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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

MOTIVATION : HOLOGRAPHY

m is useful tool for theoretical insights into systems at strong coupling:
ultrarelativistic heavy-ion collisions, cold atom systems, quantum
simulators, “ultrafast” techniques in condensed matter physics, etc.

m allows to do calculations in real time, at non-zero baryonic density
and finite temperature.

m reformulates the problem of quantum field theory into a dual
classical gravitational problem in a space-time with an extra
dimension.

Particularly, 4d CFT < Gravity in 5d AdS5.

1 5.
e AdS solution, e AdS-Schwarzschild BH, e Kerr-AdS BH.
AdS & T =0CFT
BH AdS < thermal CFT (non-spinning/spinning)
T of CFT is identified with the Hawking temperature of BH.
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Example: QCD phases

m Chiral limit (m, = 0): UV region - massless vector fields, IR region -
massless pseudoscalars (pions)
m Lattice: QCD at high 7' has a quasi-conformal behaviour (T} = 0)
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Figure: Bazavov et al, PRD 90 (2014) 094503

m high T' QCD deconfined phase - Quark Gluon Plasma
m The viscosity-to-entropy ratio for QGP from holography ? = ﬁ.
Policastro,Son,Starinets, Phys.Rev.Lett.87:081601,2001
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Holographic picture for deviations from confomality

e C'F'Ty has a description in terms of gravity in AdSs:

S = [da®du/=g(R — A).
e An operator O(x) corresponds to a dynamical bulk field ¢(z, u)
e ¢(x,0) — a source for the O in the CFT

S = /dx4du\/?g [R — %(a(p)? — V()| .
o p(z,u) = aul2 +... & S =Scpr + [ d*zaO(z)

e o = 0 — undeformed CFT, bulk scalar — const., spacetime is AdS
e o =% () corresponds to relevant coupling for the CFT; deform. AdS

e

!\V(¢)
uwv 1
L ™
3 § N > Ads (UV)
§

4R
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

The models

m General analysis: U. Glirsoy, E. Kiritsis, L. Mazzanti, F. Nitti,
Holography and Thermodynamics of 5D Dilaton-gravity, JHEP
0905:033,2009

m Improved holographic QCD Gursoy,Kiritsis" 07, Gubser'08

For asymptotically AdS UV A —=0 V(A = Vo+ud+uA?4...
For confinement in the IR X =00 V(A\) ~ A9(log\)?

m Perturbative analysis near extrema of the potential Guirsoy et
al."17 Kiritsis et al’ 16'17'18'19

m Single exponent potential V = V(1 — X2)e5%¢, X < 0 Giirsoy,
Jarvinen, Policastro’'16

m Two exponent potential V = Cye?¥1® 4 Che?*2?,
Cy <0,05 >0,k > 0 Aref'eva, AG, Policastro’'19
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

5D Dilaton Gravity with exponential potential

S = # /d4x/du\/jg <R - %(8(;5)2 + V(¢)) - % a/d‘lx =,

m V =Vy(l—X2)e 5¥¢ X < 0 Chamblin, Reall,
Nucl.Phys.B562(1999); Charmousis, Class.Quant.Grav. 19 (2002)

. du?
dstp = A0 (= f(u)dt? + 5ijdaida’) + ——
f(u)

A = eAonsk, fo 1oAY A= e = (a—4x2Y)ek,

4
Glirsoy, Jarvinen, Policastro'15; QNMs: Betzios,Giirsoy, Jarvinen,
Policastro'17'18

V= 0162kl¢ + 0262'%:2(’25; Cy<0,05 > 0.
new holographic backgrounds Aref'eva, AG, Policastro’19
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5D Dilaton Gravity with exponential potential

The action reads

S = z%/d‘*x/du\/—_g (R— %(8(;5)2 +V(¢)) — %!d‘*m —,

V(g) = Cre*f1¢ 4 Che? ¢ C;, Ky, i = 1,2 are some constants.

v

-3 -2 § 1 ¢

-4

Figure: The behaviour of the potential V(¢) for C1 < 0, C2 > 0. 1)



Exact black hole solutions of 5D dilaton gravity and its holographic applications.

