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Introduction

Einstein’s General Theory of Relativity based
on his field equations

Rµν − 1
2 gµνR = 8πG Tµν

may determine, upon choosing the form of the
energy-momentum tensor Tµν , the form of
spacetime around:

an ordinary massive body such as the Sun

a black hole

a wormhole

GR was experimentally verified at Solar System scales but black holes
and wormholes were considered as merely mathematical curiosities
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Black Holes in General Relativity

General Relativity admits three families of Black-Hole solutions:

Schwarzschild (1916) Reissner-Nordstrom (1921)

Kerr(-Newman) (1963)

According to the “no-hair” theorems of GR (Birkhoff; Israel; Carter;
Price; Hartle; Teitelboim; Bekenstein), a BH may be characterized only
by its mass M, electromagnetic charge Q and angular-momentum J.

A BH has no colour, baryon and lepton number, or scalar charges...

That’s very restrictive... But, Einstein’s theory of General Relativity,
although a beautiful theory, is not considered as the final theory of
Gravity...
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Generalised Theories of Gravity

A generalised theory of gravity could have the form

S =

∫
d4x

√
−g

[
f (R,Rµν ,Rµνρσ,Φi ) + LX (Φi )

]
Such a theory arises in the context of: string effective theory at low
energies, Lovelock effective theory in four dimensions, scalar-tensor
(Horndeski, Galileon or DHOST) theories...

Are there, then, many novel black-hole solutions beyond the limits of
GR? Are the old GR solutions not valid any more?

Today, we know that black holes are legitimate astrophysical objects
(of the Kerr family) that populate our universe and may give valuable
information about the strong(er)-gravity regime and thus for the validity
of any modified gravity
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Scalar No-Hair Theorems

The old ‘No-Hair Theorem’ (Bekenstein, 1972; Teitelboim, 1972)
excluded novel BH solutions in minimally-coupled scalar-tensor
theories:

“There are no static black-hole solutions with scalar hair”

This was evaded for black-hole solutions with a Skyrme field
(Luckock & Moss, 1986; Droz et al, 1994) or conformally-coupled
scalar field (Bekenstein, 1974)

The “novel No-Hair Theorem” (Bekenstein, 1995) applied in non-
minimally-coupled scalar fields, and was extended to general scalar-
tensor theories (Sotiriou & Faraoni, 2012; Hui & Nicolis, 2013)

These were again evaded in the case of dilatonic BHs (Kanti et al,
1996), coloured BHs (Torii et al, 1997; Kanti et al, 1997), rotating
BHs (Kleihaus et al, 2011; Pani et al, 2011) and the shift-symmetric
Galileon BHs (Babichev & Charmousis, 2014; Sotiriou & Zhou,
2014)
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The Einstein-Scalar-Gauss-Bonnet Theory

We considered the following generalised theory of gravity

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
∂µϕ∂µϕ+ f (ϕ)R2

GB

]
,

with f (ϕ) a coupling function between a scalar field ϕ and the GB term

R2
GB = RµνρσR

µνρσ − 4RµνR
µν + R2

This theory has a number of attractive points:

It contains a quadratic gravitational term (next important term in
strong-curvature regimes) but leads to field equations with up to
2nd-order derivatives, and with no Ostrogradski instabilities

It is a very “rich” theory: it leads to cosmological singularity-free
solutions (Antoniadis, Rizos & Tamvakis, 1994; P.K., Rizos and
Tamvakis, 1998), wormholes (Kanti, Kleihaus & Kunz, 2011) and
BHs with scalar hair: for f (ϕ) ∼ eϕ, we get the Dilatonic BHs
(P.K., Mavromatos et al, 1996; 1998) and for f (ϕ) ∼ ϕ, the
shift-symmetric static black holes (Sotiriou & Zhou, 2014)
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Novel Einstein-Scalar-GB Black-Hole Solutions

• The Basic Question: For what forms of the coupling function f (ϕ) can
one get a static, spherically-symmetric black-hole solution?

