hole merger
(GW150914) in search of the ringdown of the remnant black hole. Using observations beginning
at the peak of the signal, we find evidence of the fundamental quasinormal mode and at least one
overtone, both associated with the dominant angular mode (£ = m = 2), with 3.60 confidence. A
ringdown model including overtones allows us to measure the final mass and spin magnitude of the
remnant exclusively from postinspiral data, obtaining an estimate in agreement with the values
inferred from the full signal. The mass and spin values we measure from the ringdown agree with
those obtained using solelv the fundamental mode at a later time. but have smaller uncertainties.



Beyond GR
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We use a 6th order WKB approximation scheme w? = Vo —1 _2V (ZA +n+ )

1. Massive gravity

One of the first motivations for modern massive gravity — which can be seen as a generalization of GR — was the
hope to account for the accelerated expansion of the Uni- verse by generating a kind of Yukawa-like potential for
gravitation
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2. Modified STV gravity

MOG allows the gravitational constant, a vector field coupling, and the vector field mass to vary with space and
time. We chose

- the case where the field equations for Buv are non-linear, as the phenomenology is then richer,

a < ac = 0.67 where there are two horizons and an appropriate potential behavior for the WKB approximation
to hold.

G=Gny(l1+a) fry=1- 2iw+a(1 tg)M2

Modified Gravity
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3. Horava-Lifshitz gravity

Horava-Lifshitz gravity bets on the fundamental nature of the quantum theory instead of relying on GR principles. It is a
renormalizable UV-complete gravitational theory which is not Lorentz invariant in 3 + 1 dimensions

Horava-Lifshitz
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4. h correction

Quantum corrections to the Newtonian gravitational potential can be rigorously derived
without having a full guantum theory of gravity at disposal.

Quantum Correction
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5. LQG polymeric BH
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Distinguishing between those models with observations is challenging :

- there exist degeneracies, for given overtone and multipole numbers, between the models — when taking into account that
the values of the parameters controlling the deformation are unknown.

- the intrinsic characteristics of the observed black holes are also unknown, which induces other degeneracies

- the study should be extended to Kerr black hole, which also adds some degeneracies in addition to the complexity

Some interesting trends can however be underlined. For all models, the effect of modifying the gravitational theory are more
important for the real part than for the imaginary part of the complex frequency of the QNM:s.

Some “trends” are specific to each studied. In addition, the sign of the frequency shift, and its dependance upon the over-
tone and multipole numbers is characteristic of a given extension of GR.

If features beyond GR were to be observed, the direction of the frequency shift in the complex plane would already allow to
exclude models, as this article shows.

Possible links between high order overtones and quantum gravity (Hod, Maggiore)



A toy model for cumulative quantum gravity
A.B., Martineau, Moulin, Martinon, Phys.Lett. B795 (2019) 346-350

lR ~ R_l/z RQ — R,ul/p)\RquA Disregards cumulative effects
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THE HAYWARD METRIC




Quantum fields in the background spacetime of a polymeric BH
Moulin, Martineau, Grain, A.B., Class.Quant.Grav. 36 (2019) no.12, 125003
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FIG. 2. Emission cross section for a scalar field with
energy w in the background spacetime of a LBH of mass
M for different values of € (¢ = v§ measures the
“quantumness” of spacetime). From bottom to top:

e =10{~0:3,-0.6,-0.8,-1,=3} The blue line,
corresponding to € = 1072 is superposed with the cross
section for a Schwarzschild BH.
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FIG. 3. Emission cross section for a fermionic field,
with energy w, in the background spacetime of a LBH
) 5 of mass M. From bottom to top:
10°Ry 1 ORy 4 (w 4 ZL) R. =0 e = 101-0:3,70.6,-0.8,~1,-3} ' The dashed dark curve
Cy Or*2  2,/C; Or*? C1 VC1 * . corresponds to the Schwarzschild cross section.
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FIG. 4. Emission cross section for a fermionic field,
with energy w, in the background spacetime of a LBH
of mass M, for e = 10793, The dashed curved
corresponds to ag = 0 and the plain curve to the usual
LQG value, ag = Apin/8™ = V/37/2.

The effects are generically small but the trend is quite clear.
Phenomenologically, large values of the polymerization
parameter could be probed by a decreased cross section,
together with a slight frequency shift for fermions. In addition,
the non-vanishing minimum area leaves a specific footprint on
the first peak.

A.B., Noui, Perez, Phys.Rev. D92 (2015) no.12, 124046
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Evaporation from a local quantum gravity perspective
A.B., Phys. Rev. Lett. 117 (2016) 271301

N
A =8mylp; Y \Vin(in + 1),
n=1

Spectrum (arbitrary units) Effect in principle detectable even at arbitrary high masses.
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Isopectrality
Moulin, A.B., arXiv:1906.09930
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A.B., Moulin, Martineau, Phys.Rev. D97 (2018) no.6, 066019
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Other approaches : bouncing black holes
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