$b \rightarrow s \tau^{+} \tau^{-}$ and LFV B and τ decays Perspectives at Belle II

Karim Trabelsi

karim.trabelsi@lal.in2p3.fr

Outline

- Belle II and phase 3
- Anomalies in $B \rightarrow D^{(*)} \tau \nu$ and $b \rightarrow sl^+ l^-$
- $\mathbf{b} \rightarrow \mathbf{sl}^+ \mathbf{l}^-$, $\mathbf{l} = \mathbf{e}$, μ , τ
- $\circ~$ LFV B and $\tau~$ decays

2019/11/04

Belle II, a flavour-factory, <u>a rich physics program...</u>

• We plan to collect (at least) 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:

- a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

- a (Super) charm factory (~ $1.3 imes 10^9 \, \mathrm{c} \, \overline{\mathrm{c}}$ pairs per ab $^{-1}$)
- a (Super) τ factory (~0.9 × 10⁹ $\tau^+ \tau^-$ pairs per ab⁻¹)
- with Initial State Radiation, effectively scan the range [0.5 10] GeV and measure the $e^+e^- \rightarrow$ light hadrons cross section very precisely
- exploit the clean e^+e^- environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...

SuperKEKB, the first new collider in particle physics since the LHC in 2008 (electron-positron (e^+e^-) rather than proton-proton (p-p)

factor 2-3

Background, Optics commissioning Feb - June 2016 Brand new 3km positron ring

Phase 2: Pilot run Superconducting Final Focus add positron damping ring First Collisions (0.5 fb^{-1}) April 27-July 17, 2018

Phase 3: Physics run March 27 - June 30, 2019

KEKB

E (GeV)

LER/HER

3.5/8.0

4.0/7.0

factor 20

1µm

5mm

KEKB

SuperKEKB

Belle II detector

phase 2 → phase 3

 $m_{b\,c}$ [GeV/c²]

5

Detector performance with data...

Spring 2019, first phase 3 physics run

First results of phase 3... shown at LP2019, Beauty 2019

In the context of B anomalies...

Found by several experiments (LHCb, BaBar and Belle)

Two observables: R(D) and R(D*)

Charged current

Tree-level in the SM

The New Physics must be light

10

Found by LHCb

Many observables: global pattern

Neutral current

1-loop (and CKM-suppressed) in the SM

The New Physics can be heavy

Event reconstruction in B \rightarrow D^{(*)} \tau v at B factories

Summary for $B \rightarrow D^{(*)} \tau \nu$

$$\mathbf{R}(\mathbf{D}^{(*)}) = \frac{\mathbf{BF}(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \mathbf{v}_{\tau})}{\mathbf{BF}(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{l} \mathbf{v}_{l})}$$

BaBar
$R(D) = 0.440 \pm 0.058 \pm 0.042$
$R(D^*) = 0.332 \pm 0.024 \pm 0.018$
Belle
$R(D) = 0.375 \pm 0.064 \pm 0.026$
$R(D^*) = 0.293 \pm 0.038 \pm 0.015$
$R(D^*) = 0.270 \pm 0.035 {}^{+0.028}_{-0.025}$
$R(D) = 0.307 \pm 0.037 \pm 0.016$
$R(D^*) = 0.283 \pm 0.018 \pm 0.014$
LHCb
$R(D^*) = 0.336 \pm 0.027 \pm 0.030$
$R(D^*) = 0.280 \pm 0.018 \pm 0.029$
<u>average</u>
$R(D) = 0.340 \pm 0.027 \pm 0.013$
$R(D^*) = 0.295 \pm 0.011 \pm 0.008$
difference with SM predictions
is at 3 σ level

Projections for Belle II R(D^(*))

Systematic uncertainty dominated by D^{**} and missed soft pions:

- $\circ~$ Studies of $D^{**} l\,\nu$ and $D^{**} \tau\,\nu$ planned
- Branching ratios and decay modes from data

Test of lepton universality using $B^+ \rightarrow K^{(*)}l^+l^-$ decays

14

Model candidates

Model with extended gauge symmetry

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- ✓ Yukawa interaction with LQs provide flavor violation

Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow s e \mu$, $b \rightarrow s e \tau$,...