Keeping therefore the form of f (ϕ) arbitrary, we assume the line-element

ds2 = −eA(r)dt2 + eB(r)dr2 + r2(dθ2 + sin2 θ dφ2)

while the equations of motion read

∇2ϕ+ ḟ (ϕ)R2
GB = 0 , Rµν − 1

2
gµν R = Tµν

where

Tµν = −1

4
gµν(∂ϕ)

2+
1

2
∂µϕ∂νϕ−

1

2
(gρµgλν+gλµgρν)η

κλαβR̃ργ
αβ∇γ∂κf ,

⇓
A′′ = P

S , ϕ′′ = Q
S , P,Q, S = g(r , ϕ, ϕ′,A′)
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Novel Einstein-Scalar-GB Black-Hole Solutions

For the existence of a regular black-hole horizon, we demand that

eA(r) → 0, e−B(r) → 0, ϕ(r) → ϕh

Demanding that ϕ′′ is also finite at the horizon rh, we find the constraint

ϕ′
h =

rh

4ḟh

−1±

√
1−

96ḟ 2h
r4h

 , ḟ 2h <
r4h
96

Using the above, the field equations give the complete solution near the
horizon

eA = a1(r − rh) + ... , e−B = b1(r − rh) + ... ,

ϕ = ϕh + ϕ′
h(r − rh) + ϕ′′

h (r − rh)
2 + ...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

.
Outline

. . . . .
Generalised Theories of Gravity

. . . . . . . . . . . . .
ESGB Black Holes

. . . . . . .
WHs and Particles in EsGB

. . . . . . . .
Conclusions

Asymptotically-flat solutions

At large distances from the horizon, we assume a power series expansion
in 1/r , and by substituting in the equations of motion, we find

eA = 1− 2M

r
+

MD2

12r3
+

24MDḟ +M2D2

6r4
+ ...

eB = 1 +
2M

r
+

16M2 − D2

4r2
+

32M3 − 5MD2

4r3
+O

(
1

r4

)
+ ...

ϕ = ϕ∞ +
D

r
+

MD

r2
+

32M2D − D3

24r3
+

12M3D − 24M2 ḟ −MD3

6r4
+ ...

It is in order O(1/r4) that the explicit form of the coupling function f (ϕ)
first makes its appearance

Thus, a general coupling function f does not interfere with the existence
of an asymptotically-flat limit for the spacetime
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Asymptotically-flat solutions

Can we smoothly connect these two asymptotic solutions? Bekenstein’s
Novel No-Hair theorem (1995) said no, because:

“at radial infinity: T r
r is positive and decreasing”

Indeed, even in the presence of the GB term: T r
r ≃ ϕ′2/4 ≃ D2/4r4 + ...

“near the BH horizon: T r
r is negative and increasing”

If true, the smooth connection of the two demands an extremum - this is
excluded by the positivity of energy in ordinary scalar-tensor theories

However, in the Einstein-scalar-Gauss-Bonnet theories with general f , the
second clause is not true. Instead, we find that

sign(T r
r )h = −sign(ḟhϕ

′
h) = sign(1∓

√
1− 96ḟ 2/r4h ) > 0

The regularity of the horizon automatically guarantees the positivity of T r
r
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Asymptotically-flat solutions

Choosing f (ϕ) and then (ϕh, ϕ
′
h), we found numerous BH solutions:

(Antoniou, Bakopoulos & P.K., PRL 2018, PRD 2018)
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Asymptotically-flat solutions

0.0009<α<0.919

φh=3, rh=1
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The scalar charge D is a “secondary” conserved quantity

In the limit of large mass, all GB black holes reduce to the
Schwarzschild solution

The entropy of the GB black holes may exceed that of the
Schwarzschild solution (shown that of f (ϕ) ∼ 1/ϕ)

All GB black holes are smaller than the corresponding Schwarzschild
solution and have a minimum mass
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Novel Einstein-Scalar-GB Black-Hole Solutions

There is a huge literature on different types of solutions with a non-trivial
scalar field such as black holes and neutron stars...

Spontaneous Scalarisation: a GR solution (with ϕ = const.) in a
scalar-tensor theory of gravity is destabilised, and a novel solution with a
non-trivial scalar field emerges (Damour & Esposito-Farese, 1993) if

df (ϕ)

dϕ

∣∣∣
ϕ=ϕ0

= 0 ,
d2f (ϕ)

dϕ2
> 0 (⇒ m2

eff < 0 for δϕ)

These hold for f ∼ 1− e−ϕ2

(Doneva & Yazadjiev, 2018), f = aϕ2 (Silva
et al, 2018) and f ∼ ϕ2 + aϕ4 (Minamitsuji & Ikeda, 2018) when ϕ0 = 0

For other coupling functions such as f = λeϕ or f = aϕ, the above
conditions do not hold – for these, the process of natural scalarisation
takes place: solutions with non-trivial scalar field emerge having the
Schwarzschild solution as their large mass limit
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The Einstein-Scalar-Gauss-Bonnet Theory with Λ

We extend the previous theory by adding a cosmological constant

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
∂µϕ∂µϕ+ f (ϕ)R2

GB − Λ

]
,

In this case, the field equations remain unchanged apart from the shift

Tµν → Tµν − Λ gµν

Despite the minimal change, the situation differs from the previous one:

