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• mi = mg: Uniform gravitational field ó Uniform acceleration
=> to understand gravitation study uniform acceleration

• Photon trajectory is bent in an accelerated frame
=> bent in a gravitational field

• In an accelerated rocket:
=> same in a gravitational field

A emits every 10 s -> B receives every 9.999… s
times run slower in a gravitational potential :

⟹ Gravitational Redshift observed with S2 star orbiting 
around the Black Hole, Sag .A* at the center of MW

Equivalence Principle



Curved spacetime - Light rays are bent 

- In 1919 : Arthur Eddington observes 
lightdeviation by the sun during a solar eclipse:

- 1.75 arc second = 8.5 μrad
as predicted by Einstein 
- Twice the deflection predicted by first 
computation (Eq. principle alone)

- GR : for a weak and static field, the metric is :

Star

Deflection

ds2 =

✓
1 +

2�(x)

c2

◆
c2dt2 �

✓
1� 2�(x)

c2

◆
(dx2 + dy2 + dz2)

Equivalence principle GR



Curved spacetime - Gravitational lensing 

• On July 11 2022 James Webb 
Space Telescope released this 
deep field

• Galaxies behind galaxy cluster 
SMACS 0723 (z=0.39, Rvir=2.4Mpc) 
are curved and warped

• Strong gravitational lensing:
modern proof of RG

JWST
2.25 arcmin, 0.7Mpc at z=0.39



6

1. Geometry of the Universe
• Cosmological principles
• FLWR metric

2. Expansion of the Universe
• Cosmological redshift
• Friedman equation

Cosmology - Part II



1) Geometry 
of the Universe
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• Cosmological principle 
- Universe isotropic + homogeneous on large scales 
- Universe looks the same whoever and wherever you are

• Isotropic (on large scales)
- CMB very isotropic
- X ray background, radio galaxies 

• Homogeneous
- Test with 3D galaxy surveys 
- Only at large scales…. >Mpc

Homogenous and isotropic
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Homogeneous and isotropic ⇒
Friedmann, Lemaitre, Robertson, Walker metric

• isotropic
• scale factor R(t) due to expansion
• dimensionless scale factor : a(t)=R(t) / R(t0)

now a(t0) = 1 index 0, means today
in the past a(t) < 1
Big Bang a(t) = 0

FLRW metric
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Friedmann, Lemaitre, Robertson, Walker metric

FLRW metric

k = 1 : spherical geometry
or closed     (∑𝛼 > 180o)

k = -1 : hyperbolic geometry
or open     (∑𝛼 < 180o)

k = 0 : flat geometry (∑𝛼 = 180o)

k=1
closed

k=-1
open

k=-1
flat
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• Universe is  expanding with H0 (~ 70 Mpc/(km/s))
• If we go back in time, 

Universe more and more dense and hot: big bang  

The Big Bang

• Analogy with an inflated balloon
• Name invented by Fred Hoyle
• Fate of the Universe strongly related to the metric, 

i.e. k values  (close, open or flat)
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• Change of coordinates r =sin χ (k=1, closed)
r = χ (k=0, flat)
r = sinh χ (k=-1, open)

sin ➝ spherical    sinh ➝ hyperbolical
• Distance:

- Galaxies remain at χ = cst (up to small local velocities)
- Physical distance between 2 galaxies : R(t) × Δχ (Mpc)

increases with the expansion
- “comoving” distance : R(t0) × Δχ is fixed  (comoving Mpc)

= distance including the expansion up to t=t0
= independent from Universe expansion

Comoving distance



2) Expansion of the Universe
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• Radial photon
ds2 = dt2 –R2(t) dχ2 = 0   ⇒ dχ =dt/R 

« λ is dilating with the Universe »     

1 + z =
1

a

te

te+δte

tr

tr+δtr

c

Cosmological redshift 

10.3 The expansion of the Universe

10.3.1 Cosmological redshifts

Because the FLRW geometry is time depen-
dent, the energy of a photon changes as it
travels in this geometry. This is the cosmo-
logical redshift. To quantify the e�ect, we
consider an observer in a galaxy located at
⇤, while we are at ⇤ = 0. The observer
emits a photon of wavelength ⇥e towards us
at time te and then at te + �te and we re-
ceive them at tr and tr+ �tr, as illustrated in
Fig. 30. These photons are radial photons so
ds2 = dt2 � R2(t)d⇤2 = 0 and d⇤ = dt/R(t).
We can compute ⇤ =