[Belle II, arXiv:1808.10567]

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$	-
$R_K \ ([1.0, 6.0] \text{GeV}^2)$	28%	11%	3.6%	
$R_K \ (> 14.4 {\rm GeV^2})$	30%	12%	3.6%	$> 5\sigma$ confirmation
$R_{K^{\star}}$ ([1.0, 6.0] GeV ²)	26%	10%	3.2%	possible with Belle II 20 ab ⁺
$R_{K^{\star}} (> 14.4 \text{GeV}^2)$	24%	9.2%	2.8%	
R_{X_s} ([1.0, 6.0] GeV ²)	32%	12%	4.0%	
$R_{X_s} \ (> 14.4 {\rm GeV^2})$	28%	11%	3.4%	

[D.Du et al, arXiv:1510.02349] [D.Straub, Flavio]

 q^2 range for predictions for $B \rightarrow H\tau^+\tau^-$: from $4 m_{\tau}^2 (\sim 12.6 \text{ GeV}^2)$ to $(m_B - m_H)^2$ to avoid contributions from resonant decay through $\psi(2S)$, $B \rightarrow H\psi(2S)$, $\psi(2S) \rightarrow \tau^+ \tau^$ predictions restricted to $q^2 > 15 \text{ GeV}^2$:

$$B(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-})_{SM} = (1.22 \pm 0.10) \ 10^{-7}$$

$$B(B^{0} \rightarrow K^{0} \tau^{+} \tau^{-})_{SM} = (1.13 \pm 0.09) \ 10^{-7}$$

$$B(B^{+} \rightarrow K^{*+} \tau^{+} \tau^{-})_{SM} = (0.99 \pm 0.12) \ 10^{-7}$$

$$B(B^{0} \rightarrow K^{*0} \tau^{+} \tau^{-})_{SM} = (0.91 \pm 0.11) \ 10^{-7}$$

$$B(B \rightarrow K^{+} \tau^{+} \tau^{-})_{SM} = (1.20 \pm 0.12) \ 10^{-7}$$

$$B(B \rightarrow K^{+} \tau^{+} \tau^{-})_{SM} = (0.98 \pm 0.10) \ 10^{-7}$$
atly enhanced in NP models... 10

gre

tween the two leptons, and the momentum of the lepton with charge opposite to the K, all in the $\tau^+\tau^$ rest frame, which is calculated as $p_{\text{B}_{\text{sig}}} - p_K$; the angle between the B_{sig} and the oppositely charged lepton, the angle between the K and the low-momentum lepton, and the invariant mass of the $K^+\ell^-$ pair, all in the CM frame. Furthermore, the final input variables to the neural network are E^*_{extra} and the residual energy, E_{res} , which here is effectively the missing energy associated with the $\tau^+\tau^-$ pair and is calculated as the energy component of $p^{\tau}_{\text{residual}} = p^{\tau}_{B_{\text{sig}}} - p^{\tau}_{K} - p^{\tau}_{\ell^+\ell^-}$, where $p^{\tau}_{B_{\text{sig}}}$, p^{τ}_{K} and $p^{\tau}_{\ell^+\ell^-}$ are the four-momenta vectors in the $\tau^+\tau^$ rest frame of the B_{sig} , K, and lepton pair in the event,

	e^+e^-	$\mu^+\mu^-$	$e^+ \mu^-$
$N^i_{\rm bkg}$	$49.4{\pm}2.4{\pm}2.9$	$45.8 \pm 2.4 \pm 3.2$	$59.2 \pm 2.8 \pm 3.5$
$\epsilon_{\rm sig}^i(\times 10^{-5})$	$1.1 \pm 0.2 \pm 0.1$	$1.3 \pm 0.2 \pm 0.1$	$2.1 \pm 0.2 \pm 0.2$
$N_{\rm obs}^{i}$	45	39	92
Significance (σ)	-0.6	-0.9	3.7

BaBar's result with had tag: $B(B^+ \rightarrow K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ at 90%CL

[Belle II, arXiv:1808.10567]

LFV b→sll'decays

Glashow, Guadagnoli and Lane, 1411.0565, LUV \Rightarrow LFV, such as B+Kµe, Kµ τ could also be generated ...