The spacetime is not asymptotically-flat but is expected to reduce
to a (Anti)-de Sitter background

A regular black-hole horizon emerges provided that

ϕ′
h =

16Λrh ḟ
2 (Λr2h − 3) + Λr5h − r3h ∓

√
R

4ḟ [r2h − Λ(r4h − ḟ 2)]
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Asymptotically Anti-de Sitter solutions

For Λ < 0, we find complete BH, asymptotically Anti-de Sitter solutions:

(Bakopoulos, Antoniou & P.K., PRD 2019)

� �� �� ��� ��� ����

���

���

���

���

���

� �� �� ��� ���
����

����

����

����

����

����

1.1 1.2 1.3 1.4
0.96
0.97
0.98
0.99
1.00
1.01

We found similar solutions for f (ϕ) = e±ϕ, ϕ±2n, ϕ±(2n+1), lnϕ, ...

BH solutions with an Anti-de Sitter asymptotic behaviour emerge as
easily as the ones with Minkowski asymptotic behaviour
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Asymptotically Anti-de Sitter solutions

At large distances, the scalar field behaves as:

ϕ(r) = ϕ∞ + d1 ln r +
d2
r2

+ ...

2 4 6 8 10 12 14 16

-0.06

-0.04

-0.02

0.00

0.02

2 5 10
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2 5 10
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1.02

As M increases, d1 tends to zero and the entropy Sh adopts the Schwarz-
schild value Ah/4
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Asymptotically de Sitter solutions

For Λ > 0, though, no complete BH, asymptotic de Sitter solution was
found...

2 4 6 8
0

2

4

6

8

10

2 4 6 8

-1.20

-1.15

-1.10

-1.05

-1.00

However, employing the alternative metric ansatz

ds2 = −e−2δ(r)N(r) dt2 + N−1(r) dr2 + r2(dθ2 + sin2 θdφ2),

solutions with an asymptotic de Sitter behaviour were found (Brihaye,
Herdeiro and Radu, 2019; Bakopoulos & PK, work in progress, see also
Charmousis, Crisostomi, Gregory and Stergioulas, 2019)
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Pure scalar-GB solutions?

In the asymptotically-flat case, the quadratic GB term is negligible at
large distances but is very important near the horizon. Is there a class of
BH solutions that may be attributed almost entirely to the scalar-GB
combination?

If we ignore the Ricci term in the field eqns and assume that eA → 0, as
r → r∗, we get a family of solutions with a spacetime singularity but a
finite energy-momentum tensor

If, on the other hand, we assume that eB → ∞, as r → r∗, we get

e−B = 2 ln(r/r∗) , ϕ → ϕ∗ , eA → const.

This family of solutions has no spacetime singularities, a regular field and
a finite energy-momentum tensor

In both cases, no hairy black-hole solutions emerge – their existence relies
on the synergy between the Ricci and GB terms



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

.
Outline

. . . . .
Generalised Theories of Gravity

. . . . . . . . . . . . .
ESGB Black Holes

. . . . . . .
WHs and Particles in EsGB

. . . . . . . .
Conclusions

Pure scalar-GB solutions?

The Ricci term stands for ordinary gravity and provides the attractive
force that creates the positive curvature around the black hole

The scalar-GB combination, however, creates a repulsive effect since

pr = −ρ =
2b1
r2h

|(ϕ′ ḟ )h| > 0

All GB black holes have a mimimum horizon radius defined by

|ḟh| ≤ r2h,min/4
√
6

Solutions with rh < rh,min would have a larger curvature of spacetime,
a stronger GB term and a repulsive force large enough to destroy the
horizon

The phase space of solutions of the pure scalar-GB theory contain
interesting cosmological solutions (inflationary or singularity-free)
– perhaps particle-like ones or wormholes?

(Kanti, Gannouji & Dadhich, 2015; Antoniadis, Rizos & Tamvakis, 1994)



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

.
Outline

. . . . .
Generalised Theories of Gravity

. . . . . . . . . . . . .
ESGB Black Holes

. . . . . . .
WHs and Particles in EsGB

. . . . . . . .
Conclusions

Wormholes in General Relativity

Wormholes are well motivated objects since, in GR, they hide inside the
horizon of a black hole:

A B C D E

r = 2GM

v

The region inside the horizon of a Schwarzschild BH, r < rh = 2M, is
dynamical and a throat appears in place of the singularity as time goes by

But the throat closes so quickly that not even a light signal can pass
through (Einstein-Rosen, 1935; Wheeler, 1955)

The Reissner-Nordstrom and Kerr geometries have generically internal
tunnels - but the internal Cauchy horizons are unstable
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Wormholes in General Relativity

