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1. Introduction
• Hubble law
• Content of the Universe

2. Gravitation and General Relativity
• Equivalence principle
• Tests of GR
• Curved spacetime - Metric

Cosmology - Part I



1) Introduction



Expanding Universe

History of the discovery
Ø 1914, Slipher:  farther the « nebula »
(galaxy) is from us, the more it seems to be escaping away 
Ø 1927, Lemaître: solutions of Einstein General Relativity for a non 
static universe Þ velocity proportional to distance.

Lemaître Hubble

Ø 1929, Hubble: Relation 
distance – velocity thanks to 
cepheid in extragalactic “nebula ”

Lobs∝ L0/R2

Period of cepheid → L0
1 Mpc

500 km/s

1 parsec= 3 light years



How do we measure velocity? 

Redshift 
Doppler effect

V/c=(l-l0)/l0=z

Stars spectra 
absorption lines

nm

Ha

Hb

Hd
Balmer’s
Serie



Expanding Universe

Hubble’s law
V=H0 D

Ø Measurement of the velocity of 
galaxies with their redshift (z)
Doppler effect : v/c=(l-l0)/l0=z

Ø Increasing z  Þ Back in time

Deep field 
observed by HST

What value of H0?
Ø Controversial and controverted measurement.

What about gravitation?
Ø It will slow the expansion of the universe for 

dark matter - Deceleration. 
Ø It will accelerate the expansion of the universe 

for “repulsive” matter - Acceleration.
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Discovery of Dark Matter
Zwicky, 1933

Coma Cluster

Zwicky

“Invisible” matter
Ø Galaxy cluster.
Ø Peculiar velocity of 
galaxies too high. 
Ø Virial theorem.
Ø Visible galaxies are about  
1-10% of the total mass.

𝐸! + 2 𝐸" =0
𝐸" =1/2 M v2   and   Ep = -½ GM2/R

M = 2Rv2/G



1970: how to weigh galaxies?

Voie Lactée:
Mhalo~  10 x Mvisible

Constant rotation curve

Halo of 
Dark Matter

Newton Law 

Ec +Ep = 0

Vrot =
2GM
R

Galactic rotation curves
Ø Final proof by measuring the 
velocity of stars within galaxies
ØWork of Vera Rubin and Kent 
Ford in the 70’



0.0 1.0redshift z

Perlmutter, 
et al. (1998)

Discovery with supernovae
Ø In 1998, Hubble diagram  
(magnitude « z ) with standard candles 
(SN Ia)

Lobs∝ L0/R2

Ø Acceleration of expanding Universe 

Ø ~2/3 of Dark Energy 
repulsive for gravitation
Ø ~1/3 “classical” 
matter

M
ag

ni
tu

de
White dwarf - star

Dark energy



Content of the Universe
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Dark matter
26%

Ordinary
matter

5%Dark energy
69%
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• Radiation 5 10-5

Cosmic microwave background (CMB) + neutrinos
• Ordinary matter (baryonic)  ~5%  ~ 1 proton / 4 m3

- galaxies (stars, interstellar gas, dust)
- typical galaxy: 1012 M¤

- <ρvisible> = 10-31 g / cm3 0.2%
- intergalactic gas

• Dark matter ~26%, many evidences:
- star rotation curves in galaxies  
- galaxy rotation curves in clusters
- structure development, …

• Dark energy ~69%  
- Acceleration of the Universe expansion (SNIa)

Summary - Content of the Universe



2) Gravitation and General 
Relativity



Gravitation and relativity

13

• 1905 : Special Relativity
- Incompatible with Newton

- Instantaneous force, r1(t) et r2(t) at the same t
- Newton = approximation of a more fundamental theory

Coulomb law approximation of Maxwell eq. 

• 1915 : General relativity
- Not just a new theory of gravitation 
- But a revolution in our conception of space and time
- Gravitation = curvature of spacetime → Pure geometry



in a freely falling elevator, or in the space shuttle in rotation around the earth (as in free
fall), we do not feel the e�ect of gravitation, we are weightless. This lead Einstein to the

Equivalence principle: An experiment in a freely falling laboratory, small
enough and over a su⇥ciently small duration, is indistinguishable from the same
experiment in an inertial frame away from all sources of gravitation.

Figure 2: credit: James B. Hartle

In the first panel the rocket
is fixed on the earth. The lead
ball and the feather experience
the same acceleration, g.

