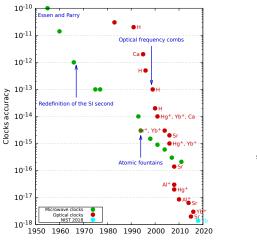
Fundamental physics and geodesy with atomic clocks

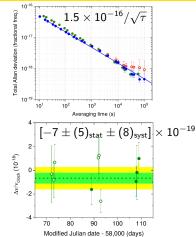
Pacôme DELVA

M.-C. Angonin, C. Guerlin, A. Hees, Ch. Le Poncin-Lafitte, E. Savalle, P. Wolf SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE and collaborators in BIPM, PTB, NPL, LUH, ESA, LAREG/IGN, UQ

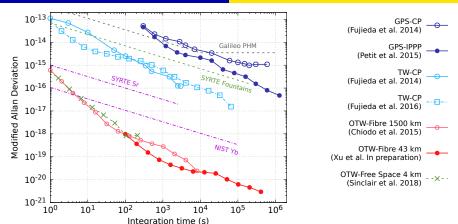
Séminaire du LPNHE

Sorbonne Université, Paris, 25 November 2019





- \bullet Microwave clocks accuracy $\sim 1\times 10^{-16}$
- Optical clock: accuracy = 1.4×10^{-18} , stability = 4.5×10^{-19} (McGrew et al. 2018, NIST)
- Very active, innovative and competitive field of physics



- Satellite (GNSS,TW): intercontinental but limited to $10^{-16} 10^{-17}$, rather long integration time
- Fibre links: best stability but limited to continental scales
- Free space coherent optical links through turbulent atmosphere are in their infancy, but show potential for similar performance as fibre links

Outline

- Gravitational redshift test with the future ACES mission
- 2 Gravitational Redshift test with Galileo eccentric satellites
- 3 Chronometric geodesy
- 4 Dark matter detection with atomic clocks

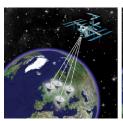
Outline

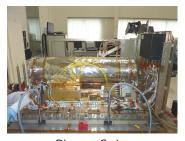
- Gravitational redshift test with the future ACES mission
- 2 Gravitational Redshift test with Galileo eccentric satellites
- Chronometric geodesy
- 4 Dark matter detection with atomic clocks

The ACES mission

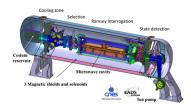
Goals

- Realize best timescale in orbit to date
- Allow time and frequency comparison between this timescale and the best ground clocks worldwide
- Use this data to perform fundamental physics tests
- Demonstrate possible applications in chronometric geodesy, inter-continental optical clocks comparisons, etc

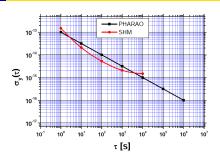




 $\begin{array}{c} {\sf Pharao,\ Cs\ jet} \\ {\sf (CNES,\ SODERN,\ SYRTE)} \end{array}$



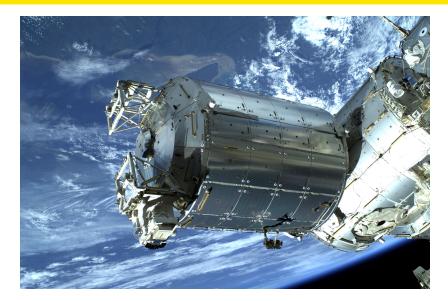
Pharao schema

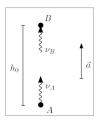


Pharao & SHM Allan Deviation

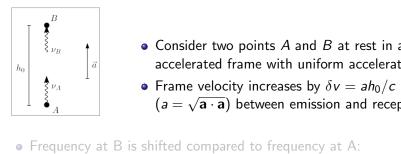
ACES Payload

Expected launch date: 2021 (SpaceX, Columbus module)



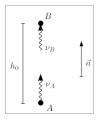


- Consider two points A and B at rest in an accelerated frame with uniform acceleration a
- Frame velocity increases by $\delta v = ah_0/c$ ($a = \sqrt{\mathbf{a} \cdot \mathbf{a}}$) between emission and reception