�
d⇤ along the world-

line of the two photons. Since ⇤ is a comov-
ing coordinate it does not vary with time and
we have:

⇤ =

⇥ tr

te

dt

R(t)
=

⇥ tr+�tr

te+�te

dt

R(t)

⇤
⇥ te+�te

te

dt

R(t)
=

⇥ tr+�tr

tr

dt

R(t)

⇤ �te
R(te)

=
�tr

R(tr)

So

1 + ze ⇥
⇥r

⇥e
=

�tr
�te

=
R(tr)

R(te)
⇥ 1

a(te)
.

te 

te+δte 

tr 

tr+δtr 

!"

Figure 30: two photons emitted at ⇤ and
received at ⇤ = 0, credit James B. Har-
tle.

The redshift is then related to the expansion parameter as

1 + z =
1

a
. (110)

It is sometimes said that the wavelength of the photons is dilating with the expansion of
the Universe, even though the meaning of this sentence is not so clear.

The cosmological redshift is a very important notion. The redshift can be a mea-
sure of time, as in “the recombination occurred at z = 1100”. This means at a time
when the scale factor was 1/a = 1 + 1100.

If the light of an object is redshifted by a factor 1 + z, this means that this object is
located at the distance light has travelled from z to today. Therefore the redshift of
an object is also a measure of its distance to us. We will say a quasar at z = 2.5
for instance. Surveying the position and the redshift of a given class of object provides a
survey in 3D.
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• Measuring z  → scale factor a when light emitted

• It is a cosmological redshift, 1+z = 1/a can be e.g. 
z=1000 (at CMB) cannot be interpreted as a simple 
Doppler effect 

• In case of Hubble law (v=H0d), it is locally interpreted 
as a Doppler effect

• z is also a measurement of time: e.g. CMB occurred at 
z = 1100 (i.e. when a=0.0009)

Redshift: A fundamental 
concept in cosmology
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• Assume te ~ t0 (locally)   ⇒ a ~ 1, small z

Hubble law with

• Hubble parameter    𝐻 𝑡 ≡ "̇($)
"($)

• H0 is not very precisely measured, we define

• cosmological results in units like h-1Mpc
numerical result independent of h

Hubble parameter

1 + z =
1

a
z =

v

c
=

1� a

a
=

ȧdt

a

10.3.2 Hubble constant

If, in the previous discussion, we set a ⇤ 1 we can write 1 � a = ȧ�t, where the upper
dot signals a derivative versus time. We have

z =
1� a

a
⌅ v

c
=

ȧ�t

a
⌅ v =

ȧ

a
(c�t) , (111)

where we recognize the Hubble law v = H0D, with the Hubble constant H0 = ȧ(t0)/a(t0).
We introduce the Hubble parameter

H(t) =
ȧ(t)

a(t)
with H0 = H(t0) . (112)

H0 is not very precisely measured and there is often some controversy on the measure-
ments. Since many results in cosmology depends on its precise value, we introduce

h ⇥ H0

100km/s/Mpc
⇤ 0.7 (113)

and give results in units like 100 h�1 Mpc.

10.3.3 Themodynamics

We consider a volume V with a fixed number of particles (i.e. a fixed number of galaxies).
The density of energy is ⇥ and E = ⇥V . When this volume expands, thermodynamics
implies dE = �pdV . Here V is the physical volume and V (t) = a3(t)Vcom where Vcom =
constant is the comoving volume. We then have

dt
�
⇥a3Vcom

⇥
= �p dt

�
a3Vcom

⇥
⌅ dt

�
⇥(t)a3(t)

⇥
= �p dt

�
a3(t)

⇥
, (114)

where dt denotes the derivative with time. This has di⇥erent consequences for the di⇥erent
components in the Universe.

