Numerical study of a dressed black hole solution in asymptotically AdS spacetime

Black Holes and Neutron Stars in Modified Gravity Workshop

Jordan NICOULES

jordan.nicoules@obspm.fr

PhD student at Laboratoire de l'Univers et de ses THéories (LUTH)

November 20, 2019

Context and objectives

Context

Short introduction

- PhD student at LUTH since October 1st, supervised by Philippe Grandclément.
 - ⇒ About the Evolution Problem in Numerical Relativity.

• Today: About my 3-month internship at the end of my Master (April-June 2019).

Context

Context

000000

• Black hole no-hair theorem: a stationary black hole is uniquely described by its mass, angular momentum and electric charge.

- Break asymptotic flatness hypothesis
 - ⇒ Asymptotically Anti-de Sitter (AAdS) spacetime
 - Curved background (negative cosmological constant)
 - Stabilizes radiative systems (radiation reaches infinity in finite time)

Static dressed black hole

• Solve Einstein's equations with $\Lambda = -3/I^2$ and matter content obeying the Klein-Gordon equation.

Numerical setting

• The matter consists in a minimally coupled scalar field with self-interacting potential:

$$V(\phi) = -rac{3}{4\pi G I^2} \sinh^2\left(\sqrt{rac{4\pi G}{3}} \,\,\phi
ight)$$

Static dressed black hole

• Analytic solution given by Martínez et al. (2004) [hep-th/0406111]:

$$ds^2 = \frac{r(r+2G\mu)}{(r+G\mu)^2} \left[-\left(\frac{r^2}{l^2} - \left(1 + \frac{G\mu}{r}\right)^2\right) dt^2 + \left(\frac{r^2}{l^2} - \left(1 + \frac{G\mu}{r}\right)^2\right)^{-1} dr^2 + r^2 d\sigma^2 \right]$$
$$\phi = \sqrt{\frac{3}{4\pi G}} \operatorname{artanh}\left(\frac{G\mu}{r+G\mu}\right).$$

- $d\sigma^2$ is the line element of a surface of constant negative curvature.
- For $r \to \infty$ we recover AdS.
- One integration constant μ involved in the horizon radius and the intensity of the scalar field \Rightarrow mass parameter.

Context

Static dressed black hole

• If $\mu > -I/4G$, event horizon located at

$$r_{+} = \frac{l}{2} \left(1 + \sqrt{1 + \frac{4G\mu}{l}} \right)$$

- The horizon has negative curvature.
- There is a 1-to-1 correspondence between r_+ and $\phi(r_+)$.
- Coordinate singularity on the horizon (Schwarzschild-like): not well suited for numerical purposes.

Context

000000

Goals of the internship

- Obtain a numerical solution for the static black hole:
 - Parametrization of $d\sigma^2$.
 - Gauge and boundary conditions for regular coordinates.

Numerical setting

2 Use it as starting configuration to simulate a rotating black hole.

Building the system of equations

Bulk equations

- 3+1 formalism: well-suited for a numerical approach.
 - 11 unknowns: N (lapse), B' (shift), γ_{ii} (3D metric), ϕ (scalar field).
 - 11 equations: H=0, $M^i=0$, $E_{ii}=0$, Klein-Gordon.
 - \Rightarrow 3+1 equations with Λ , projections of $T_{\mu\nu}$ and $\partial_t=0$.
- Parametrization of the base manifold:

$$d\sigma^2 = \frac{1}{\cos^2 \theta} (d\theta^2 + \sin^2 \theta \ d\varphi^2), \quad \theta \in [0, \pi/2), \varphi \in [0, 2\pi).$$

- \Rightarrow This is the *whole* hyperbolic plane \mathbb{H}^2 .
 - Advantage: Easily implemented within the Kadath library.
 - Drawback: Not a compact base manifold.
- 3-vector basis: $\left(\partial_r, \frac{\cos\theta}{r}\partial_\theta, \frac{\cos\theta}{r\sin\theta}\partial_\varphi\right)$ orthonormal for our reference metric $\overline{ds}^2 = dr^2 + r^2d\sigma^2$

Gauge fixing conditions

- Diffeomorphism invariance: we need to fix the gauge for the numerical resolution.
- Maximal slicing condition: K = 0(extrinsic curvature $K_{ii} = -\mathcal{L}_{m}\gamma_{ii}/2N$, $K = \gamma^{ij}K_{ii}$)
- Spatial harmonic gauge: $V^k = 0$ in a modified system where we replace $\mathcal{R}_{ij} \leftarrow \mathcal{R}_{ij} - D_{(i}V_{j)}$ and we define $V^k = \gamma^{ij}(\Gamma^k_{ii} - {}^{^{(AdS)}}\Gamma^k_{ii})$
 - ⇒ Well-posed system and we recover the solution of Einstein's equations in this gauge.
 - \Rightarrow The $^{^{(AdS)}}\Gamma^k_{ii}$ are fixed coordinate-dependent coefficients which act as gauge sources.
- Check a posteriori K = 0, V = 0 to assess numerical convergence.