- Consider two points A and B at rest in an accelerated frame with uniform acceleration a
 - $(a = \sqrt{\mathbf{a} \cdot \mathbf{a}})$ between emission and reception
- Frequency at B is shifted compared to frequency at A:

$$\frac{\nu_B}{\nu_A} = 1 - \frac{\delta v}{c} = 1 - \frac{ah_0}{c^2}$$

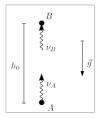


- Consider two points A and B at rest in an accelerated frame with uniform acceleration \mathbf{a} Frame velocity increases by $\delta v = ah_0/c$ ($\mathbf{a} = \sqrt{\mathbf{a} \cdot \mathbf{a}}$) between emission and reception
 - Frequency at B is shifted compared to frequency at A:

$$rac{
u_B}{
u_A} = 1 - rac{\delta v}{c} = 1 - rac{ah_0}{c^2}$$

Equivalence Principle postulates that $\mathbf{a} \Leftrightarrow -\mathbf{g}$ (locally)

$$\frac{\nu_B}{\nu_A} = 1 - \frac{gh_0}{c^2}$$



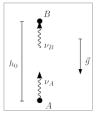
- Consider two points A and B at rest in an accelerated frame with uniform acceleration a
- Frame velocity increases by $\delta v = ah_0/c$ $(a = \sqrt{{f a} \cdot {f a}})$ between emission and reception
- Frequency at B is shifted compared to frequency at A:

$$\frac{\nu_B}{\nu_A} = 1 - \frac{\delta v}{c} = 1 - \frac{\mathsf{a} h_0}{c^2}$$

• Equivalence Principle postulates that $\mathbf{a} \Leftrightarrow -\mathbf{g}$ (locally)

$$\frac{\nu_B}{\nu_A} = 1 - \frac{gh_0}{c^2}$$

• $\nu_B < \nu_A$: the frequency is red-shifted



- Consider two points A and B at rest in accelerated frame with uniform accelerated frame velocity increases by $\delta v = ah_0/c$ ($a = \sqrt{\mathbf{a} \cdot \mathbf{a}}$) between emission and received. • Consider two points A and B at rest in an accelerated frame with uniform acceleration a
 - $(a = \sqrt{\mathbf{a} \cdot \mathbf{a}})$ between emission and reception
- Frequency at B is shifted compared to frequency at A:

$$\frac{\nu_B}{\nu_A} = 1 - \frac{\delta v}{c} = 1 - \frac{\mathsf{a} h_0}{c^2}$$

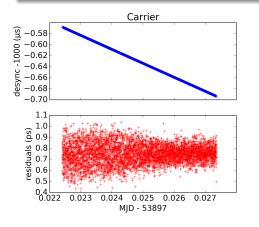
• Equivalence Principle postulates that $\mathbf{a} \Leftrightarrow -\mathbf{g}$ (locally)

$$\frac{\nu_B}{\nu_A} = 1 - \frac{gh_0}{c^2}$$

• $\nu_B < \nu_A$: the frequency is red-shifted

Total redshift between ACES (S) and a ground clock (G)

$$\frac{\delta f}{f} = \underbrace{\frac{GM}{c^2} \left(\frac{1}{r_G} - \frac{1}{r_S} \right)}_{4.1 \times 10^{-11}} + \underbrace{\frac{v_G^2 - v_S^2}{2c^2}}_{-3.3 \times 10^{-10}} \simeq -2.9 \times 10^{-10}$$



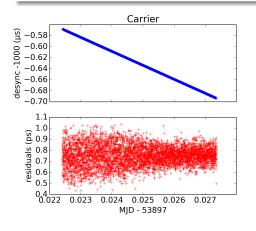
- Desynchronisation:
 - $\delta \sim 0.1 \, \mu s$ for 1 pass
 - $\delta \sim$ 250 µs for 10 days
- PHARAO accuracy $\sim 1 \times 10^{-16}$ (after 10d)

$$\frac{1 \times 10^{-16}}{4 \times 10^{-11}} \approx 2.5 \times 10^{-6}$$

elaborated simulations confirms this number (work by E. Savalle et al., arxiv 1907.12320)

Total redshift between ACES (S) and a ground clock (G)

$$\frac{\delta f}{f} = \underbrace{\frac{GM}{c^2} \left(\frac{1}{r_G} - \frac{1}{r_S} \right)}_{4.1 \times 10^{-11}} + \underbrace{\frac{v_G^2 - v_S^2}{2c^2}}_{-3.3 \times 10^{-10}} \simeq -2.9 \times 10^{-10}$$