• For matter, galaxies and intergalactic gas can be approximated as a pressureless
gas, so dt [⇥ma3] = 0 and

⇥m ⇧ a�3 . (matter) (115)

The density of matter is simply proportional to the inverse of the volume.

• For radiation, thermodynamics gives pr =
1
3⇥r with

⇥r = g
�2

30

(kBT )4

(~c)3 . (116)

So Eq. 114 implies dt [⇥ra3] = �1
3⇥r dt [a

3], i.e. d⇥r/⇥r = �4da/a and

⇥r ⇧ a�4 . (radiation) (117)
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If the light of an object is redshifted by a factor 1 + z, this means that this object is
located at the distance light has travelled from z to today. Therefore the redshift of
an object is also a measure of its distance to us. We will say a quasar at z = 2.5
for instance. Surveying the position and the redshift of a given class of objects provides
a 3D survey, i.e. a map of the Universe in 3D.

10.3.2 Hubble constant

If, in the previous discussion, we set a ⇡ 1 we can write 1 � a = ȧ�t, where the upper
dot signals a derivative versus time. We have

z =
1 � a

a
) v

c
=

ȧ�t

a
) v =

ȧ

a
(c�t) , (104)

where we recognize the Hubble law v = H0D, with the Hubble constant H0 = ȧ(t0)/a(t0).
We introduce the Hubble parameter

H(t) =
ȧ(t)

a(t)
so that H0 = H(t0) . (105)

H0 is not very precisely measured and there is often some controversy on the measure-
ments. Since many results in cosmology depends on its precise value, we introduce

h ⌘ H0

100 (km/s)/Mpc
⇡ 0.7 (106)

and give results in units like 100 h�1 Mpc for a distance.

10.3.3 Thermodynamics

We consider a volume V with a fixed number of particles (i.e. a fixed number of galaxies).
The density of energy is ⇢ and E = ⇢V . When this volume expands, thermodynamics
implies dE = �pdV . Here V is the physical volume and V (t) = a3

(t)Vcom where Vcom =

constant is the comoving volume. We then have

dt

⇥
⇢a3Vcom

⇤
= �p dt

⇥
a3Vcom

⇤
) dt

⇥
⇢(t)a3

(t)
⇤

= �p dt

⇥
a3

(t)
⇤

, (107)

where here we use dt to denote the derivative with time. This has different consequences
for the different components in the Universe.

• For matter, galaxies and intergalactic gas can be approximated as a pressureless
gas, so dt [⇢ma3

] = 0 and

⇢m / a�3 . (matter) (108)

The density of matter is simply proportional to the inverse of the volume.

54



17

• a volume V  including a fixed number of particles
(i.e. galaxies !)

d E = - P dV E = ρV

• the physical volume is  V = a3(t) Vcom (Vcom = comoving volume)

dt (ρ a3 Vcom ) = -P dt (a3 Vcom)     but Vcom = cst = V0

Thermodynamic

dt [ρ(t) a3(t)] = -P(t) dt [a3(t)] 
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• Matter: dt [ρ a3] = -P dt [a3] 
galaxies may be approximated as a pressure-less gas

dt [ρm a3] = 0

ρm (t) = ρm (t0) a-3(t) ϱ ∝ 1/V

• Pure radiation (black body) Stefan’s law:
Thermodynamics: Pr = (1/3) ρr

dt [ρ a3] = -(1/3) ρ dt [a3] ⇒ 4ρa3d(a) + a4d(ρ) = 0

ρr (t) = ρr (t0) a-4(t) a-3 for volume
a-1 since E ∝ 𝜆-1

T(t) = T(t0) / a(t)

matter, radiation

⇥r = g
�2

30

(kBT )4

(~c)3
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• “Vacuum is not empty”
virtual particle-antiparticle pairs

• Results in a vacuum energy density
constant in space and time

dt [ρ a3] = -P dt [a3]     ⇒ ρ dt [a3] = -P dt [a3] 

Pv = - ρv = cst < 0

• Vacuum pressure is negative !
• We will see that vacuum energy equivalent to 
cosmological constant or a form of dark energy

vacuum
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• Source mass M  +  test mass m: F = G m M /r2

• Potential: Φ =-GM/r

• For a mass distribution r:

• Equation of motion:   �⃗� = −𝑚𝛻Φ

Analogy: Newtonian gravity → GRs
General Relativity

metric gµn

Einstein eq.

geodesic eq.
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• Einstein Eq => (Friedmann Eq.)    