Apparent horizon (Inner boundary conditions)

We follow the work done by Hugo Roussille at LUTH in 2018 for the simulation of a Kerr black hole.

- Apparent horizon vs. Event horizon (coincide for stationary systems)
- Non-expanding apparent horizon, shearless, at fixed r = cst:

$$\Theta = D_i \tilde{s}^i + K_{ij} \tilde{s}^i \tilde{s}^j = 0, \qquad \qquad B^i = N \tilde{s}^i + \omega (\partial_{\varphi})^i,$$

with \tilde{s}^i the unit normal to the horizon. In particular $B^r = \sqrt{\gamma^{rr}}N$. \Rightarrow Everything about rotation is here: ω parameter.

• 3 remaining degrees of freedom from the differential gauge:

$$N=1/2, \qquad \gamma_{r\theta}=\gamma_{r\varphi}=0.$$

Apparent horizon (Inner boundary conditions)

- The system of equations is degenerate on the boundary.
- 1D example: $E(x) \equiv a(x)y''(x) + b(x)y'(x) + c(x)y(x) + d(x) = 0$ for $x \in [0, 1]$. If a(0) = 0, then E(0) is 1st order and is its own boundary condition at x = 0.
- In our case, start from the 3+1 equations and write the matrix of the principal part normal to the horizon $\mathbf{A}\partial_{rr}^{2}\mathbf{u}+\cdots=0$. **A** has three vanishing eigenvalues $\propto (B^r)^2 - \gamma^{rr} N^2$ with eigenvectors close to $\gamma_{\theta\theta}$, $\gamma_{\theta\omega}$ and $\gamma_{\omega\omega}$, so we use:

$$E_{\theta\theta}=E_{\theta\varphi}=E_{\varphi\varphi}=0$$

• Klein-Gordon also degenerate: we don't need to impose $\phi = \phi_0$.

$$\frac{1}{N}D_i\left(N\left(\gamma^{ij}-\frac{B^iB^j}{N^2}\right)D_j\phi\right)-\frac{dV}{d\phi}=0$$

Context

AdS border (Outer boundary conditions)

- Vanishing scalar field $\phi = 0$.
- AdS border: by definition, there exists $\Omega \to 0$ such that N^2 . $\gamma_{ii} \propto \Omega^{-2}$.

Numerical setting

- ⇒ We need to **regularize** to deal with finite quantities.
- Define regularized quantities such as $\tilde{N} \equiv \Omega N$ and use the regularized equations in a domain reaching to the AdS border.
- Impose continuity of unknown fields and their normal derivatives.
- This process involves a change of variables to write the AdS metric as $ds_{AdS}^2 = -N^2 dt^2 + f(r')(dr'^2 + r'^2 d\sigma^2)$ where $f \propto \Omega^{-2}$.
 - ⇒ This sets the AdS border at finite radius.

Numerical setting and resolution

Spectral methods and the Kadath library

- **Spectral methods**: discrete approximation of a function.
 - ⇒ interpolation on a predefined basis of functions (e.g. Chebyshev polynomials, trigonometric functions).
- **Spectral convergence**: Very fast convergence to the true function (for smooth functions, faster than any polynomial).
 - ⇒ Good precision with a limited number of points.
- Kadath library: numerical code developed at LUTH which implements spectral methods and a Newton-Raphson scheme to solve non-linear PDEs.
 - ⇒ Very flexible in terms of geometry, equations to solve, designed with NR in mind, but no evolving systems yet (hence PhD).

Context

16

Numerical setting

 \Rightarrow We vary slowly the horizon radius (0.2 step) and use the current solution as initial guess for the following one.

Results

Tests and results

Convergence tests

$$r_{in} = 7.5$$

$$r_{in}=9.0$$

Static Black Hole

Comparison with analytic solution

- Smaller radii correspond to more relativistic configurations.
- Analytic curve computed with SageManifolds.

Comparison with analytic solution

Probably not a fully comprehensive test but still performs well.

- Global quantities?
 - ⇒ Can be tricky in asymptotically AdS
 - \Rightarrow Because the surface of \mathbb{H}^2 is infinite, the mass is infinite!