LFV B→K^{*}ll' decays

[Belle, arXiv:1807.03267]

Mode	ε	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}^{\mathrm{UL}}$
Mode	(%)			(10^{-7})
$B^0\!\rightarrow\! K^{*0}\mu^+e^-$	8.8	$-1.5^{+4.7}_{-4.1}$	5.2	1.2
$B^0\!\rightarrow\!K^{*0}\mu^-e^+$	9.3	$0.40\substack{+4.8 \\ -4.5}$	7.4	1.6
$B^0\!\rightarrow\! K^{*0}\mu^\pm e^\mp$ (combined)	9.0	$-1.18\substack{+6.8\\-6.2}$	8.0	1.8

 $B(B^{0} \rightarrow K^{*0} \mu^{+} e^{-}) < 1.2 \times 10^{-7} \text{ at } 90\% CL$

Belle II can get 90 % UL at 10^{-8} level with 50 ab^{-1}

• large $\tau \rightarrow \mu$ LFV effects

specific to PS³

- hierarchical symmetry breaking pattern relates flavour-dependent LQ couplings to Yukawa hierarchies
- LQ coupling also to right-handed fermions

21

LFV $B \rightarrow K \tau l$ decays

[BaBar, arXiv:1204.2852] strategy used: B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_1 \nu_{\tau}$, $(n \pi^0) \pi \nu$, with $n \ge 0$ using momenta of K, l and B, can fully determine the τ four-momentum

$$\begin{split} B(B^{+} \rightarrow K^{+} \tau^{-} \mu^{+}) < 4.5 \times 10^{-5} \text{ at } 90 \% \text{CL}, \ B(B^{+} \rightarrow K^{+} \tau^{+} \mu^{-}) < 2.8 \times 10^{-5} \text{ at } 90 \% \text{CL} \\ (\text{also results for } B \rightarrow K^{+} \tau^{\pm} e^{\mp}, B \rightarrow \pi^{+} \tau^{\pm} \mu^{\mp}, B \rightarrow \pi^{+} \tau^{\pm} e^{\mp} \text{ modes}) \end{split}$$

[Belle II, arXiv:1808.10567]

Observables	Belle $0.71 \text{ ab}^{-1} (0.12 \text{ ab}^{-1})$	Belle II $5 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab^{-1}}$
$\text{Br}(B^+ \rightarrow K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	_	_	< 2.1
${\rm Br}(B^+\to K^+\tau^\pm\mu^\mp)\cdot 10^6$	_	_	< 3.3
$Br(B^0 \rightarrow \tau^{\pm} e^{\mp}) \cdot 10^5$	_	_	< 1.6
$Br(B^0 \rightarrow \tau^{\pm} \mu^{\mp}) \cdot 10^5$	_	_	< 1.3

⇒ can we do better ? combining hadronic tag with an inclusive tag... ⇒ can do $K^* \tau e$, $K^* \tau \mu$ with similar sensitivity...

<u>cLFV: beyond the Standard Model</u>

Conclusion

• Few tantalizing results on rare decays in B sector covered in this talk... but much more in B decays: LFV searches, $B \rightarrow K^{(*)} \nu \overline{\nu}$, $B \rightarrow \tau \nu$, $\mu \nu$...

also in charm, charmonium, bottomonium, light Higgs, $\tau,$ DS, kaon sectors...