• Critical density today for which the Universe is flat (k=0)

t=t0:

~ 5 protons / m3

note h2 factor 
• We introduce

ΩT = Ωm + Ωr + Ωv = ρ0 / ρc ( Wx, at t=t0, should be W0
x)

Friedman equation

• For radiation, thermodynamics gives pr =
1
3⇤r with

⇤r = g
⇥2

30

(kBT )4

(~c)3 . (116)

So Eq. 114 implies dt [⇤ra3] = �1
3⇤r dt [a

3], i.e. d⇤r/⇤r = �4da/a and

⇤r ⌅ a�4 . (radiation) (117)

When the Universe expands, there is a factor a�3 for the density of photons and
an additional factor a�1 because the wavelength of the photons scales as a and
E ⌅ ��1. Combining Eqs. 116 and 117 gives:

T ⌅ 1/a . (118)

This is the reason why although the temperature of the Universe at decoupling
(z = 1100) was 3000 K, the temperature of the CMB today is 2.7 K.

• Quantum vacuum is not empty, antiparticle-particle pairs appear and disappear.
This gives a vacuum energy that depends only on the volume, so a vacuum energy
density ⇤v independent of time and space. Eq. 114 gives ⇤vdt[a3] = �pvdt[a3] and
then

pv = �⇤v = constant < 0 . (vacuum) (119)

The vacuum pressure is negative. We will see that the vacuum energy is equivalent
to a cosmological constant that can be added in the Einstein Equation and it is one
of the possible origins of dark energy (section 10.7).

10.3.4 Friedmann equation

In cosmology, the Einstein equation implies

⇤
Ṙ

R

⌅2

+
k

R2
=

8⇥⇤

3
, (120)

which is known as the Friedmann equation. There exists a critical density today, ⇤c,
for which the Universe is flat (k = 0):

8⇥⇤c
3

=

⇤
Ṙ

R

⌅2

0

=

�
ȧ

a

⇥2

0

= H2
0 ⇤ ⇤c =

3H2
0

8⇥
= 1.88⇥ 10�29h2 g/cm2 . (121)

Note the h2 factor in the value of ⇤c. If a new measurement updates the value of H0,
this automatically updates the value of ⇤c. This critical density corresponds to about 5
protons per cubic meter. If the density today is ⇤0 = ⇤c, the Universe is flat (k = 0), if
⇤0 < ⇤c, the Universe is open (k = �1), if ⇤0 > ⇤c, the Universe is closed (k = 1).
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We introduce the density parameters by normalizing to the critical density:

�m ⇤ ⇥m(t0)

⇥c
, �r ⇤

⇥r(t0)

⇥c
, �v ⇤

⇥v(t0)

⇥c
(122)

and �T = �m + �r + �v = ⇥0/⇥c, since ⇥0 = ⇥m(t0) + ⇥r(t0) + ⇥v(t0).
If we set t = t0 in Eq. 120 we get

k

R2
o

=
8�⇥0
3

�H2
0 = H2

0 (�T � 1) . (123)

Inserting the resulting value of k in Eq. 120 gives:

⇤
ȧ

a

⌅2

=
8�⇥

3
�H2

0 (�T � 1)

⇤
R0

R

⌅2

= H2
0

⇧
⇥(a)

⇥crit
+ (1� �T )a

�2

⌃
. (124)

We can decompose ⇥(a) = ⇥m(a) + ⇥r(a) + ⇥v(a) and introduce the a dependance of each
density:

⇥(a) = ⇥m(t0)a
�3 + ⇥r(t0)a

�4 + ⇥v(t0) = ⇥crit(�ma
�3 + �ra

�4 + �v) , (125)

which gives another form of the Friedmann equation:

⇤
ȧ

a

⌅2

= H2
0

�
�ma

�3 + �ra
�4 + �v + (1� �T )a

�2
⇥
. (126)

