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Rich microphysics
▪ NS as labs for nuclear physics

Strong gravity
▪ NS as labs for fundamental physics and testing GR



Nuclear physics  vs modified gravity

PART 1: THE CURSE OF NS MICROPHYSICS

And how to circumvent it 
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And how to harness them



PART 1: The ‘curse’ of  neutron star microphysics
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Merger time
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Quasinormal modes

Gravity/EOS degeneracies

Sotani & Kokkotas (2004)



Gravity/EOS degeneracies: a way to circumvent them

Mendes & Ortiz, PRL 120, 201104 (2018)



Modified theories of gravity may not only shift the frequencies of NS 
QNMs, but also introduce entirely new families of modes, with no 

counterpart in GR, and which may be sufficiently well-resolved in 
frequency as to allow for a clear detection.
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* Expected!

Newtonian star General-relativistic star
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▪Natural, mathematically consistent and simple extensions to GR

Set-up: scalar-tensor theories (STTs)

𝑆 =
1

16𝜋𝐺
න𝑑4𝑥 − 𝑔 𝐹 Φ ෨𝑅 − 𝑍 Φ 𝑔𝜇𝜈𝜕𝜇Φ𝜕𝜈Φ + 𝑆𝑚 Ψ𝑚; 𝑔𝜇𝜈 (𝐽𝑜𝑟𝑑𝑎𝑛)



▪Natural, mathematically consistent and simple extensions to GR

▪ Examples:

▪ Jordan-Brans-Dicke: 𝐹 Φ = Φ, 𝑍 Φ = 𝜔𝐵𝐷/Φ.

▪ “Standard” NMC scalar: 𝐹 Φ = 1 − 𝜉Φ2, 𝑍 Φ = 8𝜋.
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𝑀2 with 𝛽 = −6

Mendes & Ortiz, 2016



Set-up: scalar-tensor theories (STTs)

Radial perturbations
▪ Information about stability

▪ In STTs: scalar sector is dynamical even in spherical symmetry

▪ General approach: no Cowling approximation (ex.: Sotani 2014)
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Radial NS QNM in STTs

𝜙-modes
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Radial NS QNM in STTs

Remarks
▪ Role in stability

▪ Unsuitability of the Cowling approximation

▪ Need for more suitable integration methods

▪ Perturbation variables: 𝜉 𝑡, 𝑟 and 𝛿𝜙 𝑡, 𝑟

▪ Frequency domain calculation:

𝜉 𝑡, 𝑟 = 𝜉 𝑟 𝑒𝑖𝜔𝑡, 𝛿𝜙 𝑡, 𝑟 = 𝛿𝜙 𝑟 𝑒𝑖𝜔𝑡

▪ Boundary conditions: regularity, outgoing BC for 𝛿𝜙:

lim
𝑟→∞

𝛿𝜙(𝑡, 𝑟) → 𝑒𝑖𝜔 𝑡−𝑟



PART 2: The ‘boons’ of  neutron star microphysics
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Exceedingly large sound velocities Alsing, Silva & Berti (2018)
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Extreme properties inside NS 

Exceedingly large sound velocities

𝑐𝑠
2 =

𝑑𝑝

𝑑𝜖
>
1

3

Pressure-dominated phase

𝑇 = 3𝑝 − 𝜖 > 0

▪ Is it physical?

“It is generally assumed [e.g. Landau & Lifshitz] that already from special theory of relativity there follows the inequality 

3𝑝 ≤ 𝜖, where 𝑝 is the pressure and 𝜖 the energy density, and 𝜖 includes the rest masses of the particles. The grounds 

advanced for this are that for the electromagnetic field 3𝑝 = 𝜖 and for free noninteracting particles with non-vanishing rest 

masses 3𝑝 < 𝜖. We shall construct below an example of a relativistically invariant theory In which 3𝑝 > 𝜖 is possible (…).” 