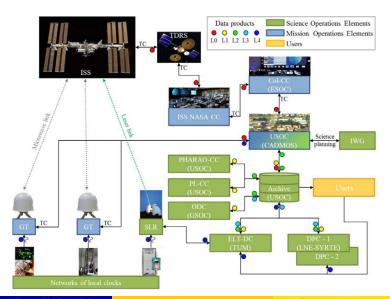


- Desynchronisation:
 - $\delta \sim$ 0.1 µs for 1 pass
 - $\delta \sim$ 250 µs for 10 days
- PHARAO accuracy $\sim 1 \times 10^{-16}$ (after 10d)

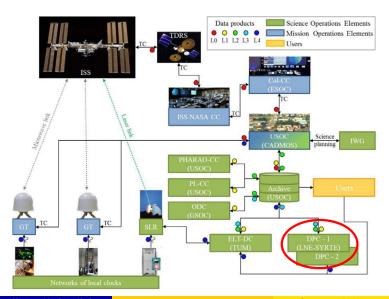
$$\frac{1 \times 10^{-16}}{4 \times 10^{-11}} \approx 2.5 \times 10^{-6}$$

elaborated simulations confirms this number (work by E. Savalle et al., arxiv 1907.12320)

ACES Ground segment

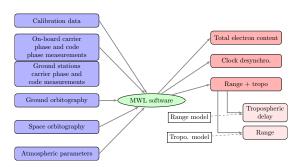


ACES Ground segment



After 6 years, many TimeTech and ADS (Airbus Defence and Space) documents, countless meetings and a few headaches. . .

- Simulation software: 1500 lines of Matlab, highly flexible, produces input (blue) and output (red)
- Processing software: 6300 lines of Python, designed for operation, takes input (blue) and produces output (red)



Meynadier et al. 2018 (Class. Quantum Grav.)

Gravitational redshift test with the future ACES mission

E Savalle^{1,*}, C Guerlin^{1,2,*}, P Delva¹, F Meynadier^{1,3}, C le Poncin-Lafitte¹, P Wolf¹

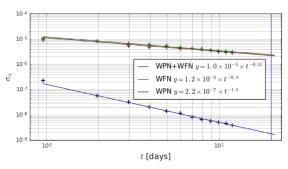
¹SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61 avenue de l'Observatoire, 75014 Paris, France

²Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France

 $^3\mathrm{Bureau}$ International des Poids et Mesures, Pavillon de Breteuil, 92312 Sèvres

Cedex, France

Accepted in Classical and Quantum Gravity

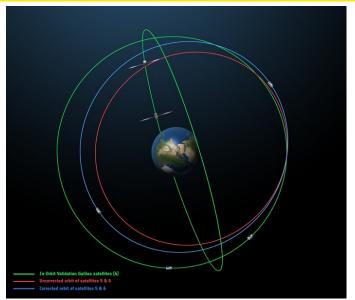


Uncertainty of the gravitational redshift test as a function of the experiment duration (blue vertical line at 20 days), considering realistic noise (White Phase Noise + White Frequency Noise).

Outline

- 1 Gravitational redshift test with the future ACES mission
- Gravitational Redshift test with Galileo eccentric satellites
- 3 Chronometric geodesy
- 4 Dark matter detection with atomic clocks

Galileo satellites 201&202 orbit

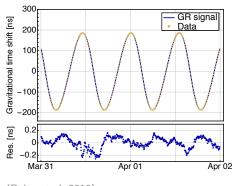


Galileo sats
201&202 launched
in 08/22/2014 on
the wrong orbit
due to a technical
problem ⇒
GRedshift test
(GREAT Study)

Why Galileo 201 & 202 are perfect candidates?

 An elliptic orbit induces a periodic modulation of the clock proper time at orbital frequency

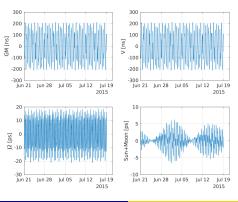
$$au(t) = \left(1 - rac{3\mathit{Gm}}{2\mathit{ac}^2}\right)t - rac{2\sqrt{\mathit{Gma}}}{\mathit{c}^2}e\sin E(t) + \mathsf{Cste}$$



- Very good stability of the on-board atomic clocks → test of the variation of the redshift
- Satellite life-time → accumulate the relativistic effect on the long term
- Visibility → the satellite are permanently monitored by several ground receivers

