Comprendre I'Infiniment Grand Introduction to Cosmology Part II

Ch. Yèche, CEA-Saclay, IRFU/DPhP

July 19, 2022

Summary of Part I

Equivalence Principle

- $\mathrm{m}_{\mathrm{i}}=\mathrm{m}_{\mathrm{g}}$: Uniform gravitational field \Leftrightarrow Uniform acceleration $=>$ to understand gravitation study uniform acceleration
- Photon trajectory is bent in an accelerated frame $=>$ bent in a gravitational field
- In an accelerated rocket:
=> same in a gravitational field

$$
\Delta t_{B}=\left(1-\frac{g h}{c^{2}}\right) \Delta t_{A}
$$

A emits every $10 \mathrm{~s} \mathrm{->}$ B receives every 9.999... s times run slower in a gravitational potential : $\Delta t_{B}=\left(1-\frac{\Phi_{A}-\Phi_{B}}{c^{2}}\right) \Delta t_{A}$
\Rightarrow Gravitational Redshift observed with S2 star orbiting around the Black Hole, Sag .A* at the center of MW

Curved spacetime - Light rays are bent

- In 1919 : Arthur Eddington observes
lightdeviation by the sun during a solar eclips
- 1.75 arc second $=8.5 \mu \mathrm{rad}$ as predicted by Einstein
- Twice the deflection predicted by first computation (Eq. principle alone)

-GR : for a weak and static field, the metric is :

$$
d s^{2}=\underbrace{\left(1+\frac{2 \Phi(x)}{c^{2}}\right)}_{\text {Equivalence principle }} c^{2} d t^{2}-\left(1-\frac{2 \Phi(x)}{c^{2}}\right)\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Curved spacetime - Gravitational lensing

- On July 112022 James Webb Space Telescope released this deep field
- Galaxies behind galaxy cluster SMACS 0723 ($z=0.39, R_{\text {vir }}=2.4 \mathrm{Mpc}$) are curved and warped
- Strong gravitational lensing: modern proof of RG

2.25 arcmin, 0.7 Mpc at $\mathrm{z}=0.39$

Cosmology - Part II

1. Geometry of the Universe - Cosmological principles

- FLWR metric

2. Expansion of the Universe - Cosmological redshift

- Friedman equation

1) Geometry of the Universe

Homogenous and isotropic

- Cosmological principle
- Universe isotropic + homogeneous on large scales
- Universe looks the same whoever and wherever you are
- Isotropic (on large scales)
- CMB very isotropic
- X ray background, radio galaxies
- Homogeneous
- Test with 3D galaxy surveys
- Only at large scales.... >Mpc

FLRW metric

Homogeneous and isotropic \Rightarrow
Friedmann, Lemaitre, Robertson, Walker metric

$$
d s^{2}=d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

- isotropic
- scale factor $R(t)$ due to expansion
- dimensionless scale factor: $\mathrm{a}(\mathrm{t})=R(t) / R\left(t_{0}\right)$ now $a\left(t_{0}\right)=1 \quad$ index 0 , means today in the past $a(t)<1$
Big Bang $a(t)=0$

FLRW metric

Friedmann, Lemaitre, Robertson, Walker metric

$$
d s^{2}=d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

$\mathrm{k}=1$: spherical geometry or closed $\quad\left(\sum \alpha>180^{\circ}\right)$
$\mathrm{k}=-1$: hyperbolic geometry or open $\quad\left(\sum \alpha<180^{\circ}\right)$
$\mathrm{k}=0$: flat geometry $\left(\sum \alpha=180^{\circ}\right)$

The Big Bang

- Universe is expanding with $\mathrm{H}_{0} \quad(\sim 70 \mathrm{Mpc} /(\mathrm{km} / \mathrm{s}))$
- If we go back in time,

Universe more and more dense and hot: big bang

- Analogy with an inflated balloon
- Name invented by Fred Hoyle
- Fate of the Universe strongly related to the metric, i.e. k values (close, open or flat)

Comoving distance

- Change of coordinates $r=\sin \chi \quad(k=1$, closed $)$

$$
\begin{array}{ll}
r=\chi & (k=0, \text { flat }) \\
r=\sinh \chi & (k=-1, \text { open })
\end{array}
$$

$$
d s^{2}=d t^{2}-R^{2}(t)\left[d \chi^{2}+\left\{\begin{array}{c}
\sin ^{2} \chi \\
\chi^{2} \\
\sinh ^{2} \chi
\end{array}\right\}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]\left\{\begin{array}{c}
\text { closed } \\
\text { flat } \\
\text { open }
\end{array}\right\}
$$