This formula is extremely useful. Many quantities can be computed by expressing them
in terms of a and ȧ/a and then using Eq. 126. For instance to compute the age of the

Universe we write dt =
dt

da
da =

da

ȧ
=

da

a(ȧ/a)
and

t = H�1
0

⌥ 1

0

da

a [�ma�3 + �ra�4 + �v + (1� �T )a�2]1/2
. (127)

If we consider our Universe, it is flat so the term 1��T disappears. In addition, in many
calculations the contribution from �r = 9⇥ 10�5 can be neglected.
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• The radiation that is important from a cosmological point of view is the relic CMB
photon radiation, the photons emitted by stars are negligible. The CMB has a black
body spectrum with a measured temperature of 2.75 K, which gives a density of

⇢r = g
⇡2

30

(kBT )
4

(~c)3
, (109)

i.e. 4⇥ 10
8 photons m�3 (the number of spin states is g = 2 for photons). For radi-

ation, thermodynamics gives pr =
1
3⇢r. So Eq. 107 implies dt [⇢ra3

] = �1
3⇢r dt [a3

],
i.e. d⇢r/⇢r = �4da/a and

⇢r / a�4 . (radiation) (110)

When the Universe expands, there is a factor a�3 for the density of photons and
an additional factor a�1 because the wavelength of the photons scales as a and
E / ��1. Combining Eqs. 109 and 110 gives:

T / 1/a . (111)

This is the reason why, although the temperature of the Universe at decoupling
(z = 1100) was 3000 K, the temperature of the CMB today is 2.7 K.

• Quantum vacuum is not empty, antiparticle-particle pairs appear and disappear.
This gives a vacuum energy that depends only on the volume, so a vacuum energy
density ⇢v independent of time and space. Eq. 107 gives ⇢vdt[a3

] = �pvdt[a3
] and

then
pv = �⇢v = constant < 0 . (vacuum) (112)

The vacuum pressure is negative. We will see that the vacuum energy is equivalent
to a cosmological constant that can be added in the Einstein Equation and it is one
of the possible origins of dark energy (section 10.7).

10.3.4 Friedmann equation

In cosmology, the Einstein equation implies
 

Ṙ

R

!2

+
k

R2
=

8⇡⇢

3
, (113)

which is known as the Friedmann equation. There exists a critical density today, ⇢c,
for which the Universe is flat (k = 0):

8⇡⇢c

3
=

 
Ṙ

R

!2

0

=

✓
ȧ

a

◆2

0

= H2
0 ) ⇢c =

3H2
0

8⇡
= 1.88 ⇥ 10

�29h2
g/cm3 . (114)

Note the h2 factor in the value of ⇢c. If a new measurement updates the value of H0,
this automatically updates the value of ⇢c. This critical density corresponds to about 5

55
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Friedman equation

•

•

We introduce the density parameters by normalizing to the critical density:

�m ⇤ ⇥m(t0)

⇥c
, �r ⇤

⇥r(t0)

⇥c
, �v ⇤

⇥v(t0)

⇥c
(122)

and �T = �m + �r + �v = ⇥0/⇥c, since ⇥0 = ⇥m(t0) + ⇥r(t0) + ⇥v(t0).
If we set t = t0 in Eq. 120 we get

k

R2
o

=
8�⇥0
3

�H2
0 = H2

0 (�T � 1) . (123)

Inserting the resulting value of k in Eq. 120 gives:

⇤
ȧ

a

⌅2

=
8�⇥

3
�H2

0 (�T � 1)

⇤
R0

R

⌅2

= H2
0

⇧
⇥(a)

⇥c
+ (1� �T )a

�2

⌃
. (124)

We can decompose ⇥(a) = ⇥m(a) + ⇥r(a) + ⇥v(a) and introduce the a dependance of each
density:

⇥(a) = ⇥m(t0)a
�3 + ⇥r(t0)a

�4 + ⇥v(t0) (125)

= ⇥c(�ma
�3 + �ra

�4 + �v) , (126)

which gives another form of the Friedmann equation:

⇤
ȧ

a
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= H2
0

�
�ma

�3 + �ra
�4 + �v + (1� �T )a

�2
⇥
. (127)