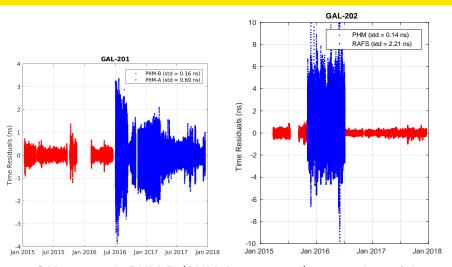
- Orbit and clock solutions: ESA/ESOC
- Transformation of orbits into GCRS with SOFA routines
- Theoretical relativistic shift and LPI violation

$$x_{\rm redshift} = \int \left[1 - \frac{v^2}{2c^2} - \frac{U_E + U_T}{c^2}\right] dt \; ; \; x_{\rm LPI} = -\alpha \times \int \frac{U_E + U_T}{c^2} dt$$



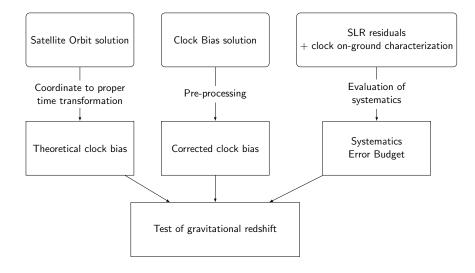
Peak-to-peak effect \sim 400 ns: model and systematic effects at orbital period should be controlled down to 4 ps in order to have $\delta\alpha\sim1\times10^{-5}$

Choice of clock



- ullet GAL-201: only PHM-B (PHM-A is removed) ightarrow 359 days of data
- ullet GAL-202: only PHM (RAFS is removed) ightarrow 649 days of data

Data analysis flowchart



Galileo final result

	LPI violat $[\times 10^{-5}]$	Tot unc $[\times 10^{-5}]$	Stat unc $[\times 10^{-5}]$	Orbit unc $[\times 10^{-5}]$	Temp unc $[\times 10^{-5}]$	MF unc $[\times 10^{-5}]$
GAL-201	-0.77	2.73	1.48	1.09	0.59	1.93
GAL-202	6.75	5.62	1.41	5.09	0.13	1.92
Combined	0.19	2.48	1.32	0.70	0.55	1.91

- \bullet Local Position Invariance is confirmed down to 2.5×10^{-5} uncertainty
- more than 5 times improvements with respect to Gravity Probe A measurement (1976)
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)
- Nice outreach video by Derek Muller on Veritasium (youtube channel www.youtube.com/watch?v=aKwJayXTZUs)

Outline

- Gravitational redshift test with the future ACES mission
- 2 Gravitational Redshift test with Galileo eccentric satellites
- 3 Chronometric geodesy
- 4 Dark matter detection with atomic clocks

Basic principle of chronometric geodesy

The flow of time, or the rate of a clock when compared to coordinate time, depends on the velocity of the clock and on the space-time metric (which depends on the mass/energy distribution).

In the weak-field approximation:

$$\frac{\Delta \tau}{\tau} = \frac{\Delta f}{f} = \frac{U_B - U_A}{c^2} + \frac{v_B^2 - v_A^2}{2c^2} + O(c^{-4})$$
$$= \frac{W_B - W_A}{c^2} + O(c^{-4}) \tag{1}$$

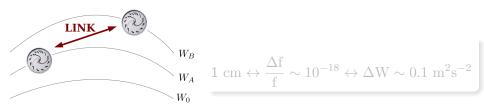
Basic principle of chronometric geodesy

The flow of time, or the rate of a clock when compared to coordinate time, depends on the velocity of the clock and on the space-time metric (which depends on the mass/energy distribution).

In the weak-field approximation:

$$\frac{\Delta \tau}{\tau} = \frac{\Delta f}{f} = \frac{U_B - U_A}{c^2} + \frac{v_B^2 - v_A^2}{2c^2} + O(c^{-4})$$

$$= \frac{W_B - W_A}{c^2} + O(c^{-4})$$
(1)



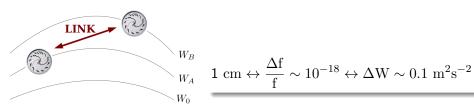
Basic principle of chronometric geodesy

The flow of time, or the rate of a clock when compared to coordinate time, depends on the velocity of the clock and on the space-time metric (which depends on the mass/energy distribution).