- Not only complementary, but stimulating competition between (super) B-factories and LHCb (upgrade)...
 - ... especially for the modes with $\boldsymbol{\tau}$

 $B \rightarrow K^{(*)} \tau \tau$, LFV $B \rightarrow K^{(*)}(\mu, e) \tau$, LFV τ decays

Rediscovering beauty: $B \rightarrow D^{(*)}h...$

Results for 2.6 fb^{-1} Candidates in signal box $(M_{bc} > 5.27 \text{ GeV/c}^2,$ $M_{bc} = \sqrt{(E_{CM}/2)^2 - p_{recon}^2}$ $\Delta E = E_{\rm CM} / 2 - E_{\rm recon}$ $|\Delta E| < 0.050 \text{ GeV}$ 500 Candidates per 6 MeV Candidates per 1.5 MeV/c^ź $600^{-} B^{\dagger} \rightarrow D(K\pi, K\pi\pi^{0}, K3\pi)\pi^{\dagger}$ $\mathbf{B}^{\mp} \rightarrow \mathbf{D}(\mathbf{K}\pi, \mathbf{K}\pi\pi^{0}, \mathbf{K}3\pi)\pi^{\mp}$ Belle II Belle II $\mathbf{B}^{\mathrm{T}} \rightarrow \mathbf{D}(\mathbf{K}\pi, \mathbf{K}\pi\pi^{0}, \mathbf{K}3\pi)\rho^{\mathrm{T}}$ $\mathbf{B}^{\mp} \rightarrow \mathbf{D}(\mathbf{K}\pi, \mathbf{K}\pi\pi^{0}, \mathbf{K}3\pi)\rho^{\mp}$ 2019 (preliminary) 2019 (preliminary) $\mathbf{B}^{\dagger} \rightarrow \mathbf{D}^{0}(\mathbf{D}^{0}(\mathbf{K}\pi, \mathbf{K}\pi\pi^{0}, \mathbf{K}3\pi)\pi^{0})\pi^{\dagger}$ **500** $B^{\dagger} \rightarrow D^{0}(D^{0}(K\pi, K\pi\pi^{0}, K3\pi)\pi^{0})\pi^{\dagger}$ 400 L dt = 2.62 fb⁻¹ L dt = 2.62 fb⁻¹ $B^0 \rightarrow D^{\mp}(D^0(K\pi, K\pi\pi^0, K3\pi)\pi^{\mp})\pi^{\pm})$ $B^0 \rightarrow D^{\overline{+}}(D^0(K\pi, K\pi\pi^0, K3\pi)\pi^{\overline{+}})\pi^{\pm})$ $\mathbf{B}^{0} \rightarrow \mathbf{D}^{\overline{+}}(\mathbf{K}\pi\pi)\pi^{\pm}$ $\mathbf{B}^0 \rightarrow \mathbf{D}^{\mp} (\mathbf{K} \pi \pi) \pi^{\pm}$ 400 300 $\mathbf{B}^0 \rightarrow \mathbf{D}^{\mp} (\mathbf{K} \pi \pi) \rho^{\pm}$ $\mathbf{B}^0 \rightarrow \mathbf{D}^{\dagger}(\mathbf{K}\pi\pi)\mathbf{0}^{\pm}$ $\mathbf{B}^{0} \rightarrow \mathbf{D}^{\mp} (\mathbf{K}_{o}^{0} \pi) \pi^{\pm}$ $\rightarrow \mathbf{D}^{\mp}(\mathbf{K}_{a}^{0}\pi)\pi^{\pm}$ 300 200 200 100 100 8.2 -0.2 -0.15 -0.1 -0.05 5.21 5.26 5.28 5 29 5.22 5.23 5.24 5.25 5.27 0 0.05 01 0 15 02 M_{hc} (GeV/c²) ∆E (GeV)

2200 fully reconstructed hadronic B decays

Show capacity for charm physics in $e^+e^- \rightarrow c \overline{c}$

- \circ D⁰, D⁺, D^{*}
- Cabibbo favoured and suppressed modes

... for **B**-physics

- hadronic modes from $b \rightarrow c$, including modes with neutrals and K_s^0
- ∘ semileptonic decay modes from $b \rightarrow c$

Belle results for both ee and $\mu\mu$

Inclusive di-lepton, $B \rightarrow X_s l^+ l^-$ (at Belle II)