Rotating case and challenges

- Recall $B^{\varphi} = \omega \frac{r \sin \theta}{\cos \theta}$ on horizon: additional regularization required.
- More importantly, our base manifold is not compact! ⇒ Need a parametrization of a compact surface without boundary and with constant negative scalar curvature.
- We haven't found such a parametrization, and should we get it, it would need to be implemented into Kadath.
- In this case, the boundary conditions on the horizon may be changed.
 - ⇒ Suggestions are welcome!

Context

Conclusion

- We have obtained a numerical solution for the static black hole.
- To the extent of our tests, it is consistent with the analytic solution.
- Rotating case: need for a new parametrization of the base manifold, then probably redo the static solution and use further regularization.
- Seems quite involved and not the main purpose of the PhD: stand-by status.
- Suggestions and comments appreciated!

Framework

24

Numerical setting

Analytic metric

$$S = \int d^4x \sqrt{-g} \left(\frac{\mathcal{R} + 6I^{-2}}{16\pi G} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right), \tag{1}$$

$$V(\phi) = -\frac{3}{4\pi Gl^2} \sinh^2 \sqrt{\frac{4\pi G}{3}} \phi. \tag{2}$$

$$G_{\mu\nu} - \frac{3}{l^2} g_{\mu\nu} = 8\pi G T_{\mu\nu},$$
 (3a)

$$g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi - \frac{dV}{d\phi} = 0, \tag{3b}$$

$$T_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi - g_{\mu\nu}V(\phi). \tag{4}$$

26

Analytic metric

$$ds^{2} = \frac{r(r + 2G\mu)}{(r + G\mu)^{2}} \left[-\left(\frac{r^{2}}{l^{2}} - \left(1 + \frac{G\mu}{r}\right)^{2}\right) dt^{2} + \left(\frac{r^{2}}{l^{2}} - \left(1 + \frac{G\mu}{r}\right)^{2}\right)^{-1} dr^{2} + r^{2}d\sigma^{2} \right]$$
(5a)

$$\phi = \sqrt{\frac{3}{4\pi G}} \operatorname{artanh}\left(\frac{G\mu}{r + G\mu}\right). \tag{5b}$$

$$d\sigma^2 = \frac{1}{\cos^2 \theta} (d\theta^2 + \sin^2 \theta \ d\varphi^2). \tag{6}$$

$$ds_{AdS}^2 = -\left(\frac{r^2}{l^2} - 1\right)dt^2 + \left(\frac{r^2}{l^2} - 1\right)^{-1}dr^2 + r^2d\sigma^2. \tag{7}$$

3+1 equations

$$m^{\alpha} = Nn^{\alpha} = (\partial_t)^{\alpha} - B^{\alpha} \tag{8}$$

$$\mathcal{L}_{m} = \partial_{t} - \mathcal{L}_{B} \tag{9}$$

$$\mathcal{R} + K^2 - K_{ij}K^{ij} - 2\Lambda = 16\pi G\rho, \tag{10}$$

$$D_k K_i^k - D_i K = 8\pi G \rho_i, \tag{11}$$

$$\mathcal{L}_{m}K_{ij} = -D_{i}D_{j}N + N\left[\mathcal{R}_{ij} + KK_{ij} - 2K_{ik}K_{j}^{k} - \Lambda\gamma_{ij} - 8\pi G\left(S_{ij} - \frac{S - \rho}{2}\gamma_{ij}\right)\right]. \tag{12}$$

$$\frac{1}{N}D_{i}\left(N\left(\gamma^{ij}-\frac{B^{i}B^{j}}{N^{2}}\right)D_{j}\phi\right)-\frac{dV}{d\phi}=0. \tag{13}$$

$$\overline{ds}^2 = dr^2 + r^2 d\sigma^2 = dr^2 + \frac{r^2}{\cos^2 \theta} (d\theta^2 + \sin^2 \theta d\varphi^2)$$
 (14)

$$ds_{AdS}^2 = -N^2 dt^2 + f(r')(dr'^2 + r'^2 d\sigma^2).$$
 (15)

$$\begin{cases} r' = R_{AdS} \exp \left[-\arctan\left(\frac{1}{\sqrt{\frac{r^2}{l^2} - 1}}\right) \right] \\ r = \frac{l}{\sin \ln \frac{R_{AdS}}{r}} \end{cases}$$
 (16)

$$f(r') = \frac{I^2}{r'^2 \sin^2 \ln \frac{R_{AdS}}{r'}}, \qquad N^2 = \frac{\cos^2 \ln R_{AdS}/r'}{\sin^2 \ln R_{AdS}/r'}.$$
(17)

$$\Omega \equiv \sin \ln \frac{R_{AdS}}{r'}.$$
 (18)

Convergence tests with 3 domains

Static Black Hole with 3 domains