(Zel’dovich, 1962)
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𝑐𝑠
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>
1
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Pressure-dominated phase
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▪ Is it realized in Nature?
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𝐶 =
𝐺𝑀

𝑅𝑐2
= 0.262−0.017

+0.011



Pressure domination: Consequences for STTs
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Pressure domination: Consequences for STTs

∇𝜇∇
𝜇𝜙 = −4𝜋

𝑑 log 𝑎 𝜙

𝑑𝜙
𝑇

▪ Expand (𝜙0 = 𝜙 𝜏0 = 𝑐𝑡𝑒): 

▪ GR: 𝛼0 = 𝛽0 = ⋯ = 0;

▪ FJBD: 𝛽0 = ⋯ = 0, 𝛼0~
1

𝜔𝐵𝐷
; 

▪ SNMC: 𝛼0 = 0, 𝛽0 = 2𝜉, 𝛽0
′ = 0, 𝛽′′0 = 8 1 − 12𝜉 𝜉2, …

𝛼 𝜙 =
𝑑 log 𝑎 𝜙

𝑑𝜙
= 𝛼0 + 𝛽0 𝜙 − 𝜙0 + 𝑂[ 𝜙 − 𝜙0

2]



Pressure domination: Consequences for STTs
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𝑑 log 𝑎 𝜙
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Constrained by solar system 

experiments

Constrained by pulsar timing
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Freire et al 2012
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Instability of the GR solution

Mendes 2015



Mendes & Ortiz, 2016

𝑀1 with 𝛽 = 100



𝑀1 with 𝛽 = 100

Mendes & Ortiz, 2016



𝑀1 with 𝛽 = 100

Mendes & Ortiz, 2016



If stars with 𝑀/𝑅 ≳ 0.26 are observed, they will be ideal labs to 
probe a yet unconstrained region of STT parameters.



If stars with 𝑀/𝑅 ≳ 0.26 are observed, they will be ideal labs to 
probe a yet unconstrained region of STT parameters.

Pulsar timing constraints to STTs with 𝛽0 > 0 ?

R. Mendes & T. Ottoni, PRD 99, 124003 (2019)



If stars with 𝑀/𝑅 ≳ 0.26 are observed, they will be ideal labs to 
probe a yet unconstrained region of STT parameters.

Pulsar timing constraints to STTs with 𝛽0 > 0 ?

R. Mendes & T. Ottoni, PRD 99, 124003 (2019)

Pulsar-timing observables ( ሶ𝜔, 𝛾, ሶ𝑃𝑏 ,...) 

depend on scalar charges

𝑆𝑚 = −

𝐴=1

𝑁

න𝑚𝐴 𝜑𝐴 𝑑𝜏𝐴

𝑆 = 𝑆𝐸𝐻 + 𝑆𝜑 + 𝑆𝑚



If stars with 𝑀/𝑅 ≳ 0.26 are observed, they will be ideal labs to 
probe a yet unconstrained region of STT parameters.

Pulsar timing constraints to STTs with 𝛽0 > 0 ?

R. Mendes & T. Ottoni, PRD 99, 124003 (2019)

Pulsar-timing observables ( ሶ𝜔, 𝛾, ሶ𝑃𝑏 ,...) 

depend on scalar charges

𝑆𝑚 = −

𝐴=1

𝑁

න𝑚𝐴 𝜑𝐴 𝑑𝜏𝐴

𝑆 = 𝑆𝐸𝐻 + 𝑆𝜑 + 𝑆𝑚

𝛼𝐴 =
𝑑 log𝑚𝐴

𝑑𝜑𝐴
ቚ
𝜑0

, 𝛽𝐴 =
𝑑𝛼𝐴
𝑑𝜑𝐴

ቚ
𝜑0

, 𝑘𝐴 = −
𝑑 log 𝐼𝐴
𝑑𝜑𝐴

ቚ
𝜑0



𝜉 < 0

𝜉 > 0

Mendes & Ottoni, 2019
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Mendes & Ottoni, 2019

Dipole radiation ( ሶ𝑃𝜙
𝑑𝑖𝑝): 

▪ dominates by 𝑐/𝑣𝑏
2

▪ suppressed by 𝛼𝑝 − 𝛼𝑐
2



Mendes & Ottoni, 2019
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See also: Babichev & Langlois (2010)
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