In the second panel the rocket
is away from all sources of gravi-
tation, but it has an acceleration
g. The lead ball and the feather
have a constant speed but for the
observer inside the rocket they ap-
pear with an acceleration g. The
observers inside the rocket cannot
distinguish the two cases.

A uniform gravitational field
is equivalent to a uniform accel-
eration. If we want to study the
e�ect of gravitation on a given
setup we can study the same setup
in an accelerated frame. We are
going to apply this principle to discover several e�ects of gravitation.

A uniform gravitational field is equivalent to a uniform acceleration. If we want
to study the e�ect of gravitation on a given setup we can study the same setup in an
accelerated frame. We are going to apply this principle to discover several e�ects of
gravitation.

4.2 Light trajectory

The equivalence principle is valid for all laws of physics, including the trajectory of pho-
tons. It implies that light is falling in a gravitational field !

To study the trajectory of light in a gravitational field we consider what happens in an
accelerated frame. The first three panels in the figure below show a light beam crossing a
rocket with an acceleration g, entering through a porthole and exiting though another one.
In an inertial rest frame, the photon trajectory is a straight line, but in the accelerated
frame of the rocket it is a parabola. The equivalence principle tells us that the trajectory
is also a parabola in the last panel, which corresponds to the same rocket in the gravita-
tional field of the earth. Light is indeed falling in a gravitational field. If the width of the
rocket is d, the photon spends a time d/c inside the rocket. For observers inside the rocket
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Equivalence principle

a) mia = mg g ⇒
the lead ball and the feather 
experience the same 
Acceleration
⇒ mi= mg and a=g

b) they have the same
constant speed but appear
with the same acceleration

• uniform gravitational field
= uniform acceleration

study effect of acceleration ⇒ study gravitation

a) b)

James B. Hartle
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Equivalence principle
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Equivalence Principle: An experiment in a freely falling 
laboratory, small enough and over a sufficiently small duration,
is indistinguishable from the same experiment in an
inertial frame away from all sources of gravitation 

Gravity can be removed by free fall 
or conversely created by an acceleration



Light is falling !
• Equivalence principle applies for all physical laws

including photon trajectory 

• Δv = g Δt = g d/c ≪ c  ⇒ tiny effect on earth
q ~ Δv/c~ gd / c2 d=10m   ⇒ q ~ 9.81x10 / (3 108)2 = 10-15 !
q ~ 2GM /Rc2 ~ 4 μrad around sun!

16

Equivalence principle



Curved spacetime 

light rays are bent

• 1915 : Einstein, General Relativity
mass curves spacetime 
and bends light

• 1919 : Arthur Eddington observes light deviation
by the sun during a solar eclipse :

- 1.75 arc second = 8.5 μrad
as predicted by Einstein 
- Twice the deflection predicted by first 
computation (based on Eq. principle alone)

Star
Deflection



Curved spacetime - Gravitational lensing 

• July 11 2022 (yesterday): 
James Webb Space Telescope 
released this deep field

• Galaxies behind galaxy cluster 
SMACS 0723 are curved and 
warped

• Strong gravitational lensing:
modern proof of RG

JWST
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Clocks and gravitation

• a rocket in deep space
with acceleration +g

- A emits at t=0 and ΔτA
- B receives at t=t1

and t1 + ΔτB

• Propagation time : (t1 – 0) 
acceleration  ⇒ faster

(t1+ΔτB) – ΔτA < t1 – 0 
⇒ ΔτB  < ΔτA

• Calculation gives (totally classic):

In order to quantify the e⇤ect

credit: James B. Hartle

4.3.1 Gravitational redshift

We consider light emitted at the surface of a star of mass M and radius R, where the
gravitational potential is ⇥ = �GM/R. The light is detected by an observer far away
from the star, where ⇥ = 0. The observed period of the light at infinity is therefore larger
than the emitted �⇥�

�⇥⇥ =

�
1 +

GM

Rc2

⇥
�⇥� and �⇥ =

�
1� GM

Rc2

⇥
�� < �� (15)

The frequency decreases, the light is shifted to the red. This gravitational redshift can be
understood as the loss of energy of the photon going out of the gravitational well.

15
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Clocks and gravitation
4.3 Clocks in a gravitational field

On the first panel we have a rocket
at rest on the ground. Observer A
(Alice), at the top of the rocket,
has an accurate clock. At ev-
ery tick of the clock, separated
by ��A, she emits a light signal
towards observer B (Bob), a dis-
tance h below, at the bottom of
the rocket. Bob owns an identi-
cal clock and records the interval
��B between the time he receives
successive signals.