The ansatz for the metric and the dilaton

3
ds? = —e2AW g2 4 2B Z dy? + W a2, ¢ = P(u).

i=1

The gauge C=A+3B.

The sigma-model
2t =A 22=B,23=¢, 2 =C.

2
_1 M .-N . 1 2(1+32+k53)-_d
L—§GMN$ " =V, V——§ZCsex v ® =

s=1

0 -3 0
(Gun)=| -3 -6 0 |, M,N=1,2,3.
0 o0 4
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

(Garn) — minisuperspace metric on the target space M

_ L. G (V,x) & (W)
L—§<{B71‘>+76 —l—?e .
V' — time-like, W - spacelike vectors on M (the basis is (e1, 2, €3))

<V,V>3(kf196>,<W,W>3(k§1;),(1/,1/@’)3(1@1142196).

16 16

LET <V,I/7V>:0<:>k1k2:§’ klzk, 1472:%7 O<k<4/3

The new basis

/ V / W ’ / .
ey = v 2 ; <eiaej> =nij, (i) = diag (=1,1,1).

3 3
. ’ . . . ’ .
Xl = 77” <€7,'7x> ) xz = E S;‘X], ej = E szel
Jj=1 =1

S} — components of general Lorentz transformations.
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Root systems

A, AxAy

p
p
w2
w3
a o
B,
B
B
3w4 34
a
a
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

The A; x Aj-mechanical model

Let V' and W vectors to root vectors of su(2) @ su(2) Lie algebra
3
1 s & RABIRES S Cy (W, W)|1/2 X2
I = 5 Z 77insz + 767711 + 7enzz ’
1,7=1
3
1 i & [V, V)2 x1 Cy (W, W) |22 X2
Eo = 5 Z 1’]in X — 767711 _ 76"722 .
1,7=1
Liouville equations for sl(2)-Toda chains (sl(2) 2 su(2))
X* = —V/[(Ro Ry [CoemRaRAPEXT g = 9
x° 0, with (Ri,Ri)=(V,V), (Rz,Re)= (W, W).
Gavrilov, lvashchuk, Melnikov'9407019
Ld, Pope, 9607027, 9604058

Ld, Yang, 1307.2305
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

The solution to the A; x A;- mechanical model

The solution reads

X' = (V) [T I (FE(u— up)),
X? = —[(W,W) |72 1n (F5 (u — o)),
X = plutd’
with
A/ 2%2|sinh \ES(R;,RSH(U—UOS)} , 1ssCs > 0,mssEs > 0,
Fu — o) |2%Ss|sin \/7‘E5<R;’RS>|(u—uos)}, 1ssCs > 0,mss Bs < 0,
s — U0s) —

\f (BB Csl () gy, 1ssCs > 0, Es = 0,

2CE | cosh { \E.;(R;,R.QI (u— uoS)} , NssCs < 0,mssEs > 0,

uos, Fs, Es, p?, ¢® are constants of integration.
i _ v ;W i _ i3 i _ i3
S1—W7 S2_W7 a' = S5p°, B =535
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

The general solution

2 2
ds> = F T F 2(121—6%2) (_62"‘1“dt2 + e‘%aludg 2) + F o716 Fy Toorz du?
9k 9k
= ————loghk +———logF
¢ okz—16 8" T gpz —16 8"

with F and F» given by

sinh( £ _ 16

(p1 ) p= 2 9

sinh( U — U % E i — E
(2 (u = wo) 2 9 29

where 0 < k < 4/3 and w is positive and u > ug.
2 12
E1+EQ+§(a) =0, E1<0, E>>0.