Observables	Belle $0.71 \mathrm{ab^{-1}}$	Belle II $5 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab^{-1}}$		1808.10567]
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%	1	
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%	ж	Belle II Prospects
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV^2})$	23%	10%	4.7%	~	
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV^2})$	26%	9.7 %	3.1 %		
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] {\rm GeV^2})$	21%	7.9 %	2.6~%		
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	21%	8.1 %	2.6 %		
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV^2})$	26%	9.7%	3.1%	10-1	
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9%	2.6%		
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV^2})$	19%	7.3%	2.4%		
$\Delta_{\rm CP}(A_{\rm FB}) \; ([1.0, 3.5] {\rm GeV^2})$	52%	19%	6.1%	Belle I	· · · · · · · · · · · · · · · · · · ·
$\Delta_{\rm CP}(A_{\rm FB})~([3.5, 6.0]{\rm GeV^2})$	42%	16%	5.2%	Belle I	l low q2 l high g2
$\Delta_{\rm CP}(A_{\rm FB}) \ (> 14.4 \ {\rm GeV}^2)$	38%	15%	4.8%		

year

what about inclusive b → sll?

for $E_{\gamma}^* > 1.7 \text{ GeV}$, $B(B \rightarrow X_s \gamma) = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$

predicted BF for $1 < q^2 < 6 \text{ GeV}^2$, $B(B \rightarrow X_s ll) = (1.62 \pm 0.09) \times 10^{-6}$ and lot of leptons in B decays...

difficult to achieve using inclusive method (à la b→sγ)
some on-going efforts using full had. tag, but ε < 1%...
sum-of-exclusive method instead...

[BaBar, arXiv:1312.5364]

inclusive as sum-of-exclusive

[Belle, arXiv: 1402.7134]

10 modes, $M(X_s) < 2.0 \text{ GeV}$ 50% of total inclusive rate (goal here was A_{FB} , flavor of B needed)

\bar{B}^0 decays	B^- decays
(K_S^0)	K^{-}
$K^-\pi^+ \qquad (K^0_S\pi^0)$	$K^-\pi^0$ $K^0_S\pi^-$
$K^{-}\pi^{+}\pi^{0}$ $(K^{0}_{S}\pi^{-}\pi^{+})$	$K^{-}\pi^{+}\pi^{-}$ $K^{0}_{S}\pi^{-}\pi^{0}$
$K^{-}\pi^{+}\pi^{-}\pi^{+}$ $(K^{0}_{S}\pi^{-}\pi^{+}\pi^{0})$	$K^{-}\pi^{+}\pi^{-}\pi^{0}$ $K^{0}_{S}\pi^{-}\pi^{+}\pi^{-}$
$\frac{(K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{0})(K^{0}_{S}\pi^{-}\pi^{+}\pi^{-}\pi^{+})}{(K^{0}_{S}\pi^{-}\pi^{+}\pi^{-}\pi^{+})}$	$(K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-})(K^{0}_{S}\pi^{-}\pi^{+}\pi^{-}\pi^{0})$

5.28

5.28

5.26

5.30

5.30

	1st q^2 bin	2nd q^2 bin	3 rd q^2 bin	$4 \text{th} q^2 \text{ bin}$	
q^2 range $[{\rm GeV}^2/c^2]$	[0.2, 4.3]	$ [4.3,7.3]_{X_se^+e^-} [4.3,8.1]_{X_s\mu^+\mu^-} $	$[10.5,11.8]_{X_s e^+e^-}$ $[10.2,12.5]_{X_s \mu^+\mu^-}$	[14.3, 25.0]	[1.0, 6.0]
$\mathcal{A}_{\mathrm{FB}}$	$0.34 \pm 0.24 \pm 0.03$	$0.04 \pm 0.31 \pm 0.05$	$0.28 \pm 0.21 \pm 0.02$	$0.28 \pm 0.15 \pm 0.02$	$0.30 \pm 0.24 \pm 0.04$
\mathcal{A}_{FB} (theory)	-0.11 ± 0.03	0.13 ± 0.03	0.32 ± 0.04	0.40 ± 0.04	-0.07 ± 0.04
$N_{ m sig}^{ee}$	45.6 ± 10.9	30.0 ± 9.2	25.0 ± 7.0	39.2 ± 9.6	50.3 ± 11.4
$N_{ m sig}^{\mu\mu}$	43.4 ± 9.2	23.9 ± 10.4	30.7 ± 9.9	62.8 ± 10.4	35.3 ± 9.2