On the second panel, the
rocket is away from all gravita-
tional fields with an acceleration
+g (3). Due to the speed of the
rocket, the first light signal needs
less time than h/c to go from A to B. Since the rocket is accelerating, the speed of the
rocket is larger for the second signal, which needs even less time to go from A to B. Each
signal takes less time than the previous one, therefore ��B < ��A.

In order to quantify the e⇥ect

3but with a speed much smaller than c, so that we can neglect Special Relativity corrections and use
the same time in all frames.

15

Times run slower in a
gravitational field !

b)a)Equivalence Principle
(a) equivalent to (b)

Equivalence principle

Alice

Bob

Bob is younger than Alice….

h=zA-zB⇒ gh~ FA - FB
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Gravitational “redshift”

• at the surface of a star: ϕA = –GM/R
far away: ϕB = 0

𝜈# = 1 − $%
&"!

𝜈∗ < 𝜈∗

⇒ gravitational redshift
the photon looses energy going out of the potential well 
Positive shift in wavelength Dl/l>0 

• very important for GPS : Δν/ν ~ 4.10-10 

after 1h :  10-10 x 3600 s  error  ⇒ ~400 m error
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S2 star close to MW black Hole 
• Close to source Sagittarius A*, BH in the 
Milky way (~4.106 solar mass)
• S2 star very close to the BH on May 19 
2018
• Verification of Einstein shift (plot below)
• Redshift (c.Dl/l  → speed km/s), note sign!

Sag. A* 

A&A proofs: manuscript no. GravitationalRedshift_arXiv_20180717
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Fig. 3. Residual velocity c�z=c(zGR�zK) for the best fitting prior Keple-
rian Kprior ( f =0, grey) and the same orbit with f =1 (red GRprior). Kprior
was constructed from all 1992-2018 astrometric data with NACO &
GRAVITY and the SINFONI data between 2004 and 2016 (open black
circles). The 2017/2018 SINFONI data points (black circles with cyan
shading) can then be added to test if the spectroscopic data around peri-
centre follow Kprior or the GRprior predicted from Kprior. The new data
points near and up to pericentre, where the �2 e↵ects in radial velocity
are expected to be important, fall close to the predicted GRprior curve,
and exclude the Keplerian prior orbit.

Newtonian/Kepler part zK and a GR correction, one can write
ztot=zK+ f (zGR�zK), where f is zero for purely Newtonian
physics and unity for GR. In the following we show the resid-
uals �z=zGR�zK. The Keplerian part of the orbit is at �z=0, and
the PPN(1)z corrections appear as an excess.

3.2. Analysis with prior Kepler orbit

We define a prior orbit Kprior by excluding those data for which
the PPN(1)z corrections matter. For Kprior we use the entire 1992-
2018 SHARP/NACO and GRAVITY data and the SINFONI data
from 2004 up to the end of 2016. We then obtained Kprior as
described in Gillessen et al. (2017), which requires a simulta-
neous fit of 13 parameters. The Rømer delay is included in the
calculation. The resulting orbit is a modest update of Gillessen
et al. (2017). Using this as the prior orbit, we then added the
radial velocities from 2017 and 2018 (Fig. 3). The 26 residual
2017/2018 spectroscopic data relative to Kprior clearly do not fol-
low the best-fitting Keplerian orbit derived from all previous 51
spectroscopic and 196 positions in the past 26 years (grey line in
Fig. 3), but instead follow the f = 1 (i.e. GR(Kprior)) version of
Kprior (red line in Fig. 3). This test is fair: GR-corrections should
only be detectable with our measurement errors within ±1 year
of pericentre.

This a priori test demonstrates that the spectroscopic data
around the pericenter passage are inconsistent with Newtonian
dynamics and consistent with GR. However, both Kprior (�2

r =21)
and GR(Kprior) (�2

r =8 ) are poor fits to the data.

