

# Perspectives for $b \rightarrow s\ell^+\ell^$ studies at the Future Circular Colliders project (FCC-ee)

S. Monteil, Clermont University

The scientific materials are taken from the CDR references available here: https://fcc-cdr.web.cern.ch/



## Outline of the talk

- Few words to introduce the Future Circular Colliders project
- Operation at the *Z* pole and statistics
- Studies so far in the design study
- Other opportunities he Flavour Physics in the FCC landscape.



• Starting from the former European HEP strategy 2013



• At the time the LHC Run II will have delivered its results, have an educated vision of the reach of future machines for the next round of the European Strategy in 2019.

## 1. Introduction to FCC: the scope of the project



Forming an international coll. (hosted by Cern) to study:

- 100 TeV pp-collider (FCC-hh) as long term goal, defining infrastructure requirements.
- *e*+*e* collider (FCC-*ee*) as potential first step.
- *p-e* (FCC-*he*) as an option.
- 80-100 km infrastructure in Geneva area.



 Conceptual design report and cost review for the next european strategy → 2019.

#### 1. Introduction to FCC: the scope of the project



#### The Design Study is completed and fulfilled the mandate



S. Monteil

#### 1. Introduction to FCC: timelines of implementation



 Eighteen years towards Physics. No overlap in Physics between the end of HL-LHC and FCC-ee



#### 1. Introduction to FCC: timelines of implementation



• Eighteen years towards Physics. No overlap in Physics between the end of HL-LHC and FCC-*ee.* The big picture.



• Is it crazy to plan a Physics program for seventy years?



- Is it reasonable to plan a Physics program for seventy years? It was.
- The previous HEP European planning was only for ... 60 years !

PHYSICS WITH VERY HIGH ENERGY e<sup>+</sup>e<sup>-</sup> COLLIDING BEAMS

CERN 76-18 8 November 1976

L. Camilleri, D. Cundy, P. Darriulat, J. Ellis, J. Field,
H. Fischer, E. Gabathuler, M.K. Gaillard, H. Hoffmann,
K. Johnsen, E. Keil, F. Palmonari, G. Preparata, B. Richter,
C. Rubbia, J. Steinberger, B. Wiik, W. Willis and K. Winter

#### ABSTRACT

This report consists of a collection of documents produced by a Study Group on Large Electron-Positron Storage Rings (LEP). The reactions of

#### 1. The FCC *e+e-* machine. Baseline design



- Physics from the Z pole to top pair production (90 400 GeV), crossing WW and ZH thresholds with unprecedented statistics everywhere.
- Two rings (top-up injection) to cope with high current and large number of bunches at operating points up to *ZH*.
- Description of the machine parameters(relagated in back-up) next slide.
- To some extent, SuperKEKB is already meet some of the challenges
   of FCC-ee:









- The FCC-ee offers the largest luminosities in its whole energy range.
- We're speaking here of 10<sup>5</sup> Z/s , 10<sup>4</sup> W/h, 1.5 10<sup>3</sup> H and top /d, in a very clean environment: no pile-up, controlled beam backgrounds, *E* and *p* constraints, without trigger.



• The time / energy allocation of the machine has been worked out ...

| Working point  | Lumi. / IP $[10^{34} \text{ cm}^{-2}.\text{s}^{-1}]$ | Total lumi. (2 IPs)        | Run time | Physics goal          |
|----------------|------------------------------------------------------|----------------------------|----------|-----------------------|
| Z first phase  | 100                                                  | $26 \text{ ab}^{-1}$ /year | 2        |                       |
| Z second phase | 200                                                  | $52 \text{ ab}^{-1}$ /year | 2        | $150 \text{ ab}^{-1}$ |

- ... we're speaking here of <u>5.10<sup>12</sup> Z</u>, 10<sup>8</sup> WW, 10<sup>6</sup> H and 10<sup>6</sup> top pairs.
- Relevant production yields for Flavour Physics (2 IPs 4 are considered):

| Particle production $(10^9)$ | $B^0$ | $B^-$ | $B_s^0$ | $\Lambda_b$ | $c\overline{c}$ | $\tau^{-}\tau^{+}$ |
|------------------------------|-------|-------|---------|-------------|-----------------|--------------------|
| Belle II                     | 27.5  | 27.5  | n/a     | n/a         | 65              | 45                 |
| FCC-ee                       | 400   | 400   | 100     | 100         | 800             | 220                |

 Direct comparison with LHCb yields requires a mode by mode approach to take into account trigger and reconstruction efficiencies.

#### 2. The $e^+e^-$ experiments.







- Two designs have been studied so far.
- Robust towards performance, intricate MDI, beam backgrounds.
- The key point for all the Physics program is the lightness ...
- Personal note: FCC project aims at providing four detector proposals by 2026. Among those proposals, there is room for a dedicated design for Flavours, in particular for hadron identification.



- Now part of the program in its own right.
- The Design Study considered a limited number of subjects in which FCCee has unique distinctive features, with the idea *In for a pound, in for a penny* (*qui peut le plus peut le moins*). Comprise taus, LFV *Z* decays, Heavy Neutral leptons, and of course b-hadron decays.
- Among the distinctive experimental features, one finds:
  - The boost experienced at the Z pole in conjunction with excellent vertexing (average -hadron energy is 35 GeV).
  - The precise reconstruction of EM objects (nothing in front of the calo!)
  - The other hemisphere (useful for EWPT as well)
  - The knowledge of the missing energy (particle flow).
  - Triggerless: absolute branching fractions
- I'm flashing the main results of the experimental prospectives.