$\sin \rightarrow$ spherical $\sinh \rightarrow$ hyperbolical

- Distance:
- Galaxies remain at $\chi=$ cst (up to small local velocities)
- Physical distance between 2 galaxies : $\mathrm{R}(\mathrm{t}) \times \Delta \chi$ (Mpc) increases with the expansion
- "comoving" distance : $\mathrm{R}\left(\mathrm{t}_{0}\right) \times \Delta \chi$ is fixed (comoving Mpc)
$=$ distance including the expansion up to $t=t_{0}$
= independent from Universe expansion

2) Expansion of the Universe

Cosmological redshift

- Radial photon

$$
d s^{2}=d t^{2}-R^{2}(t) d x^{2}=0 \Rightarrow d x=d t / R
$$

$$
\chi=\int_{t_{e}}^{t_{r}} \frac{d t}{R(t)}=\int_{t_{e}+\delta t_{e}}^{t_{r}+\delta t_{r}} \frac{d t}{R(t)}
$$

$$
\Rightarrow \int_{t_{e}}^{t_{e}+\delta t_{e}} \frac{d t}{R(t)}=\int_{t_{r}}^{t_{r}+\delta t_{r}} \frac{d t}{R(t)}
$$

$$
\Rightarrow \frac{\delta t_{e}}{R\left(t_{e}\right)}=\frac{\delta t_{r}}{R\left(t_{r}\right)}
$$

$$
1+z_{e} \equiv \frac{\lambda_{r}}{\lambda_{e}}=\frac{\delta t_{r}}{\delta t_{e}}=\frac{R\left(t_{r}\right)}{R\left(t_{e}\right)} \equiv \frac{1}{a\left(t_{e}\right)}
$$

$$
1+z=\frac{1}{a}
$$

« λ is dilating with the Universe»

Redshift: A fundamental concept in cosmology

- Measuring z \rightarrow scale factor a when light emitted
- It is a cosmological redshift, $1+z=1 /$ a can be e.g. $z=1000$ (at CMB) cannot be interpreted as a simple Doppler effect
- In case of Hubble law ($\mathrm{v}=\mathrm{H}_{0} \mathrm{~d}$), it is locally interpreted as a Doppler effect
- z is also a measurement of time: e.g. CMB occurred at $z=1100$ (i.e. when $a=0.0009$)

Hubble parameter

- Assume $\mathrm{t}_{\mathrm{e}} \sim \mathrm{t}_{0}$ (locally) $\Rightarrow \mathrm{a} \sim 1$, small z

$$
\begin{array}{ll}
1+z=\frac{1}{a} & z=\frac{v}{c}=\frac{1-a}{a}=\frac{\dot{a} \Delta t}{a} \quad \Rightarrow \quad v=\frac{\dot{a}}{a}(c \Delta t) \\
v=\frac{\dot{a}}{a} D & \text { Hubble law with } \quad H_{0}=\frac{\dot{a}\left(t_{0}\right)}{a\left(t_{0}\right)}=H\left(t_{0}\right)
\end{array}
$$

- Hubble parameter $H(t) \equiv \frac{\dot{a}(t)}{a(t)}$
- H_{0} is not very precisely measured, we define

$$
h \equiv \frac{H_{0}}{100(\mathrm{~km} / \mathrm{s}) / \mathrm{Mpc}} \approx 0.7
$$

- cosmological results in units like $h^{-1} \mathrm{Mpc}$ numerical result independent of h

Thermodynamic

- a volume V including a fixed number of particles
(i.e. galaxies !)

$$
d E=-P d V \quad E=\rho V
$$

- the physical volume is $\mathrm{V}=\mathrm{a}^{3}(\mathrm{t}) \mathrm{V}_{\text {com }}\left(\mathrm{V}_{\text {com }}=\right.$ comoving volume $)$
$d_{t}\left(\rho \mathrm{a}^{3} \mathrm{~V}_{\text {com }}\right)=-\mathrm{P} \mathrm{d}_{\mathrm{t}}\left(\mathrm{a}^{3} \mathrm{~V}_{\text {com }}\right) \quad$ but $\mathrm{V}_{\text {com }}=\mathrm{cst}=\mathrm{V}_{0}$

$$
d_{t}\left[\rho(t) a^{3}(t)\right]=-P(t) d_{t}\left[a^{3}(t)\right]
$$

matter, radiation

- Matter:

$$
d_{t}\left[\rho a^{3}\right]=-P d_{t}\left[a^{3}\right]
$$

galaxies may be approximated as a pressure-less gas

$$
\mathrm{d}_{\mathrm{t}}\left[\rho_{\mathrm{m}} \mathrm{a}^{3}\right]=0
$$

$$
\rho_{\mathrm{m}}(\mathrm{t})=\rho_{\mathrm{m}}\left(\mathrm{t}_{0}\right) \mathrm{a}^{-3}(\mathrm{t}) \quad \mathrm{Q} \propto 1 / \mathrm{V}
$$