Looking for a traversable wormhole, Morris & Thorne (1988) disconne-
cted the wormhole from the black hole. Using an ansatz of the form

ds2 = −e2Φ(r) dt2 +

(
1− b(r)

r

)−1

dr2 + r2 (dθ2 + sin2 θ dφ2),

they demanded

an asymptotically-flat regime: Φ → 0 and b/r → 0, for r → ∞

the absence of a horizon or singularity: Φ(r) everywhere regular

the presence of a throat at rmin = b0 where b(rmin) = b0

The above demand in turn an energy-momentum tensor

Ttt = ρ , Trr = −τ , Tθθ = Tφφ = p

satisfying τ ≥ ρ ⇒ violation of energy conditions ⇒ Exotic Matter
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Wormholes in EsGB Theory

An additional family of solutions was found in the EdGB theory, i.e the
EsGB theory with f (ϕ) = αeϕ (P.K., Mavromatos et al, 1996) where

eA ≃ a0 + ..., e−B = b1(r − r0) + ... , ϕ ≃ ϕ0 + ϕ1

√
r − r0 + ...

All components of Tµν and scalar invariants were finite

Under a redefinition l2 = r2 − r20 , the line-element becomes:

(P.K., Kleihaus & Kunz, PRL 2011, PRD 2012)

ds2 = −eA(l)dt2 + eB(l)dl2 + (l2 + r20 ) (dθ
2 + sin2 θdφ2)

where now

eA = a0 + a1l + ... , eB(r) = b0 + b1l + ...

ϕ(l) = ϕ0 + ϕ1l + ...

The above describes a wormhole with the throat at r = r0 or l = 0
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Wormholes in EsGB Theory

At large distances, we obtain

eA ≃ 1− 2M

l
+ ..., eB = 1 +

2M

l
+ ... , ϕ ≃ ϕ∞ +

D

l
+ ... ,

where M and D are the mass and scalar charge of the wormhole
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Regular symmetric solutions arise if a perfect fluid (non-exotic!) and a
gravitational source term are introduced at the throat

S =

∫
d3x

√
h (λ1 + λ0e

ϕR̃)
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Wormholes in EsGB Theory

In the context of the EsGB theory with an arbitrary f (ϕ), we searched for
wormholes by employing a new set of coordinates:

ds2 = −eA(η)dt2 + eΓ(η)
[
dη2 + (η2 + η20) (dθ

2 + sin2 θdφ2)
]

We found regular wormhole solutions for every form of f (ϕ) with an
asymptotically-flat behaviour and with a single or double throat
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sing0.97

1.01
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All EsGB WHs are bounded by the corresponding BHs and are free of any
exotic matter

(Antoniou, Bakopoulos, P.K., Kleihaus, Kunz, 1904.13091 [hep-th])
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Particle-like Solutions in EsGB Theory

We finally looked for solutions with a regular spacetime, with no
singularities, no horizons and no throats

ds2 = −eA(r)dt2 + eB(r)
[
dr2 + r2 (dθ2 + sin2 θdφ2)

]
At large distances, the asymptotic behaviour is the same as for black
holes and wormholes. At small distances, for e.g. f (ϕ) = αϕ2, we find

A(r) = A0+A2r
2+A3r

3+ . . . , ϕ = −c0
r
+ϕ0+ϕ1r+ϕ2r

2+ϕ3r
3+ . . .

All scalar invariants are finite everywhere, as are also all components of
Tµν despite the singularity in ϕ: (Kleihaus, Kunz & P.K., 1910.02121)

ρ(0) = − 3

32α
, p(0) =

2

32α

(in agreement with Brihaye, Hartmann and Urrestilla, 2019)
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Particle-like Solutions in EsGB Theory
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The energy-momentum tensor has a regular, shell-like behaviour and
vanishes at a very small radius qualifying these solutions as ultra compact
objects

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

∧ α

d

cusp

sing

bh-lim

deg

particle like

particle like with throat & equator

wormholes

particle like

S
ch

w
. b

h



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

.
Outline

. . . . .
Generalised Theories of Gravity

. . . . . . . . . . . . .
ESGB Black Holes

. . . . . . .
WHs and Particles in EsGB

. . . . . . . .
Conclusions

Conclusions

• The Generalised Theories of Gravity may be the way forward in
gravitational physics

• The Einstein-scalar-Gauss-Bonnet theory is a very promising type of a
quadratic theory that admits a variety of solutions

• Regulal Black Holes with scalar hair, that have an asymptotically-flat or
(Anti)-de Sitter behaviour, emerge for any form of the coupling function