3.3. Posterior Analysis

Because of the uncertainties in the parameters of Kprior, in partic-
ular, in the strongly correlated mass and distance, a more conser-
vative approach is to determine the best-fit value of the parame-
ter f a posteriori, including all data and fitting for the optimum
values of all parameters. In carrying out the fitting, it is essential
to realise that the inferred measurement uncertainties are domi-
nated by systematic e↵ects, especially when evidence from three
or more very di↵erent measurement techniques is combined (see
Appendix A.6 for a more detailed discussion). In particular the
NACO measurements are subject to correlated systematic er-
rors, for example from unrecognised confusion events (Plewa &
Sari 2018), which typically last for one year and are compara-
ble in size to the statistical errors. We therefore down-sampled
the NACO data into 100 bins with equal path lengths along the
projected orbit (Fig. 4, middle) and gave these data in addition
a lower weight of 0.5. Depending on exactly which weighting
or averaging scheme was chosen, the posterior analysis includ-
ing all data between 1992 and 2018 yielded f values between
0.85 and 1.09. With a weighting of 0.5 of the NACO data, we
find f = 0.90 ± 0.09 (Fig. 4). GR ( f = 1) is favoured over pure
Newtonian physics ( f =0) at the ⇡10� level.

The error on f is derived from the posterior probability
distributions (Fig. 4, bottom) of a Markov chain Monte Carlo
(MCMC) analysis. Fig. A.1 shows the full set of correlation plots
and probability distributions for the fit parameters. The distribu-
tions are compact and all parameters are well determined. The
best-fit values and uncertainties are given Table A.1.

The superb GRAVITY astrometry demonstrably improves
the quality of the fits and is crucial for overcoming the source
confusion between Sgr A* and S2 near pericentre. A minimal
detection of PPN(1)z (Eq. (1)) is provided by a combination us-
ing only NACO and SINFONI data ( fNACO+SINFONI=0.71± 0.19,
3.6�), but the inclusion of the GRAVITY data very significantly
improves the precision and significance of the fitted parameters:
the improvement reaches a factor of 2 to 3.

A still more demanding test is to search for any Keplerian
fit to all data and determine whether its goodness of fit is signifi-
cantly poorer than the goodness of fit of the best-fitting GR-orbit.
For linear models the formula presented in Andrae et al. (2010)
can be used to estimate the significance. However, the value for
the degrees of freedom (d.o. f .) is not well defined for non-linear
models (Andrae et al. 2010). In our case, we have two models
that only di↵er significantly over a very critical short time-span
given the uncertainties in the underlying data. We therefore used
the number of those data points as d.o. f . for which the two mod-
els predict significant di↵erences. The di↵erence in �2 yields a
formal significance of 5� or greater in favour of the relativistic
model.

For further comments on a Bayesian analysis of our data, see
Appendix A.9.

4. Discussion

We have reported the first direct detection of the PPN(1) gravi-
tational redshift parameter around the MBH in the Galactic cen-
tre from a data set that extends up to and includes the pericen-
tre approach in May 2018. Three di↵erent analysis methods of
our data suggest that this detection favours the post-Newtonian
model with robust significance. Further improvement of our re-
sults is expected as our monitoring continues post pericentre.
Still, there are reasons to be cautious about the significance of
these early results, mainly because of the systematic e↵ects and

Article number, page 4 of 10

- Red curve 
with GR 
corrections
- Grey curve 
with Keplerian 
orbit
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Interlude – Science in movies 

Planet of the Apes
- Twin paradox in 

Special Relativity (SR) 
- Lorentz boost 

ct=g(ct’ + bx)
g = 1/(1 – b2)1/2>1

- Time dilatation T=gT’

Interstellar
- Strong gravitational 

field (GR) 
- Proximity to a black 

hole (BH)        
- T=(1+GM/(Rc2)).T’



From 3D space to 4D spacetime

• Define a coordinate system 
xi = a labeling of space
ex plan (x,y) or (r,ϕ) 

• We can measure distances 
with a ruler: dS2 = gij(x) dxi dxj

• The metric gij(x) alone totally defines the geometry

• but dS2 = dr2 + r2dϕ2 and dS2 = dx2 + dy2 : same geometry
we mean (dx)2 and not d(x2) !   length2 not surface

1) In the usual 3D Euclidian

2) We generalize to a non-Euclidian 4D spacetime
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• We generalize the 3D metrics to 4D in special relativity

• We generalize in GR with non constant terms gµn
ds2 = gµndxµdxn

• The equivalence principle tells,

• GR : for a weak and static field, the metric is :  

Curved spacetime – Metric 

ds2 =

✓
1 +

2�(x)

c2

◆
c2dt2 �

✓
1� 2�(x)

c2

◆
(dx2 + dy2 + dz2)

��B =

✓
1� ⇥A � ⇥B

c2

◆
��A

equivalence principle GR

fixed object  ⇒) ��2A =

✓
1 +

2⇥A

c2

◆
dt2 ) ��B =

✓
1� ⇥A � ⇥B

c2

◆
��A

�⇧⇥, is therefore larger than the emitted period, �⇧�:

�⇧⇥ =

�
1 +

GM

Rc2

⇥
�⇧� and ⇤⇥ =

�
1� GM

Rc2

⇥
⇤� < ⇤� . (17)

The frequency decreases, the light is shifted to the red. This gravitational redshift can
be understood as the loss of energy of the photon going out of the gravitational
well.