In the weak-field approximation:

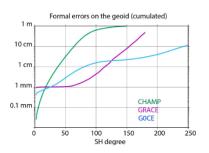
$$\frac{\Delta \tau}{\tau} = \frac{\Delta f}{f} = \frac{U_B - U_A}{c^2} + \frac{v_B^2 - v_A^2}{2c^2} + O(c^{-4})$$

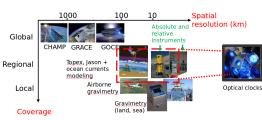
$$= \frac{W_B - W_A}{c^2} + O(c^{-4})$$
(1)



Chronometric observables in geodesy

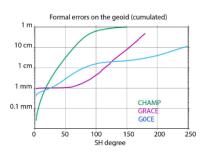
- Chronometric observables are a completely new type of observable in geodesy: gravity potential differences are directly observed
- Accuracy of optical clocks starts to be competitive with classical methods

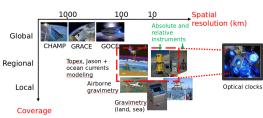




Chronometric observables in geodesy

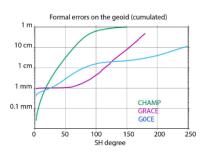
- Chronometric observables are a completely new type of observable in geodesy: gravity potential differences are directly observed
- Accuracy of optical clocks starts to be competitive with classical methods
- Complementary to gravimetry and satellite-based geodesy

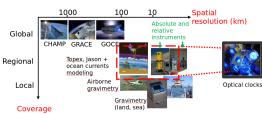




Chronometric observables in geodesy

- Chronometric observables are a completely new type of observable in geodesy: gravity potential differences are directly observed
- Accuracy of optical clocks starts to be competitive with classical methods
- Complementary to gravimetry and satellite-based geodesy

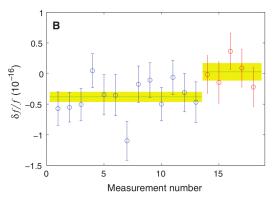




A local comparison

Experimental demonstration of the dependency of clock frequency with local height with two Al^+ optical clocks (Chou et al. 2010)

Starting at data point 14, one of the clock is elevated by 33 cm. The net relative shift is measured to be (41 \pm 16) \times 10⁻¹⁸.



The shape of the Earth

As a proof-of-principle, one can determine (roughly) J_2 with two clocks:

$$\frac{\Delta f}{f} = \frac{W_B - W_A}{c^2} + O(c^{-4}) , W = U + \frac{v^2}{2}$$

$$U = \frac{GM_E}{r} \left[1 + \frac{J_2 R_E^2}{2r^2} \left(1 - 3\sin(\phi)^2 \right) \right]$$

 using INRIM CsF1 vs. SYRTE FO2 comparison we find:

$$J_2 = (1.097 \pm 0.016) \times 10^{-3}$$

The shape of the Earth

As a proof-of-principle, one can determine (roughly) J_2 with two clocks:

$$\frac{\Delta f}{f} = \frac{W_B - W_A}{c^2} + O(c^{-4}) , W = U + \frac{v^2}{2}$$

$$U = \frac{GM_E}{r} \left[1 + \frac{J_2 R_E^2}{2r^2} \left(1 - 3\sin(\phi)^2 \right) \right]$$

 using INRIM CsF1 vs. SYRTE FO2 comparison we find:

$$J_2 = (1.097 \pm 0.016) \times 10^{-3}$$

 \bullet Error of $\sim 1.4\%$ compare to best known value

The shape of the Earth

As a proof-of-principle, one can determine (roughly) J_2 with two clocks:

$$\frac{\Delta f}{f} = \frac{W_B - W_A}{c^2} + O(c^{-4}) , W = U + \frac{v^2}{2}$$

$$U = \frac{GM_E}{r} \left[1 + \frac{J_2 R_E^2}{2r^2} \left(1 - 3\sin(\phi)^2 \right) \right]$$



 using INRIM CsF1 vs. SYRTE FO2 comparison we find:

$$J_2 = (1.097 \pm 0.016) \times 10^{-3}$$

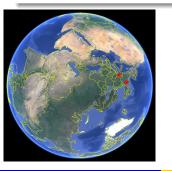
- ullet Error of $\sim 1.4\%$ compare to best known value
- However, ground clocks are sensitive to higher order multipoles of the grav. potential

