Regularization, renormalization or why the standard model can be quite natural?

Jean-François Mathiot

Laboratoire de Physique de Clermont Clermont-Ferrand, France

following work done with

P. Grangé (Montpellier, France)

E. Werner (Regensburg, Germany)

PLAN

- **☐** Motivations
- > origin of divergences in quantum field theory
- ☐ Arbitrary scales and « universal » coupling constants
 - > energy scales and scaling variables
 - « universal » coupling constants
 - « renormalized » coupling constants
- Fine-tuning and hierarchy of the standard model and beyond
- ☐ Landau pole and triviality of the scalar model
- □ Some immediate consequences
- □ Conclusions

Motivations

Anti-pasti

New Physics: one should clearly disentangle physical scales from spurious non-physical ones

- New scales appearing beyond tree level
 - **→** regularization procedures
 - **⇒** renormalization schemes
- > Not trivial at all : need guiding principles
 - mathematical coherence of the objects we manipulate
 - constant link with physical observables

Test of the UV/IR properties of the theory

- Mathematical origin of divergences
 - quantum fields are distributions

(N. Bogoliubov 1952

→ one should be able to define the product of two distributions at the same point
(L. Schwartz 1951)

$$\mathcal{L} \sim \overline{q}(x) \ \phi(x) \ q(x)$$

- > Two different types of approaches in order to solve the problem
 - « à-posteriori » procedures
 - « à-priori » procedures
- « A-posteriori » regularization procedures
 - ightharpoonup Cut-off Λ_C imposed for the calculation of each amplitude

poor's men regularization prior to 1972

$$\mathcal{O}_C \sim \int_0^{\Lambda_C} d^4k \ \mathcal{O}(m_0, g_0; k)$$

- > The Lagrangian we start from is still not well-defined from a mathematical point of view
- > Violation of gauge and Lorentz invariances

■ « A-priori » regularization procedures

- > Two possible ways to start from a well-defined Lagrangian
 - **⇒** avoid the problem : dimensional regularization (DR)

$$D = 4 - \epsilon$$

$$m{\mathcal{A}}_{\epsilon}=\int d^{4-\epsilon}\mathcal{L}_{\epsilon}(\psi,\partial_{\mu}\psi;m_{0},g_{0})$$

→ treat the problem: finite field theories

(H. Epstein, V. Glaser 1973) (G. Scharf 1995) (J.M. Gracia-Bondia 2003)

$$\phi(x) \to \varphi(x) = \int d^4y \ \phi(y) \ \rho(|x - y|)$$

- > theory of distributions with well defined properties for the test function ρ
- ► Ex. Taylor-Lagrange regularization procedure (TLRS)

- > Two very different behaviors
 - **⇒** each elementary amplitude is finite in TLRS, for D=4
 - **⇒** only the full physical observable is finite in D=4 in DR
 - this is the price to pay for not having solved the problem!
 - ightharpoonup poles in $\frac{1}{\epsilon^n}$ for each elementary amplitude
 - need a « renormalization » scheme to be able to perform practical calculations (see later)

$$g_0 = g_R + \delta g_R$$

finite coupling constant

includes poles

Arbitrary scales and « universal » coupling constants

□ Energy scales

> Domain of validity of the Lagrangian : new physics scale Λ_{NP}

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} rac{c_i}{\Lambda_{NP}^{d_i-4}} \mathcal{O}_i$$

- $ightharpoonup \Lambda_{NP}$ can be uniquely determined if and only if we know ${\cal L}$
- ightharpoonup do not confuse Λ_{NP} with a cut-off in momentum space!

