## Comprendre l'Infiniment Grand

# Introduction to Cosmology

Ch. Yèche, CEA-Saclay, IRFU/DPhP

July 12, 2022

### Cosmology - Part I

#### 1. Introduction

- Hubble law
- Content of the Universe

#### 2. Gravitation and General Relativity

- Equivalence principle
- Tests of GR
- Curved spacetime Metric

#### 1) Introduction

#### **Expanding Universe**

#### **History of the discovery**

1914, Slipher: farther the « nebula »
 (galaxy) is from us, the more it seems to be escaping away
 1927, Lemaître: solutions of Einstein General Relativity for a non static universe ⇒ velocity proportional to distance.



> 1929, Hubble: Relation distance – velocity thanks to cepheid in extragalactic "nebula"

 $\begin{array}{c} L_{obs} \propto L_0/R^2 \\ \text{Period of cepheid} \rightarrow L_0 \end{array}$ 

1 parsec= 3 light years

#### How do we measure velocity?



### **Expanding Universe**



#### Hubble's law V=H₀ D Measurement of the velocity of galaxies with their redshift (z) Doppler effect : v/c=(λ-λ₀)/λ₀=z

 $\succ$  Increasing z  $\Rightarrow$  Back in time

#### What value of H<sub>0</sub>?

Controversial and controverted measurement.

#### What about gravitation?

- It will slow the expansion of the universe for dark matter - Deceleration.
- It will accelerate the expansion of the universe for "repulsive" matter - Acceleration.



### **Discovery of Dark Matter**

#### Zwicky, 1933



#### "Invisible" matter

Galaxy cluster.
Peculiar velocity of galaxies too high.
Virial theorem.
Visible galaxies are about 1-10% of the total mass.



$$E_p + 2 E_c = 0$$
  
 $E_c = 1/2 \text{ M v}^2 \text{ and } E_p = -\frac{1}{2} \text{ GM}^2/\text{R}$   
**M = 2Rv<sup>2</sup>/G**

### 1970: how to weigh galaxies?



#### **Galactic rotation curves**

Final proof by measuring the velocity of stars within galaxies
 Work of Vera Rubin and Kent Ford in the 70'

**Newton Law** 

$$E_c + E_p = 0$$
$$V_{rot} = \sqrt{\frac{2GM}{R}}$$

# Constant rotation curve

#### Halo of Dark Matter

### Dark energy

#### **Discovery with supernovae**

> In 1998, Hubble diagram (magnitude  $\leftrightarrow$  z ) with standard candles (SN Ia)

L<sub>obs</sub>∝ L<sub>0</sub>/R<sup>2</sup> ➤ Acceleration of expanding Universe





 ~2/3 of Dark Energy repulsive for gravitation
 ~1/3 "classical"

matter

#### **Content of the Universe**



### Summary - Content of the Universe

- Radiation 5 10<sup>-5</sup>
  - Cosmic microwave background (CMB) + neutrinos
- Ordinary matter (baryonic)  $\sim 5\% \sim 1$  proton / 4 m<sup>3</sup>
  - galaxies (stars, interstellar gas, dust)
  - typical galaxy:  $10^{12} M_{\odot}$
  - $< \rho_{visible} > = 10^{-31} \text{ g} / \text{ cm}^3$  0.2%
  - intergalactic gas
- Dark matter ~26%, many evidences:
  - star rotation curves in galaxies
  - galaxy rotation curves in clusters
  - structure development, ...
- Dark energy ~69%
- Acceleration of the Universe expansion (SNIa)

### 2) Gravitation and General Relativity

### Gravitation and relativity

- 1905 : Special Relativity
- Incompatible with Newton F = -

$$= \frac{Gm_1m_2}{|r_1(t) - r_2(t)|^2}$$

C

- Instantaneous force,  $r_1(t)$  et  $r_2(t)$  at the same t
- Newton = approximation of a more fundamental theory  $F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}^2}$ Coulomb law approximation of Maxwell eq.
- 1915 : General relativity
- Not just a new theory of gravitation
- But a revolution in our conception of space and time
- Gravitation = curvature of spacetime  $\rightarrow$  Pure geometry

### **Equivalence** principle

a)  $m_i a = m_g g \Rightarrow$ the lead ball and the feather experience the same Acceleration  $\Rightarrow m_i = m_g$  and a=g

b) they have the same constant speed but appear with the same acceleration

uniform gravitational field
 uniform acceleration



James B. Hartle

study effect of acceleration  $\Rightarrow$  study gravitation

### **Equivalence principle**

**Equivalence Principle**: An experiment in a freely falling laboratory, small enough and over a sufficiently small duration, is indistinguishable from the same experiment in an inertial frame away from all sources of gravitation

#### Gravity can be removed by free fall or conversely created by an acceleration

### Light is falling !

• Equivalence principle applies for all physical laws including photon trajectory



•  $\Delta v = g \Delta t = g d/c \ll c \Rightarrow tiny effect on earth$   $\theta \sim \Delta v/c \sim gd / c^2 \qquad d=10m \Rightarrow \theta \sim 9.81 \times 10 / (3 \ 10^8)^2 = 10^{-15} !$  $\theta \sim 2GM /Rc^2 \sim 4 \mu rad around sun!$ 