The shape of the Earth

As a proof-of-principle, one can determine (roughly) J_2 with two clocks:

$$\frac{\Delta f}{f} = \frac{W_B - W_A}{c^2} + O(c^{-4}) , W = U + \frac{v^2}{2}$$

$$U = \frac{GM_E}{r} \left[1 + \frac{J_2 R_E^2}{2r^2} \left(1 - 3\sin(\phi)^2 \right) \right]$$



 using INRIM CsF1 vs. SYRTE FO2 comparison we find:

$$J_2 = (1.097 \pm 0.016) \times 10^{-3}$$

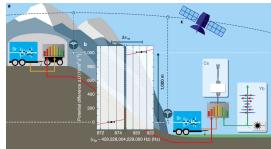
- ullet Error of $\sim 1.4\%$ compare to best known value
- However, ground clocks are sensitive to higher order multipoles of the grav. potential

Large-scale demonstration of chronometric geodesy

International Timescales with Optical Clocks (ITOC): Demonstrate that optical clocks can be used to measure gravity potential differences over medium-long baselines with high temporal resolution

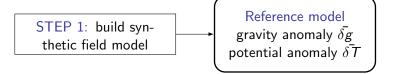
Height difference ~ 1 km \Rightarrow Gravitational redshift $\sim 10^{-13}$

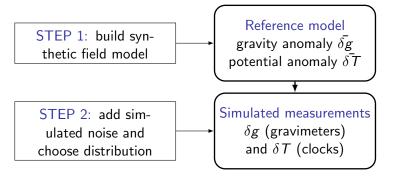
J. Grotti et al., Nature Physics 14(5), 2018

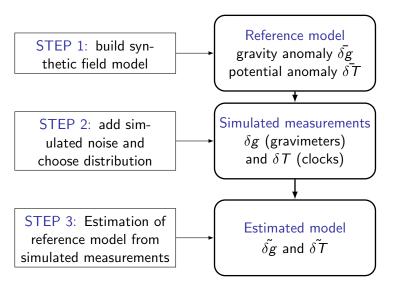


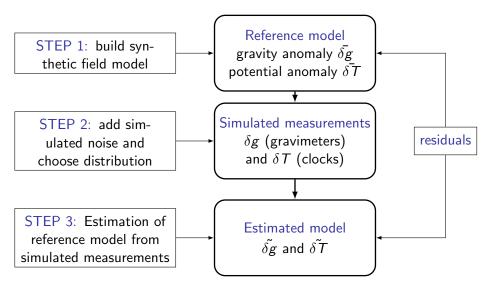
Chronometric geodesy for high resolution geopotential

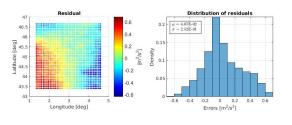
- Collaboration between SYRTE/Obs.Paris, LAREG/IGN and LKB, with the support of GRAM, First-TF and ERC grants
- Goals
 - evaluating the contribution of optical clocks for the determination of the geopotential at high spatial resolution
 - Find the best locations to put optical clocks to improve the determination of the geopotential
- Lion, G., Panet, I., Wolf, P., Guerlin, C., Bize, S., Delva, P., 2017.
 Determination of a high spatial resolution geopotential model using atomic clock comparisons. J Geod 115.

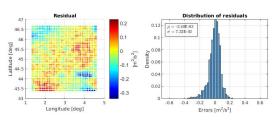












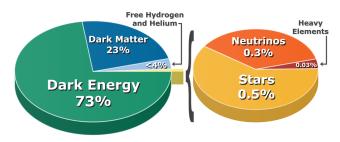
Lion et al. 2017 (J Geod)

- Estimation of potential from gravimetric data
 - Standard deviation $\sigma = 0.25 \text{ m}^2.\text{s}^{-2}$
 - Mean $\mu = -0.04 \text{ m}^2.\text{s}^{-2}$
 - Trend from West to East of the residuals
- Estimation of potential from gravimetric and clock data (~ 30)
 - Standard deviation $\sigma = 0.07 \text{ m}^2.\text{s}^{-2}$
 - Mean $\mu = -0.002 \text{ m}^2.\text{s}^{-2}$
 - The residual trend disappeared

Outline

- 1 Gravitational redshift test with the future ACES mission
- 2 Gravitational Redshift test with Galileo eccentric satellites
- Chronometric geodesy
- 4 Dark matter detection with atomic clocks

Content of the Universe

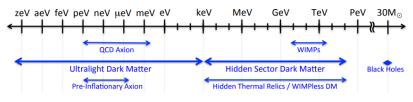


Ben Finney (CC-BY-3.0)

"Mostly it's coffee, which is dark energy, then there's a fair amount of cream, which is dark matter and then there's a tiny bit of sugar – this is the ordinary matter, and this is what science has been all about for thousands of years – until now." (Ulf Danielsson)

Dark Matter: What is it?