>> Physical scales

- m_i: physical masses of the relevant degrees of freedom
- Q_i: kinematical variables

☐ Arbitrary scales

- ightharpoonup Regularization scale η
 - not fixed by any experimental measurement
 - → in TLRS : scaling variable associated to the scaling properties in the UV/IR domains

$$k^2 \to \infty$$
 , $\eta^2 k^2 \to \infty$
 $k^2 \to 0$, $\eta^2 k^2 \to 0$

ightharpoonup in DR: dimensionality of the coupling constant at $\epsilon \neq 0$

$$D = 4 - \epsilon \qquad \qquad g \to \hat{g} = g \ \mu^{l \ \epsilon} \qquad \qquad \mu = \eta \ M_0$$

 $ightharpoonup \eta$ is dimensionless, once M_0 is fixed by a single measurement ex. $M_0=M_Z$

Rem.
$$\beta=\eta\frac{\partial g}{\partial\eta}\neq 0$$
 for $m=0$ so $g(\eta)$ with η dimensionless

- ightharpoonup Renormalization point M_i
 - ightharpoonup given by the kinematical conditions to fix, from an experimental measurement, the bare parameters (m_0,g_0) of the Lagrangian

for a process
$$2 o 2$$
 $M_i \sim (\sqrt{s_0}, \sqrt{|t_0|})$ $1 o 2$ $M_i \sim Q$

- « Universal » coupling constants
 - > Defined both in the perturbative as well as non-perturbative domains
 - Independent of the chosen renormalization scheme
 - ightharpoonup bare coupling constant g_0 in $\mathcal L$ (regularized)
 - $lacksymbol{ iny}$ depends on η but not on M_i $g_0(\eta)$
 - ightharpoonup physical coupling constant g_M of the physical state
 - $lacksymbol{ iny}$ depends on M_i but not on η $g_M(M)$

□ « Renormalized » coupling constants

> Defined in order to extract the divergences, if necessary

$$g_0 = g_R + \delta g_R$$

- $ightharpoonup \delta g_R$ incorporates divergences
- $ightharpoonup \delta g_R$ generates new terms in the Lagrangian (counterterms)

$$\mathcal{L} = \mathcal{L}_R + \delta \mathcal{L}_R$$

- counterterms fixed by « renormalization » conditions
- > g_R is defined in perturbation theory only
- > Two main renormalization schemes without the need to introduce any additional ad-hoc mass scale
 - ightharpoonup minimal subtraction : we include in δg_R the poles in $rac{1}{\epsilon^n}$ ather than this defines $g_R(\eta)$ (MS)

ightharpoonup on-mass-shell renormalization : one chooses for g_R the physical coupling constant g_M (OMS)

Renormalization in the sense of many-body theory

Rem. similarities between DR+MS and TLRS

- ightharpoonup TLRS: $g_0(\eta)$ and poles in $\frac{1}{\epsilon^n}$ are absent by construction
- ightharpoonup DR+MS : $g_R(\eta)$ and we remove the poles by hand
- ightharpoonup both coupling constants are finite, but $g_R(\eta)$ only defined in perturbation theory

Fine-tuning and hierarchy of the standard model and beyond

Fine-tuning of the Higgs mass in the standard model

$$m_H^2 = m_0^2 + \delta m_H^2$$

bare mass

radiative correction

- > Discussion pre-1972 (and after!) $\delta m_H^2 \propto \Lambda_C^2$
- $\Lambda_C o \infty$
- > Fine-tuning since $\Lambda_C \gg m_H$ so that m_H^2 is defined through the cancellation of two very large numbers : it is not natural!
- > Should be banned from any serious discussion
 - **⇒** violation of gauge and Lorentz invariances

> In the case of DR+MS or TLRS

$$\delta m_H^2 \propto m_H^2 \ Log \ \eta^2$$

- **→ no other possible behavior from a dimensional point of view**
- > Since η is arbitrary, the question of fine-tuning has no « raison d'être » and $\delta m_H^2 \to 0$ when $m_H^2 \to 0$
- What happens beyond the standard model?
 - ightharpoonup In the presence of a second physical mass scale, with $M_X\gg m_H$
 - **⇒** so-called **«** hierarchy **»** problem
 - contribution to the physical mass of the Higgs

$$\mu = \eta \; M_0$$

$$\delta m_H^2 \propto M_X^2 \; Log \; rac{\mu^2}{M_X^2} \qquad \qquad {
m in \; DR+MS}$$

→ how to interpret this result?