- Pure radiation (black body) Stefan's law: $\quad \rho_{r}=g \frac{\pi^{2}}{30} \frac{\left(k_{B} T\right)^{4}}{(\hbar c)^{3}}$ Thermodynamics: $P_{r}=(1 / 3) \rho_{r}$

$$
\begin{aligned}
d_{t}\left[\rho a^{3}\right]=-(1 / 3) \rho d_{t}\left[a^{3}\right] \Rightarrow & 4 \rho a^{3} d(a)+a^{4} d(\rho)=0 \\
\rho_{r}(t)=\rho_{r}\left(t_{0}\right) a^{-4}(t) & a^{-3} \text { for volume } \\
T(t)=T\left(t_{0}\right) / a(t) & a^{-1} \text { since } E \propto \lambda^{-1}
\end{aligned}
$$

vacuum

- "Vacuum is not empty" virtual particle-antiparticle pairs
- Results in a vacuum energy density constant in space and time

$$
\begin{gathered}
d_{t}\left[\rho a^{3}\right]=-P d_{t}\left[a^{3}\right] \quad \Rightarrow \quad \rho d_{t}\left[a^{3}\right]=-P d_{t}\left[a^{3}\right] \\
P_{v}=-\rho_{v}=\operatorname{cst}<0
\end{gathered}
$$

- Vacuum pressure is negative!
- We will see that vacuum energy equivalent to cosmological constant or a form of dark energy

Analogy: Newtonian gravity \rightarrow GRs

General Relativity

- Source mass $M+$ test mass $m: F=G m M / r^{2}$
- Potential: $\Phi=-\mathrm{GM} / \mathrm{r}$ metric $g_{\mu \nu}$
- For a mass distribution $\rho: \quad \nabla^{2} \Phi=4 \pi G \rho$
- Equation of motion: $\vec{F}=-m \vec{\nabla} \Phi$
geodesic eq.

Friedman equation

- Einstein $\mathrm{Eq}=>\quad\left(\frac{\dot{R}}{R}\right)^{2}+\frac{k}{R^{2}}=\frac{8 \pi \rho}{3} \quad$ (Friedmann Eq.)
- Critical density today for which the Universe is flat $(\mathrm{k}=0)$

$$
\begin{aligned}
& \mathrm{t}=\mathrm{t}_{0}: \quad \frac{8 \pi \rho_{c}}{3}=\left(\frac{\dot{R}}{R}\right)_{0}^{2}=\left(\frac{\dot{a}}{a}\right)_{0}^{2}=H_{0}^{2} \\
& \rho_{c}=\frac{3 H_{0}^{2}}{8 \pi}=1.88 \times 10^{-29} h^{2} \mathrm{~g} / \mathrm{cm}^{3} \sim 5 \text { protons } / \mathrm{m}^{3} \\
& \text { note } h^{2} \text { factor }
\end{aligned}
$$

- We introduce

$$
\Omega_{m} \equiv \frac{\rho_{m}\left(t_{0}\right)}{\rho_{c}}, \quad \Omega_{r} \equiv \frac{\rho_{r}\left(t_{0}\right)}{\rho_{c}}, \quad \Omega_{v} \equiv \frac{\rho_{v}\left(t_{0}\right)}{\rho_{c}}
$$

$$
\Omega_{\mathrm{T}}=\Omega_{\mathrm{m}}+\Omega_{\mathrm{r}}+\Omega_{\mathrm{v}}=\rho_{0} / \rho_{\mathrm{c}}\left(\Omega_{\mathrm{x}}, \text { at } \mathrm{t}=\mathrm{t}_{0}, \text { should be } \Omega^{0}{ }_{\mathrm{x}}\right)_{21}
$$

Friedman equation

$$
\begin{aligned}
& \left(\frac{\dot{R}}{R}\right)^{2}+\frac{k}{R^{2}}=\frac{8 \pi \rho}{3} \xrightarrow{\frac{t=t_{0}}{R_{Q}^{2}}=\frac{8 \pi \rho_{0}}{3}-H_{0}^{2}=H_{0}^{2}\left(\Omega_{T}-1\right)} \\
& \left(\frac{\dot{a}}{a}\right)^{2}=\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi \rho}{3}-H_{0}^{2}\left(\Omega_{T}-1\right)\left(\frac{R_{0}}{R}\right)^{2}=H_{0}^{2}\left[\frac{\rho(a)}{\rho_{c}}+\left(1-\Omega_{T}\right) a^{-2}\right]
\end{aligned}
$$

$$
\text { - } \quad \rho(a)=\rho_{m}\left(t_{0}\right) a^{-3}+\rho_{r}\left(t_{0}\right) a^{-4}+\rho_{v}\left(t_{0}\right)
$$

$$
=\rho_{c}\left(\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}\right)
$$

$$
\left(\frac{\dot{a}}{a}\right)^{2}=H_{0}^{2}\left[\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}+\left(1-\Omega_{T}\right) a^{-2}\right]
$$