This formula is extremely useful. Many quantities can be computed by expressing them
in terms of a and ȧ/a and then using Eq. 126. For instance to compute the age of the

Universe we write dt =
dt

da
da =

da

ȧ
=

da

a(ȧ/a)
and

t = H�1
0

⌥ 1

0

da

a [�ma�3 + �ra�4 + �v + (1� �T )a�2]1/2
. (128)

If we consider our Universe, it is flat so the term 1��T disappears. In addition, in many
calculations the contribution from �r = 9⇥ 10�5 can be neglected.
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ρ0 = ρcΩT  

protons per cubic meter. If the density today is ⇢0 = ⇢c, the Universe is flat (k = 0), if
⇢0 < ⇢c, the Universe is open (k = �1), if ⇢0 > ⇢c, the Universe is closed (k = 1).

We introduce the density parameters by normalizing to the critical density:

⌦m ⌘ ⇢m(t0)

⇢c
, ⌦r ⌘

⇢r(t0)

⇢c
, ⌦v ⌘ ⇢v(t0)

⇢c
(115)

and ⌦T = ⌦m + ⌦r + ⌦v = ⇢0/⇢c, since ⇢0 = ⇢m(t0) + ⇢r(t0) + ⇢v(t0).
If we set t = t0 in Eq. 113 we get

k

R2
o

=
8⇡⇢0

3
� H2

0 = H2
0 (⌦T � 1) . (116)

Inserting the resulting value of k in Eq. 113 gives:

✓
ȧ

a

◆2

=

 
Ṙ

R

!2

=
8⇡⇢

3
� H2

0 (⌦T � 1)

✓
R0

R

◆2
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where we used 8⇡⇢/3 = H2
0⇢/⇢c (see Eq. 114). We can decompose ⇢(a) = ⇢m(a)+ ⇢r(a)+

⇢v(a) and introduce the a dependance of each density:

⇢(a) = ⇢m(t0)a
�3

+ ⇢r(t0)a
�4

+ ⇢v(t0) = ⇢c(⌦ma�3
+ ⌦ra

�4
+ ⌦v) , (118)

which gives another form of the Friedmann equation:
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This formula is extremely useful. Many quantities can be computed by expressing them
in terms of a and ȧ/a and then using Eq. 119. For instance to compute the age of the

Universe we write dt =
dt

da
da =

da

ȧ
=

da

a(ȧ/a)
and

t = H�1
0

Z 1

0

da

a [⌦ma�3 + ⌦ra�4 + ⌦v + (1 � ⌦T )a�2]
1/2

. (120)

If we consider our Universe, it is flat so the term 1�⌦T disappears. In addition, in many
calculations the contribution from ⌦r = 9 ⇥ 10

�5 can be neglected.
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Simplification: for a flat Universe ( k=0 ⇒ 1- ΩT =0) 
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• many quantities may be computed from this equation
by expressing in terms of  ‘𝑎’ and �̇�/𝑎

• e.g. the age of the universe :

•

Age of the Universe

dt =
dt

da
da =

da

ȧ
=

da

a(ȧ/a)

protons per cubic meter. If the density today is ⇢0 = ⇢c, the Universe is flat (k = 0), if
⇢0 < ⇢c, the Universe is open (k = �1), if ⇢0 > ⇢c, the Universe is closed (k = 1).

We introduce the density parameters by normalizing to the critical density:

⌦m ⌘ ⇢m(t0)

⇢c
, ⌦r ⌘

⇢r(t0)

⇢c
, ⌦v ⌘ ⇢v(t0)

⇢c
(115)

and ⌦T = ⌦m + ⌦r + ⌦v = ⇢0/⇢c, since ⇢0 = ⇢m(t0) + ⇢r(t0) + ⇢v(t0).
If we set t = t0 in Eq. 113 we get
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0 = H2
0 (⌦T � 1) . (116)

Inserting the resulting value of k in Eq. 113 gives:
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where we used 8⇡⇢/3 = H2
0⇢/⇢c (see Eq. 114). We can decompose ⇢(a) = ⇢m(a)+ ⇢r(a)+

⇢v(a) and introduce the a dependance of each density:

⇢(a) = ⇢m(t0)a
�3

+ ⇢r(t0)a
�4

+ ⇢v(t0) = ⇢c(⌦ma�3
+ ⌦ra

�4
+ ⌦v) , (118)

which gives another form of the Friedmann equation:
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This formula is extremely useful. Many quantities can be computed by expressing them
in terms of a and ȧ/a and then using Eq. 119. For instance to compute the age of the

Universe we write dt =
dt

da
da =

da

ȧ
=

da

a(ȧ/a)
and

t = H�1
0

Z 1

0

da

a [⌦ma�3 + ⌦ra�4 + ⌦v + (1 � ⌦T )a�2]
1/2

. (120)

If we consider our Universe, it is flat so the term 1�⌦T disappears. In addition, in many
calculations the contribution from ⌦r = 9 ⇥ 10

�5 can be neglected.
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H
2
(t) qui dans ce cas est constant (mais ce n’est pas H0 qui correspond à notre époque

où le vide ne domine pas encore complètement).

ȧ

a
= Hdt ! ln a = HT + c ! a / exp(Ht).

b) L’égalité radiation matière se produit quand ⌦ma
�3

= ⌦ra
�4
,

donc pour aeq =
⌦r

⌦m

=
0.85⇥ 10

�4

0.30
= 2.8⇥ 10

�4
. Le redshift est alors zeq ⇡ 3500.

c) Pour a < 2.8⇥ 10
�4
, le vide est complètement négligeable et

teq =
1

H0

Z
aeq

0

da

a(⌦ma
�3 + ⌦ra

�4)1/2
⇡ 1
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Z
aeq

0

dap
⌦ra

�1
=

1

H0

p
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a
2

2

�aeq

0

=
a
2
eq

2H0

p
⌦r

1 Mpc vaut 3.262 années-lumière, donc

H0 = 70(km/s)/Mpc =
70km/s

106 ⇥ 3.262⇥ 1an⇥ 300000km/s
et H

�1
0 = 1.40⇥ 10

10
ans. D’où

teq ⇡
(2.8⇥ 10

�4
)
2

2
p
0.85⇥ 10�4

⇥ 1.4⇥ 10
10

= 61 000 ans.

3 Age d’un univers critique ⌦m ⇡ 1 ou ⌦v ⇡ 1

a) On utilise dt =
da

a(ȧ/a)
et l’équation de Friedman,
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◆2

= H
2
0 (⌦v + ⌦ma

�3
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�4
+ (1� ⌦T )a

�2
), pour obtenir :

t = H
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.
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soit a(t) =
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3
2H0t

�2/3
. L’âge de l’Univers est t(a = 1), soit un âge de

2
3

1
H0

.

b) pour l’univers ⌦v = 1, cela donne t(a0, a1) = H
�1
0

Z
a1

a0

da

a
= H

�1
0 ln(a1/a0),

soit a(t) = a0 expH0t. L’âge de l’Univers est t(a0 = 0, a1 = 1) = 1.

c) ⌦r n’est pas du tout négligeable dans le second cas, car si on le prend en compte cela

empêche l’intégrale de diverger.

4 Age d’un univers presque critique

Avec ⌦m = ⌦T = 1 + ✏ l’équation de Friedman devient
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a(ȧ/a)
et t = H

�1
0

Z 1

0

da

a (a�3 + ✏(a�3 � a�2))
1/2

.

t = H
�1
0

Z 1

0

da

a�1/2 (1 + ✏(1� a))
1/2

⇡ H
�1
0

Z 1

0

a
1/2

⇣
1� ✏

2
(1� a)

⌘
da = H

�1
0

⇣
1� ✏

2

⌘
2

3
+

✏

2

2

5

�
.

t =
2
3H

�1
0 (1� ✏

5).

2

H0
-1=14.109 years
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• Note:  - our Universe is flat ( k=0 ⇒ ΩT =1)   
- one may often neglect Ωr = 9 10-5 (Ωm=0.3,  Ωv=0.7)

• Simplification of the equation:

• Universe with just matter

Age of the Universe

H
2
(t) qui dans ce cas est constant (mais ce n’est pas H0 qui correspond à notre époque

où le vide ne domine pas encore complètement).