\blacktriangleright Since η is arbitrary, educated guess for its parametrization

$$M_0 \equiv M_X \qquad \delta m_H^2 \propto M_X^2 \ Log \ \eta^2$$

 $ightharpoonup \eta$ of order 1 parametrized in terms of the mass scales in ${\cal L}$

$$\eta^2 = 1 + a \; \frac{m_H^2}{M_X^2}$$

 $\Rightarrow a$ arbitrary with $a \ll \frac{M_X^2}{m_H^2}$

$$\delta m_H^2 \propto a \ m_H^2$$

- > With a particular parametrization, no trace of any large cancellations
- > The hierarchy problem is a false problem!
- ightharpoonup This would not be the case if μ is interpreted as a physical scale

$$\mu \sim Q$$
 $\delta m_H^2 \propto M_X^2 \ Log \ \frac{Q^2}{M_X^2} \gg m_H^2$

The Landau pole and triviality of the scalar model

- ☐ How to interpret the Landau pole?
 - > Running of the coupling constants as a function of the regularization scale $\,\eta\,$ or the renormalization point $\,M\,$

$$eta_{\eta} = \eta rac{\partial}{\partial \eta} \; g_{0,R}(\eta)$$
 independent of m

$$eta_M = M rac{\partial}{\partial M} \; g_M(M)$$
 dependent on m

- ightharpoonup Rem.: for $M \gg m$ $eta_M \simeq eta_\eta$
- m > In first order perturbation theory $eta \simeq b_0 \ g^2$
- ightharpoonup What happens for $g_{0,R}$ and g_M ?

> For the bare (in TLRS) or renormalized (in DR+MS) coupling constants

$$g_{0,R}(\eta) = \frac{\overline{g}_{0,R}}{1 - b_0 \ \overline{g}_{0,R} \ Log \ \eta} \qquad \overline{g}_{0,R} = g_{0,R}(\eta = 1)$$

ightharpoonup Landau pole for $\eta \sim \eta_c$

 $Log \ \eta_c = \frac{1}{b_0 \ \overline{g}_{0.R}}$

- **→** how to interpret this pole?
 - in a perturbative calculation of order N with a given accuracy

$$\mathcal{O}^N(Q,\eta) \simeq \sum_{n=0}^N g_{0,R}^n(\eta) \mathcal{O}_n(Q;\eta)$$

▶ for a converged calculation

$$|\mathcal{O}^{N+1} - \mathcal{O}^N| \le accuracy$$

▶ since os a physical observable

$$\mathcal{O}^N(Q;\eta) \simeq \mathcal{O}(Q) \simeq \mathcal{O}^N(Q)$$

- \blacktriangleright in this case, one can choose η in a domain far away from η_c , without any loss of generality
- the presence of the Landau pole, for g_0 or g_R is not the sign of any weakness of the standard model, provided we can perform a perturbative calculation
- \rightarrow how to check this: look at g_M !
- >> Behavior of the physical coupling constant
 - ightharpoonup in perturbation theory, like $g_{0,R}(\eta)$

$$g_M(M) = rac{g_M(M_0)}{1 - b_0 \ g_M(M_0) \ Log \ rac{M}{M_0}}$$
 for $M \gg m$

$$ightharpoonup$$
 Landau pole for $Log rac{M_c}{M_0} = rac{1}{b_0 \ g_M(M_0)}$

> Around the physical condition $Q \sim M_c$ perturbation theory is not valid anymore

Ex. α_s of QCD ($b_0 < 0$ in this case for asymptotic freedom)

⇒ effective strong coupling constant extracted from the Bjorken sum rule

$$\frac{\alpha_{g_1}(Q)}{\pi} = 1 - \frac{6}{g_A} \int_0^1 dx \ g_1^{p-n}(x, Q)$$

⇒ in perturbation theory

$$\alpha_{g_1}(Q) \propto \frac{1}{Log \frac{Q}{\Lambda_{QCD}}}$$

- (S. Brodsky, A. Deur, ...)
 - > Nature has done for us the non-perturbative calculation for $Q \sim \Lambda_{QCD}$ and the Landau pole has disappeared!
 - > To check the validity of the Standard Model at the Landau pole: need to do a non-perturbative calculation and a physical measurement at the critical scale