[

’ 26,

Moreover, one has the constraint

13/29



Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Constraints

2 1\2
E1+E2+%=0.

a! = 0 4d Poincaré invariant solutions,

Ey| = |Ex|
at # 0 no Poincaré invariance |E1| # |E3|, candidates for black hole

m Conditions from the V(¢): C; < 0,Cy > 0,0 < k < 4/3.
m Constants of integration ug > 0

u > Ug
UO1:0

m Possible horizon: u — +o0.
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Black hole solution

m u = +oo is the horizon

B o = U1 = —%al
ds? = Cx( = e 4 df) + P At an?,

X (1 — e~ 2M) " Tomm (1 — ef2u(ufuo))m§+;z>’

16 1 8 Cy _, 4(1%2%2) 2y—1

C = 20693 (3y)2 || 20F 16 <?e_ ”“0) (16 — 9k*)" 7.
9k E,Cy | sinh(p(u — ug)) .

B — 1 t
¢ 9k _16 ° ‘ E>C sinh(pu) ' umrteo ¢ = cons

Hawking temperature:

2 Jal| 1 p
o3/

T 371 (C3/2
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Null geodesics imply
ds? =0,

u

t—ty = /dac3/2 (1 + ) o .

Uo

Both the scalar curvature and Kretschmann scalar tend to zero with

1 = e and u — 4o0.

Near ug = 0, the solutions turns to have the asymptotics as the

Chamblin-Reall solution governed by the single exponential potential
16 — 9k2  a—ox?

y~ =

U1L6—9k2 |

2 s 2 D 2
ds® ~ 2921 (—dt® + dif” + dz?), o2 —4

with the dilaton

) 9k 4 | Cy sinh(—pugp)
1 = og | o, 22 BT
M Guse = ~ 75 gp2 108 [31@ AT
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

EE
5d AdS-Schwarzschild solution, uy = 0

ds®> =C (1 — 672"“)_% (—672““dt2 + dy2)—|—C4 (1 — 672““) -2 e 2 dy?,

9k2
4 1 1/9 Cl 9k2-16 —16 02 4(16—9k2)
= = (2v2)V2 [ = .

The dilaton

(;5 B 9k lo ClEQ‘
T 2016 — 9k2) BlC,E, I

The curvature

5>
27i o 2 | d2?
ds = f(z)dt* + dy +f(2) ,

z =z (1—6_2‘”‘)%, C—zh2 f=1- (Z)4'
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Free energy through black hole thermodynamics

Vi
dF = —sdT, with the black brane entropy density s = Z?’ cs.
Vs VB/N/ ar .,
T=— F=- dl = d
S s /3 T 4 M.
0
The temperature
2 ‘1/46#%2;@% wo p
37TQ3/2 i ’
V2 _ 2762 . icsinh( i 0
T — 1/4 10160k Aresin (%) ith A — .
33/47TQ3/2“ € o W sinh(—pug)
Vs
F= (VA2
T8t <“ 16 — 9k2 - > ’

AdS case: ug — 0, A — 0 the free energy F = f%u.
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Free energy through the holography

m F.E. of the black hole = the renormalized on-shell action I} 57} + 157
m It's convenient to come to the so-called domain wall coordinates
dw?

fw)’

ds® = 4 (—f(w)dt® + di?) +
For our black hole solution we have
1 1
A= ilogC +3 log X (w),

with the coordinate transformation

dw = CQX(U)Ze%aludu
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

F o~ =pun, + 167)
For the bulk Lagrangian and the corresponding action we have
VI (R—2(00)* = V(¢)) = 2e*V, since R = 2 + 3(9¢)*.
BV =—(1247+3A")f —3A'f
B Lyup = =24 (e A'f)
m The regularized Einstein action reads I§, = 2V38e¢*4() A’ (€) f (e)
For the GH term we have
m The extrinsic curvature reads K = %habnwawhab = g <8A’ + fT/)
where w =€, n® = /f, n* = 0.
m Iy = VB SA(6) f(e) + f'(c),

Irﬁ = _€4A(6A/f + f/)lw:6~

BVs
I e o @) . “
% - _ (6_,4 (u) + o > lu=e, with dw =e*"fdu.
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Free energy through the holographic on-shell action

The expansion of A near u ~0 A ~ fw_%‘bkzlogu+./40+./41u+... ,

with

Ay = Tloge-—2 (2)+721 (1 — e2muo)

0 T 9T I ok BV T e —okz) BV ¢ )
_ i 9k? I

A= oo o6 — k) e 2w — 10
Leg 1 24 ) 27k?