ȧ

a
= Hdt ! ln a = HT + c ! a / exp(Ht).

b) L’égalité radiation matière se produit quand ⌦ma
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= ⌦ra
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,

donc pour aeq =
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=
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0.30
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. Le redshift est alors zeq ⇡ 3500.
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1 Mpc vaut 3.262 années-lumière, donc

H0 = 70(km/s)/Mpc =
70km/s

106 ⇥ 3.262⇥ 1an⇥ 300000km/s
et H
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0 = 1.40⇥ 10
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teq ⇡
(2.8⇥ 10
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)
2

2
p
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⇥ 1.4⇥ 10
10

= 61 000 ans.

3 Age d’un univers critique ⌦m ⇡ 1 ou ⌦v ⇡ 1

a) On utilise dt =
da

a(ȧ/a)
et l’équation de Friedman,
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2
0 (⌦v + ⌦ma
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), pour obtenir :
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b) pour l’univers ⌦v = 1, cela donne t(a0, a1) = H
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0
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da

a
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0 ln(a1/a0),

soit a(t) = a0 expH0t. L’âge de l’Univers est t(a0 = 0, a1 = 1) = 1.

c) ⌦r n’est pas du tout négligeable dans le second cas, car si on le prend en compte cela

empêche l’intégrale de diverger.

4 Age d’un univers presque critique

Avec ⌦m = ⌦T = 1 + ✏ l’équation de Friedman devient
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(t) qui dans ce cas est constant (mais ce n’est pas H0 qui correspond à notre époque

où le vide ne domine pas encore complètement).
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= Hdt ! ln a = HT + c ! a / exp(Ht).

b) L’égalité radiation matière se produit quand ⌦ma
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,
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=
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1 Mpc vaut 3.262 années-lumière, donc

H0 = 70(km/s)/Mpc =
70km/s

106 ⇥ 3.262⇥ 1an⇥ 300000km/s
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teq ⇡
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3 Age d’un univers critique ⌦m ⇡ 1 ou ⌦v ⇡ 1

a) On utilise dt =
da

a(ȧ/a)
et l’équation de Friedman,
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ȧ

a

◆2

= H
2
0 (⌦v + ⌦ma
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), pour obtenir :
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b) pour l’univers ⌦v = 1, cela donne t(a0, a1) = H
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da

a
= H

�1
0 ln(a1/a0),

soit a(t) = a0 expH0t. L’âge de l’Univers est t(a0 = 0, a1 = 1) = 1.

c) ⌦r n’est pas du tout négligeable dans le second cas, car si on le prend en compte cela

empêche l’intégrale de diverger.

4 Age d’un univers presque critique
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T  ~9.109 years, incompatible with the age of the first galaxies

Ωm ≈ 1 
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• beginning 
( ’𝑎’ very small) 

radiation dominates

• then mater dominates

• “recently” vacuum
(or dark energy)
dominates     

Epochs of the universe

�(a) = �crit

✓
�v +

�m

a3
+

�r

a4

◆ r(kg/m3)
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when    
• radiation dominates 

a(t) ~ t1/2

• matter : a(t) ~ t2/3

• vacuum: 
a(t) ~ exp(Ht)

vacuum energy
accelerates
the expansion      

Evolution of a(t)   
(flat universe)

ȧ2 � 8�⇥

3
a2 = 0 �(a) = �crit

✓
�v +

�m

a3
+

�r

a4

◆
k=0 ⇒
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• at beginning: T and density are very large
all particle species in equilibrium

𝜈 : neutrino
• when reaction rate
the reaction is no longer fast enough to maintain
equilibrium / expansion: particle abundance is frozen
e.g.: T ~ 1 MeV, t ~ 1s,  𝜈’s decouple

• when T decreases particles may get bound :
- T ~ 0.1 MeV, t ~ 3 mn :     p+n ➝ light nuclei

primordial nucleosynthesis
- T ~ 0.3 eV, t ~ 400 000 years: e + nuclei ➝ atoms    

Thermal history of the Universe

�(t) < ȧ(t)/a(t) = H(t)
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History of the Universe