☐ Triviality of the scalar model

$$V(\phi) = rac{1}{2} m^2 \phi^2 + rac{\lambda}{4!} \phi^4$$
 ϕ = scalar field (Higgs)

>> Standard analysis in DR+MS at NLO

$$g_R(\mu) = \frac{g_R(\mu_0)}{1 - b_0 \ g_R(\mu_0) \ Log\frac{\mu}{\mu_0}}$$

- ightharpoonup if μ is identified with a physical scale Q
- ightharpoonup the only solution to avoid the Landau pole at $Q=Q_c$ is to have $g_R(Q_0) o 0$: free theory!
- ightharpoonup When the right (dimensionless) regularization scale η is considered
 - **⇒** the Landau pole can be avoided
 - ightharpoonup no any constraint on $\;\overline{g}_{0,R}=g_{0,R}(\eta_0=1)$

- ightharpoonup What about the physical coupling constant g_M ?
 - ightharpoonup if $M o M_c$ perturbation theory is not valid anymore
 - we need
 - > a non-perturbative calculation
 - a physical measurement in this energy domain

 - ightharpoonup no a-priori constraints on $g_M(M_0)$

Some immediate consequences

Unification of the coupling constants in the Standard Model

- ightharpoonup one should look at $g_M(M)$ and not at $g_R(\eta)$ in DR+MS for instance
- → necessary mass corrections near the unification point

(M. Binger, S. Brodsky, 2004)

- > The important requirement is not for the coupling constant to cross at a single point, but to merge smoothly to a unique coupling constant for $Q>M_{GUT}$
- ightharpoonup This implies to know the Lagrangian beyond M_{GUT} !

☐ Analysis of the stability of the scalar vacuum at high energies

$$V(\phi) = \frac{1}{2}m^{2}\phi^{2} + \frac{\lambda}{4!}\phi^{4}$$

- > Instability if $\lambda < 0$
- ightharpoonup The relevant coupling constant to look at is not $\lambda_R(\eta)$ but $\lambda_M(M)$
- > For the scalar potential $M_i \sim (\sqrt{s_0}, \sqrt{|t_0|})$
 - analysis in terms of two kinematical variables
 - \blacktriangleright with threshold effects for $s_0 \geq 4 m_H^2$

□ Decoupling properties

- Decoupling: super heavy degrees of freedom should not influence in general the behavior of light ones
- > Since the bare (in TLRS) or renormalized (in DR+MS) coupling constants refer to the regularization scale η associated to the behavior in the UV limit, their dependence on η should be mass-independent, as it is
- >> No need to restrict, by hand, the number of active quarks for m < Q: all physical degrees of freedom should be considered in the calculation of radiative corrections, for any Q
- > The decoupling of heavy degrees of freedom is done at the level of the physical coupling constant $g_M(M)$ which dependence on M is mass-dependent

Conclusions

- lacksquare One should clearly disentangle the internal coherence of the Lagrangian we start from (with $g_{0,R}(\eta)$) from the properties of the physical state realized in Nature (with $g_M(M)$)
- □ The Standard Model has its own coherence as a quantum field theory with local interactions
- Main concern: non-perturbative calculations needed near the Landau pole for $M \sim M_C$ far beyond presently planed accelerators

Thank you for your attention!

Relevant momenta in loop calculations

bare operator

$$\Sigma(p^2) = \int_0^{\Lambda_C^2} dk^2 \ \sigma(k^2, p^2)$$

$$\bar{\Sigma}(p^2) = \int_0^{\Lambda_k^2} dk^2 \ \sigma(k^2, p^2)$$

$$\frac{\bar{\Sigma}(p^2)}{\Sigma(p^2)} = 1 - \epsilon$$

TLRS

fully renormalized

$$\Sigma_R(p^2) = \Sigma(p^2) - \Sigma(m_H^2) - (p^2 - m_H^2) \left. \frac{d\Sigma(p^2)}{dp^2} \right|_{p^2 = m_H^2}$$