### **Curved spacetime**

#### light rays are bent

• 1915 : Einstein, General Relativity mass curves spacetime and bends light



- 1919 : Arthur Eddington observes light deviation by the sun during a solar eclipse :
- 1.75 arc second = 8.5 μrad as predicted by Einstein
- Twice the deflection predicted by first computation (based on Eq. principle alone)



#### **Curved spacetime - Gravitational lensing**



- July 11 2022 (yesterday): James Webb Space Telescope released this deep field
- Galaxies behind galaxy cluster SMACS 0723 are curved and warped

#### • Strong gravitational lensing: modern proof of RG



### **Clocks and gravitation**

t = 0

- a rocket in deep space with acceleration +g
- A emits at t=0 and  $\Delta \tau_A$
- B receives at t=t<sub>1</sub> and t<sub>1</sub> +  $\Delta \tau_B$
- Propagation time :  $(t_1 0)$ acceleration  $\Rightarrow$  faster  $(t_1 + \Delta \tau_B) - \Delta \tau_A < t_1 - 0$  $\Rightarrow \Delta \tau_B < \Delta \tau_A$



• Calculation gives (totally classic):

$$\Delta t_B = \left(1 - \frac{gh}{c^2}\right) \Delta t_A$$

 $t = t_1$ 

 $t = \Delta \tau_A$ 

 $t = t_1 + \Delta \tau_B$ 

### **Clocks and gravitation**

Equivalence Principle (a) equivalent to (b)

$$\Delta t_B = \left(1 - \frac{gh}{c^2}\right) \Delta t_A$$

Times run slower in a gravitational field !

$$h=z_A-z_B \Rightarrow gh \sim \Phi_A - \Phi_B$$

$$\Delta t_B = \left(1 - \frac{\Phi_A - \Phi_B}{c^2}\right) \Delta t_A$$



Bob is younger than Alice....

#### Gravitational "redshift"

$$\Delta t_B = \left(1 - \frac{\Phi_A - \Phi_B}{c^2}\right) \Delta t_A$$

• at the surface of a star:  $\phi_A = -GM/R$ far away:  $\phi_B = 0$ 

$$\Delta t_{\infty} = \left(1 + \frac{GM}{Rc^2}\right) \Delta t_* \qquad \nu_{\infty} = \left(1 - \frac{GM}{Rc^2}\right) \nu_* < \nu_*$$

⇒ gravitational redshift the photon looses energy going out of the potential well Positive shift in wavelength  $\Delta\lambda/\lambda>0$ 

• very important for GPS :  $\Delta v/v \sim 4.10^{-10}$ after 1h :  $10^{-10} \times 3600$  s error  $\Rightarrow \sim 400$  m error

#### S2 star close to MW black Hole



- Close to source Sagittarius A\*, BH in the Milky way (~4.10<sup>6</sup> solar mass)
- S2 star very close to the BH on May 19 2018
- Verification of Einstein shift (plot below)
- Redshift (c. $\Delta\lambda/\lambda \rightarrow$  speed km/s), note sign!





#### **Interlude – Science in movies**



#### **Planet of the Apes**

- Twin paradox in Special Relativity (SR)
- Lorentz boost  $ct=\gamma(ct' + \beta x)$ 
  - $\gamma = 1/(1 \beta^2)^{1/2} > 1$
- Time dilatation  $T = \gamma T'$



#### Interstellar

- Strong gravitational field (GR)
- Proximity to a black hole (BH)
- $T = (1 + GM/(Rc^2)).T'$

### From 3D space to 4D spacetime

#### 1) In the usual 3D Euclidian

- Define a coordinate system
   x<sup>i</sup> = a labeling of space
   ex plan (x,y) or (r,φ)
- We can measure distances with a ruler:  $dS^2 = g_{ij}(x) dx^i dx^j$



- The metric  $g_{ij}(x)$  alone totally defines the geometry
- but  $dS^2 = dr^2 + r^2 d\Phi^2$  and  $dS^2 = dx^2 + dy^2$ : same geometry we mean  $(dx)^2$  and not  $d(x^2)$ ! length<sup>2</sup> not surface
- 2) We generalize to a non-Euclidian 4D spacetime

#### **Curved spacetime – Metric**

• We generalize the 3D metrics to 4D in special relativity

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2 = \eta_{\alpha\beta} dx^\alpha dx^\beta$$

- We generalize in GR with non constant terms  $g_{\mu\nu}$  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$
- The equivalence principle tells,  $\Delta \tau_B = \left(1 \frac{\Phi_A \Phi_B}{c^2}\right) \Delta \tau_A$
- GR : for a weak and static field, the metric is :

$$ds^{2} = \left(1 + \frac{2\Phi(x)}{c^{2}}\right)c^{2}dt^{2} - \left(1 - \frac{2\Phi(x)}{c^{2}}\right)(dx^{2} + dy^{2} + dz^{2})$$
equivalence principle
fixed object
$$\Delta\tau^{2} = \frac{ds^{2}}{c^{2}} = \left(1 + \frac{2\Phi}{c^{2}}\right)dt^{2} \Rightarrow \Delta\tau_{B} = \left(1 - \frac{\Phi_{A} - \Phi_{B}}{c^{2}}\right)\Delta\tau_{A}$$
25