• Wormholes with no need for exotic matter and particle-like solutions
also emerge, again for every form of f (ϕ)

• The phase space of the solutions of the pure scalar-GB theory needs to
be further investigated, however, this does not seem to contain black
holes
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Bounds on the EsGB Theory

Up to now, GR has proven to be compatible with every observable and
every process in our universe – modifications due to extra fields or terms
should be small

Observations may impose bounds on the parameters of the generalised
theory - here, we focus on the GB coupling α defined through the
relation f (ϕ) = αf̃ (ϕ) with [α] = L2

• Bounds from Observed Black Holes: The EsGB theory predicts a
minimum mass for the BHs through the constraint (P.K., Mavromatos
et al, 1996)

ḟ 2 ≤ r4h
96

⇒
√
α ≤ 1.2

(
M

M⊙

)
× 105 cm

for f (ϕ) = αeϕ. For M ≃ 5M⊙, then
√
α ≤ 6.2× 105 cm
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Bounds on the EsGB Theory

• Bounds from Solar System: Using the Shapiro time delay and the
uncertainty in the Mercury’s orbit, the GB coupling α must obey the
constraints (Amendola, Charmousis & Davis, 2007)

√
α ≤ 1.3× 1012 cm and

√
α ≤ 1.9× 1013 cm

• Bounds from Quasi-Normal Modes: Differ by the GR prediction by
a few %, thus a bound may be set (Blazquez-Salcedo et al, 2016)

√
α ≤ 10

(
50

ρ

)1/4 (
M

M⊙

)
× 105 cm

For LVC detections, the signal-to-noise ratio is ρ ≃ 10, leading to√
α ≤ 7.5× 105 cm. For the Einstein Telescope, ρ ≃ 100, leading to√
α ≤ 4.2× 105 cm.
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Bounds on the EsGB Theory

• Bounds from the Speed of GWs: The almost simultaneous detection
of GWs and EM radiation from the BNS GW170817 (Abbott et al, 2017)
imposed the constraint |cg/c − 1| ≤ ×10−16

In the case of localised gravitational solutions, we obtain the result
(Kobayashi, Motohashi and Suyama, 2012)

cg/c − 1 =
8Dḟ (ϕ∞)

r3

which, even if ḟ (ϕ∞) ̸= 0 and D ̸= 0, decays very fast.

• Bounds from Scalar Dipole Radiation: From the phase evolution of
the gravitational waveform, due to the emission of scalar dipole radiation,
as found in GW151226 and GW170608, it was found (Nair et al, 2019)

√
α ≤ 5.4× 105 cm
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Bounds on the EsGB Theory

• Bounds from Binary Orbital Decay: From the observed period decay
rate of the BH low-mass x-ray binary A0620-00, which should be increa-
sed by the emission of scalar dipole radiation, it is found (Yagi, 2012)

√
α ≤ 1.9× 105 cm
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Novel Einstein-Scalar-GB Black-Hole Solutions

• Old No-Hair Theorem: it uses the scalar equation∫
d4x

√
−g f (ϕ)

[
∇2ϕ+ ḟ (ϕ)R2

GB

]
= 0

Integrating by parts, we obtain∫
d4x

√
−g ḟ (ϕ)

[
∂µϕ∂µϕ− f (ϕ)R2

GB

]
= 0

Since, ∂µϕ∂µϕ > 0, the above holds only for f (ϕ)R2
GB > 0. Silva et al,

with a slightly different manipulation, found instead that f̈ R2
GB > 0.

Should we combine both constraints? How many constraints are there?
How can we impose this integral constraint before we determine the
solutions (the novel no-hair theorem is a local one)?

If the old no-hair theorem is trustable, BH’s with f (ϕ) < 0 do not exist...
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Novel Einstein-Scalar-GB Black-Hole Solutions

Surprise! They do....!
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Solutions that violate the old no-hair theorem but respect the novel
no-hair theorem do arise for several f (ϕ)’s.

But the sign of f (ϕ) affects directly the entropy of the BH solution

S =
Ah

4
+ 4πf (ϕh) > 0

If, for the same M, BHs arise with both positive and negative f (ϕ), these
will have different entropies with S+ > S−
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Synergy between Ricci and GB terms

A repulsive force is also necessary for the throat of a wormhole to remain
open. In addition, no limit exists that restricts the magnitude of the GB
term

Then, as in the cosmological case, regular pure GB wormhole solutions
do emerge that in fact do not violate the energy conditions!

φ

Pure GB φ

0.001 0.010 0.100 1 10 100 1000
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0.5
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(A. Bakopoulos, P.K. and N. Pappas, in preparation)
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