#### 3. The vertexing capabilities for $b \rightarrow s\tau^+\tau^-$



- The expected vertexing performance at FCC-*ee* (detector at 2 cm from the interaction point) allows to reconstruct precisely the missing momentum in decays inferred from the decay flight distances.
- Example:  $X \rightarrow Y(Y \rightarrow [a]b) Z$  with a not reconstructed.



- Three momentum components to be searched for:
  - The measurement of X momentum direction fixes 2 d.o.f.
  - An additional constraint closes the system:  $m_Y$  or a tertiary vertex.
  - Usually, quadratic form of the constraints: solution up to an ambiguity.

m<sub>B<sup>0</sup></sub>, GeV/*c*<sup>2</sup>



- The FCC-*ee* statistics and the capacity to tully reconstruct the decay even in the absence of the neutrinos allows to address FCNC transitions with tau in the final state. The reconstruction of the mode  $B^0 \rightarrow K^{*0} \tau^+ \tau^-$  as a benchmark has received a special attention in the FCC-*ee* context.
- Should the LFU anomalies be confirmed, these modes are invaluable model killers.
- A lot is still to be done to address the rare decays Physics case in a more comprehensive way but this indicates the potential.
- Note that the expected number of decay mode  $B^0 \rightarrow K^{*0}e^+e^-$

| Decay mode   | $B^0 \to K^*(892)e^+e^-$ | $B^0 \to K^*(892)\tau^+\tau^-$ | $\mathrm{B}_{s}(\mathrm{B}^{0}) \rightarrow \! \mu^{+} \mu^{-}$ |
|--------------|--------------------------|--------------------------------|-----------------------------------------------------------------|
| Belle II     | $\sim 2\ 000$            | $\sim 10$                      | n/a (5)                                                         |
| LHCb Run I   | 150                      | -                              | $\sim$ 15 (–)                                                   |
| LHCb Upgrade | $\sim 5000$              | -                              | $\sim 500~(50)$                                                 |
| FCC-ee       | $\sim 200000$            | $\sim 1000$                    | ~1000 (100)                                                     |

3. Search for  $B^0 \rightarrow$ 



- Makes use of partial reconstruction technique to solve the kinematics of the decay. Sensitivity relies on vertexing performance
- Conditions: baseline luminosity, SM calculations of signal and background BF, vertexing and tracking performance as ILD detector. Momentum → 10 MeV, Primary vertex → 3 um, SV → 7 um, TV → 5 um
- Backgrounds: (pink DsK\*taunu and DsDsK\*) [signal in red+green].



 At baseline luminosity, under SM hypothesis, more than 10<sup>3</sup> events of reconstructed signal. Angular analysis possible. Tau polarisation can be used. O(5%) on BF.





| Performance / Conditions                                     | ILD-like | ILD /2 | ILD / 4 |
|--------------------------------------------------------------|----------|--------|---------|
| Efficiency of the identification of the correct solution (%) | 42,3     | 52,6   | 62      |
| Invariant mass resolution (core) $[MeV/c^2]$                 | 42(1)    | 36(1)  | 27(1)   |

#### 4. Next opportunities



- The next phase of the Study must go through full simulations of actual detector proposals.
- This will allow to have realistic inputs (in particular from calorimetric objects) to evaluate the sensitivity on a series of outstanding observable measurements:
  - Semileptonic b-hadron decays
  - The electroweak penguins  $X_b \rightarrow X_V V$
  - The leptonic decay  $B_c \rightarrow \tau^+ v_{\tau}$
  - The dileptonic  $B^0$ ,  $B_s \rightarrow \tau^+ \tau^-$
  - Not forgetting the dileptonic  $B^0$ ,  $B_s \rightarrow \mu^+ \mu^-$
  - CKM profile(s)
  - Tau Physics at large.
  - etc...
- The standard Heavy Flavour program: lifetimes, branching fractions, spectroscopy, exotic states etc...



- $B^0 \rightarrow K^{*0} \tau^+ \tau^-$  has been chosen as a benchmark. The secondary vertex reconstruction makes the partial reconstruction
- O(5%) BF measurements [at SM value !] can be attained on the decay mode B<sup>0</sup> → K<sup>\*0</sup> τ<sup>+</sup>τ<sup>-</sup>. Tau polarisation features allows new angular observables to be devised (e.g L. Vale et al. arXiv:1705.1110)
- Everything to do on dileptonic B<sup>0</sup>, B<sub>s</sub>→τ<sup>+</sup>τ<sup>-</sup>. Here, the absence of the SV complicates the study. There are perspectives though !
- Escaping the  $b \rightarrow s\ell^+\ell^-$ , much more to do on the leptonic decay, in particular  $B_c \rightarrow \tau^+ v_{\tau}$



- CDR(s):
  - https://fcc-cdr.web.cern.ch
- FAQs about FCC:
  - <u>https://arxiv.org/pdf/1906.02693.pdf</u>
- Join the Study (a model):
  - <u>https://www.cern.ch/fcc-ee</u> (then join us item and provide your preferences)
  - A successful approach in Flavours has been to gather small groups of experimentalists and theoreticians targeting at a paper. The unique opportunities offered by FCC-*ee* can trigger new ideas / new areas of thinking.
- Software is up ! Hands-on tutorials available here:
  - https://indico.cern.ch/event/839794/
- Should you have a project / interest to implement: <u>monteil@in2p3.fr</u>.