- ullet Possible mass range: \sim 90 orders-of-magnitude
- ullet In our study we concentrate on low masses (< 1 eV), where standard collisional detection techniques fail



US Cosmic Visions report, arXiv:1707.04591

(context: $m_{
m Earth} \sim 10^{60}\,{
m eV}$ $m_{
m electron} \sim 10^6\,{
m eV}$)

⇒ Wide range of possibilities: requires large range of searches

Variations of fundamental constants: atomic clocks tests

When dark matter fields couple to standard matter violation of local position invariance occurs, and thus of Einstein equivalence principle, through the variation of fundamental constants:

- linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al. 2013; Godun et al. 2014; Huntemann et al. 2014)
- harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016; Geraci
 et al. 2018)
- spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007;
 Guéna et al. 2012; Leefer et al. 2013; Peil et al. 2013)
- Transients (Flambaum and Dzuba 2009; Derevianko and Pospelov 2014; Wcisło, Morzyński, et al. 2016; Roberts et al. 2017; Wcisło, Ablewski, et al. 2018)
 transient shifts in energy levels
 shifts in clock frequencies

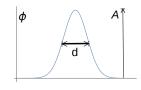
$$\frac{\delta\nu_0}{\nu_{AB}} = K_{AB} \frac{\delta\alpha_0}{\alpha} = K_{AB} \frac{\phi_0^2}{\Lambda_\alpha^2}$$

Topological Defect DM

ullet Ultralight $(m_\phi \ll eV) \implies$ high occupation number

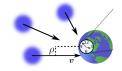
Topological Defects

- monopoles, strings, walls,
- Defect width: $d \sim 1/m_{\phi}$
- ullet Earth-scale object $\sim 10^{-14}\,\mathrm{eV}$



Dark matter: Gas of defects

- DM: galactic speeds: $v_g \sim 10^{-3}c$
- ϕ_0^2 , d, $\mathcal{T}_{\mathrm{b/w} \, \mathrm{collisions}} \implies \rho_{\mathrm{DM}}$



$$\phi_0^2 = \rho_{\rm DM} \, v_g \, d \, \mathcal{T},$$

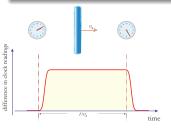
• Vilekin '85, Coleman '85, Lee '89, Kibble '80, ...

Another possibility is an oscillating classical field

Shift in atomic clock frequencies

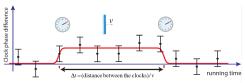
Monitor Atomic Clocks

- ullet Temporary frequency shift o bias (phase) build-up
- Initially synchronised clocks become desynchronised



Signal vs. noise?

- Transient signal: looks essentially like any outlier
- i.e. what is the specific DM signature?



Derevianko, Pospelov, Nat. Phys. 10, 933

European fibre-linked optical clock network

Fibre network

- High-accuracy long-distance clock-clock (atom-atom) comparisons
- Different clocks: Hg/Sr/Yb⁺
- Sensitivity: \checkmark ($\delta \alpha$, Λ) limited only by clocks: Sr-Sr: $\delta \omega/\omega \sim 3 \times 10^{-17}$ at 1000s
- Long observation time: √ (T)
- Long-term stability: \checkmark (d)

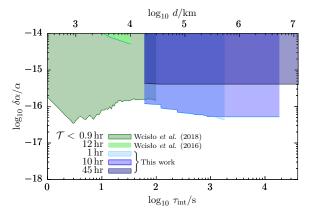
- Lisdat et al. (PTB, LNE-SYRTE), Nature Commun. 7, 12443 (2016).
- Delva et al. (PTB, SYRTE, NPL, ..), Phys. Rev. Lett. 118, 221102 (2017).