4.4 curved spacetime

an apocryphal fairy tale
Once upon a time people thought
that the earth was flat and they
were using latitude ⇥ and longi-
tude ⌃ to label places on the earth.
They believed in an interval dS2 =
a2(d⇥2 + d⌃2).
However, a scientist came and mea-
sured the distance corresponding to
a given �⌃ for ⇥1 and ⇥2 > ⇥1. He
found L1 > L2.
But the fairy came and claimed that
the earth was indeed flat but rulers
were biassed by latitude.

!" (!1) 

!# (!2) 

It is, of course, more reasonable and simple to trust the rulers and admit that the
earth is spherical with dS2 = a2(d⇥2 + cos2 ⇥d⌃2) or dS2 = a2(d⇥2 + sin2 �d⌃2), where
� = ⌅/2 + ⇥.

***

Now, the equivalence principle tells us that �⇧B =

�
1� ⇥A � ⇥B

c2

⇥
�⇧A. We may

conclude that clocks run slower in a gravitational field, any kind of clock, mechanic,
atomic, .... But it is more reasonable to admit that spacetime is curved.

For a weak and static field, GR tells us that the curved geometry of spacetime is given
by the spacetime interval

ds2 =

�
1 +

2⇥(x)

c2

⇥
c2dt2 �

�
1� 2⇥(x)

c2

⇥
(dx2 + dy2 + dz2) . (18)

For a fixed object (dx = dy = dz) the proper time squared is �⇧ 2 =
ds2

c2
=

�
1 +

2⇥

c2

⇥
dt2.

Applying this to two objects located in A and B we get back the result of the equivalence
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In the electromagnetic case the ratio q/mi of the charge to the inertial mass is not a
constant. Is the equality observed for the gravitational case just a coincidence ? Physicists
do not like coincidences and they believe there must be a deeper explanation for them.
GR provides a wonderful explanation in this case. There is no more gravitational force,
all bodies follow geodesics, i.e. the straightest possible lines, in a curved spacetime.

2.2 Special Relativity

This section is not a Special Relativity course, it only gives some reminders.

• The 3D Euclidian space is described using latin indices, running from 1 to 3, and
vectors have an arrow on top of them:

~x = {xi} = (x1, x2, x3
) = (x, y, z) . (6)

• The Minkowski space of Special Relativity has a metric ⌘µ⌫ = diag (1,�1,�1,�1).
It is described using four-vectors with greek indices, running from 0 to 3, and 4-
vectors are printed in bold:

x = {xµ} = (x0, x1, x2, x3
) = (ct, x, y, z) = {x0, ~x} = {x0, xi} . (7)

On a blackboard we will use x with a tilde below in place of x.

• The scalar product is x.y = x0y0 � ~x~y = ⌘µ⌫xµy⌫ (with a summation over repeated
indices, see section 2.2.2). An orthonormal basis is {eµ} with eµ.e⌫ = ⌘µ⌫ .

• The spacetime interval (or invariant interval) is
ds2

= c2dt2 � dx2 � dy2 � dz2
= ⌘↵�dx↵dx�. When the spacetime interval between

two events is �s2 > 0, they are said to be timelike separated ; when �s2 < 0,
they are said to be spacelike separated ; when �s2

= 0, they are null separated.
We will use dS2 to denote the invariant distance between two points in the 2D
or 3D Euclidian space, to distinguish it from the invariant spacetime interval ds2,
i.e. ds2

= c2dt2 � dS2.

• The four-velocity is the derivative of the position versus the proper time, u↵
=

dx↵/d⌧ . The four-momentum is p↵
= mu↵, with p↵p↵

= m2c2 so u↵u↵
= c2.

2.2.1 Covariant and contravariant

See addendum 11.4 on tensors for more details.

• In a Lorentz transformation the basis vectors change as e0
µ = ⇤

⌫
µe⌫ . All quantities

that change like vector basis are said to be covariant.

• The coordinates of a vector change as x0µ
= (⇤

�1
)
µ
⌫ x⌫ . They are said to be con-

travariant.

• Covariant coordinates are defined as xµ = ⌘µ⌫x⌫ .
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