= (= (s 18k —7) :

BV 16 — Ok2 < ¢ +“( e—2nuo — |

The counterterm (Papadimitriou, JHEP 08(2011) 119)
I = —8% /d4x\/ﬁek¢.

The asymptotics of ¢ is given by ¢ ~ 2% logu + ¢o + dru + . ..
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

9k Cy sinh(—pug)
— —71 -~ - 7
%0 16 —9ok2 8 <3k Ve u ’

9k
= —— 2 jicoth(—pug).
b1 16— gpa k coth(—puo)
24 1 24
Lot = —5—gps (o + 4 + ko)L - pe) =

The renormalized action is then

_ 2L
16-9k2e 2\

Lren Treg + Ict 1 27k? 0
_dregtla 10 2R e s) A
BV A 2 < 6oV )

~ sinh(—pup)

1

~ —— 2
4 2(“ 16 — 9k2VA+u >
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Free energy

Figure: The dependence of the free energy F' on the temperature T for the
different shapes of the potential (different k, C; = —2, Cy = 2).
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The holographic Wilson loops
The expectation value of the holographic WL can be defined through the
Nambu-Goto action Sy¢a
(W(C)) ~ e one
Maldacena'98
The expectation value of the WL of size T' x £ is related with gg-potential
(W) ~ e Vaa(OT
The potential of the quark antiquark interaction as

1
Vag = TSNG

The Nambu-Goto action is defined as

1 .
/ d?ov/—deth, hap=e3°G,,0, X" 95X",

2ma!
G is the background metric, the world-sheet coordinates 0%, a =0, 1,
and the embedding functions X* = X*(o%)

Sng = —
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

The holographic Wilson loops

Figure: The time-like rectangular Wilson loop as a minimal surface

25/29



Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Holographic Wilson loops AG&\Vu Nguyen'19 TMPh

We choose the following gauge
o=t o'=x1, u=u(z)

The Nambu-Goto action in the string frame

12 / ce3A
g du—g
2 Vb A+ED _ 2

and for the Nambu-Goto action we have the following relation

8¢
Sy T eTATT
= U .
7 82
2 2o A+ 2

Let us define the so-called effective potential with ' = 0 as

4(2-3k)  3k(3k—8)

4 2_ —9k2
Veff — 62A+3¢ — F19k 16 F22(16 ok )-
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Exact black hole solutions of 5D dilaton gravity and its holographic applications.

Holographic WL for T" # 0

The effective potential

3k(8—3k) 4(2—-3k)

— 9k2 16
Vips = Ce™Hu <4€ o CQ) (1_6—2%“—“0))2(%2716) (1_6_2““) 9k2—16 |
© 3k

|Ch

The distance between quarks and the Nambu-Goto action can
represented in terms of Vs as

/d 2¢62uvffv eff
U

eff(u) _
Ve

and

Sng =

: / P VAT,
b VA~ VE )

correspondingly.
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a'=-0.1,k=0.4
a'=-05k=04

a'=-0.5, k=0.1
a'=-0.5,k=0.25

a'=-0.5,k=0.4

a'=-0.5, k=0.6

. k=0.8
5.k=1

— a'=-05k=12

2ud
Figure: Vess as a function of u for the holographic RG flows at finite

temperature: a),c) we fix k varying ' = —32 4, b),d) we fix o' = —32 4 varying
k.
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Thank you for attention!
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