Transient variation of fine-structure constant

Orders-of-magnitude improvement: especially for large objects (au)

•
$$\delta \alpha(\tau)/\alpha \lesssim 5 \times 10^{-17}$$
 @ $\tau = 10^3$ s, & $T = 1$ hr

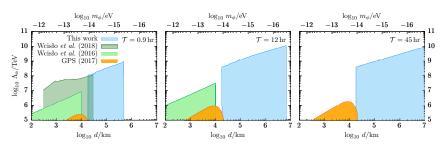
•
$$\delta \alpha(\tau)/\alpha \lesssim 4 \times 10^{-15}$$
 @ $\tau = 10^4$ s, & $T = 45$ hr



Topological defect dark matter

Assume DM is made from Topological Defects:

$$\phi_0^2 = \hbar c \, \rho_{\mathrm{DM}} v_g \, \mathcal{T} d \; , \qquad \qquad \mathcal{T} = rac{
ho_{\mathrm{inside}}}{
ho_{\mathrm{DM}}} rac{d}{v_g}$$



• nb: GPS results (orange): go up to $\mathcal{T} \sim 10 \, \mathrm{yrs} \sim 10^5 \, \mathrm{hrs}$

$$\implies \Lambda_{\alpha}^{2}(\mathcal{T},d) > \frac{\hbar c \alpha \rho_{\mathrm{DM}} v_{g} \mathcal{T} d}{|\delta \alpha_{0}(\mathcal{T},\tau_{\mathrm{int}})|}.$$

arXiv:1907.02661

Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks

B. M. Roberts, 1, * P. Delva, 1 A. Al-Masoudi, 2 A. Amy-Klein, 3 C. Bærentsen, 1 C. F. A. Baynham, 4 E. Benkler, S. Bilicki, S. Bize, W. Bowden, J. Calvert, V. Cambier, E. Cantin, 3 E. A. Curtis, 4 S. Dörscher, M. Favier, F. Frank, P. Gill, R. M. Godun, G. Grosche, C. Guo, A. Hees, I. R. Hill, G. Dörscher, M. Favier, F. Frank, P. Gill, R. M. Godun, G. Grosche, C. Guo, A. Hees, I. R. Hill, G. Groscher, G. Gro R. Hobson, N. Huntemann, J. Kronjäger, S. Koke, A. Kuhl, R. Lange, T. Legero, B. Lipphardt, C. Lisdat, J. Lodewyck, O. Lopez, H. S. Margolis, H. Álvarez-Martínez, J. F. Meynadier, F. Ozimek, E. Peik, P.-E. Pottie, N. Quintin, C. Sanner, L. De Sarlo, M. Schioppo, R. Schwarz, A. Silva, U. Sterr, Chr. Tamm, R. Le Targat, P. Tuckey, G. Vallet, T. Waterholter, D. Xu, and P. Wolf, D. Xu, and P. Wolf, ¹SYRTE, Observatoire de Paris, Université PSL, CNRS,

Sorbonne Université, LNE, 61 avenue de l'Observatoire, 75014 Paris, France ² Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany ³Laboratoire de Physique des Lasers, Université Paris 13, Sorbonne Paris Cité, CNRS, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France ⁴ National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom ⁵Sección de Hora. Real Instituto y Observatorio de la Armada, San Fernando, Spain ⁶ Bureau International des Poids et Mesures, BIPM, Pavillon de Breteuil, 92312 Sèvres, France ⁷Réseau National de télécommunications pour la Technologie. l'Enseignement et la Recherche, 23-25 Rue Daviel, 75013 Paris, France

(Dated: July 10, 2019)

Fundamental physics

- ACES SYRTE DAC is ready \rightarrow ACES to be launched in 2020, targeting 2×10^{-6} gravitational redshift test
- Gravitational redshift test with eccentric Galileo to 2.5×10^{-5} accuracy $\rightarrow 5.6 \times$ improvement with respect to GP-A (1976)
- ullet Time dilation (SR) test with optical clocks at the level the best lves-Stilwell type experiments ($\sim 10^{-8}$)
- ullet Search for Dark Matter with networks of optical clocks o bounds on model parameters

Chromometric geodesy

- Best determination of redshift correction within ITOC for a set of European optical clocks and fountains
- Possible improvement of regional geoid models with a few tens of comparisons

Fundamental physics

- ACES SYRTE DAC is ready \to ACES to be launched in 2020, targeting 2×10^{-6} gravitational redshift test
- Gravitational redshift test with eccentric Galileo to 2.5×10^{-5} accuracy $\rightarrow 5.6 \times$ improvement with respect to GP-A (1976)
- ullet Time dilation (SR) test with optical clocks at the level the best lves-Stilwell type experiments ($\sim 10^{-8}$)
- ullet Search for Dark Matter with networks of optical clocks o bounds on model parameters

Chromometric geodesy

- Best determination of redshift correction within ITOC for a set of European optical clocks and fountains
- Possible improvement of regional geoid models with a few tens of comparisons