Simplification: for a flat Universe ($\mathrm{k}=\mathbf{0} \Rightarrow 1-\Omega_{\mathrm{T}}=\mathbf{0}$)

Age of the Universe

$$
\left(\frac{\dot{a}}{a}\right)^{2}=H_{0}^{2}\left[\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}+\left(1-\Omega_{T}\right) a^{-2}\right]
$$

- many quantities may be computed from this equation by expressing in terms of ' a ' and \dot{a} / a
- e.g. the age of the universe : $\quad d t=\frac{d t}{d a} d a=\frac{d a}{\dot{a}}=\frac{d a}{a(\dot{a} / a)}$

$$
t=H_{0}^{-1} \int_{0}^{1} \frac{d a}{a\left[\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}+\left(1-\Omega_{T}\right) a^{-2}\right]^{1 / 2}}
$$

- $\begin{aligned} H_{0}=70(\mathrm{~km} / \mathrm{s}) / M p c & =\frac{70 \mathrm{k}}{10^{6} \times 3.262 \times 1} \\ \mathrm{H}_{0}{ }^{-1} & =14.10^{9} \text { years }\end{aligned}$

Age of the Universe

- Note: - our Universe is flat ($\mathrm{k}=0 \Rightarrow \Omega_{\mathrm{T}}=1$)
- one may often neglect $\Omega_{\mathrm{r}}=910^{-5} \quad\left(\Omega_{\mathrm{m}}=0.3, \Omega_{\mathrm{v}}=0.7\right)$
- Simplification of the equation:

$$
t=H_{0}^{-1} \int_{0}^{a} \frac{d a}{a\left(\Omega_{r} a^{-4}+\Omega_{m} a^{-3}+\Omega_{v}\right)^{1 / 2}}
$$

- Universe with just matter $\Omega m \approx 1$

$$
t(a)=H_{0}^{-1} \int_{0}^{a} \frac{d a}{a^{-1 / 2}}=H_{0}^{-1} \int_{0}^{a} a^{1 / 2} d a=\frac{2}{3} H_{0}^{-1} a^{3 / 2}
$$

T $\sim 9.10^{9}$ years, incompatible with the age of the first galaxies

Epochs of the universe

$\rho(a)=\rho_{\text {crit }}\left(\Omega_{v}+\frac{\Omega_{m}}{a^{3}}+\frac{\Omega_{r}}{a^{4}}\right)$

- beginning
(' a^{\prime} very small) radiation dominates
- then mater dominates
- "recently" vacuum (or dark energy) dominates

Evolution of a(t) (flat universe)

$$
\mathrm{k}=0 \Rightarrow \quad \dot{a}^{2}-\frac{8 \pi \rho}{3} a^{2}=0 \quad \rho(a)=\rho_{\text {crit }}\left(\Omega_{v}+\frac{\Omega_{m}}{a^{3}}+\frac{\Omega_{r}}{a^{4}}\right)
$$

when

- radiation dominates

$$
a(t) \sim t^{1 / 2}
$$

- matter : $a(t) \sim t^{2 / 3}$
- vacuum:
$a(t) \sim \exp (H t)$
vacuum energy accelerates the expansion

Thermal history of the Universe

- at beginning: T and density are very large all particle species in equilibrium $\quad \nu+\bar{\nu} \leftrightarrow e^{+}+e^{-}$
v : neutrino
- when reaction rate $\Gamma(t)<\dot{a}(t) / a(t)=H(t)$ the reaction is no longer fast enough to maintain equilibrium / expansion: particle abundance is frozen e.g.: T $\sim 1 \mathrm{MeV}, \mathrm{t} \sim 1 \mathrm{~s}$, v^{\prime} s decouple
- when T decreases particles may get bound :
- T $\sim 0.1 \mathrm{MeV}, \mathrm{t} \sim 3 \mathrm{mn}: \quad \mathrm{p}+\mathrm{n} \rightarrow$ light nuclei
primordial nucleosynthesis
- T ~ $0.3 \mathrm{eV}, \mathrm{t} \sim 400000$ years: $\mathrm{e}+$ nuclei \rightarrow atoms

History of the Universe