B→**D**^(*)τν [BaBar, PRL 109, 101802 (2012)]

- $\circ~$ 2 D unbinned fit to m^2_{miss} and p^*_l
- fitted samples
 - 4 $D^{(*)}l$ samples $(D^0l, D^{*0}l, D^+l$ and $D^{*+}l)$
 - 4 $D^{(*)}\pi^0 l$ control samples $(D^{**}(l/\tau)\nu)$

 $\Rightarrow \mathbf{D}\tau \mathbf{v} \text{ and } \mathbf{D}^*\tau \mathbf{v} \text{ clearly observed}$

B→**D**^(*)τν [BaBar, PRL 109, 101802 (2012)]

$\underbrace{\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \nu \text{ at Belle}}_{\text{(with hadronic tagging)}} \quad [\text{Belle, arXiv:1507.03233}]$

projections for large M^2_{miss} region , $N(D\,\tau\,\nu){\sim}\,300$, $N(D^*\tau\,\nu){\sim}\,500$

Hadronic full reconstruction at Belle II

Particle	# channels (Belle)	# channels (Belle II)
D*/D**/D _s *	18	26
D ⁰ /D* ⁰	12	17
B+	17	29
B ⁰	14	26

 More modes used for tag-side hadronic B than Belle, multiple classifiers

Algorithm	MVA	Efficiency	Purity
Belle v1 (2004)	Cut based (Vcb)		
Belle v3 (2007)	Cut based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Fast BDT	1 0.5	0.25

 Good performances on Belle II predicted beam background conditions:

<u>Other observables</u> from $B \rightarrow D^{(*)} \tau \nu$

Additional observables as $P_{\tau}(D^*)(F_{\tau}(D^*))$ and q^2 distribution can help discriminate between New Physics models

Projections for $P_{\tau}(D^*)$ at Belle II [Belle, arXiv:1612.00529] Stat. $P_{\tau}(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16}$ $P_{\tau}(D^*)$ uncertainty at 5 ab⁻¹ 0.18at 50 ab⁻¹ 0.06 q^2 spectrum $B \rightarrow D^* \tau v$ Belle II Projection Belle Combination 50ab⁻¹ projection SM prediction: PRD85 094025 (2012), PRD87 034028 (2013) 0.5 Scalar PRD87 034028 (2013) Vector Events 1200 Tensor 0 1000

0.35

0.4

 $36 \text{ }^{\text{R(D*)}}$

 $P_{T}(D^{*})$

-0.5

0.2

0.25

0.3

Sys.

uncertainty

0.08

0.04

$B \rightarrow D^{(*)} \tau \nu$ and other observables

$B \rightarrow \tau \nu$ status and projections

p-value

<u>what about inclusive $b \rightarrow s\gamma$?</u>

WA: $B(B \rightarrow X_s \gamma) = (3.49 \pm 0.20) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$) vs SM: $B(B \rightarrow X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$) [Misiak et al, arXiv:1503.01789]

[model – dependent]

Charged Higss bound (2HDM TypeII): $M_{H^+} > 400 \text{ GeV} @ 95\% \text{ C.L.}$

- Measurement of $B\to K(^*)\,\nu\overline{\nu}$ would allow high accuracy extraction of $B\to K(^*)$ form factors
- SM estimate of branching fraction known to ~10% uncertainty
- New Physics:
 - Contribution from NP may be similar in size to SM contributions, decreasing time required to make discovery.
 - Light dark matter scenarios:
 - B → K vv is identical in the detector to B → K + invisible searches for light dark matter
 - Increased B → K vv branching ratio may suggest a light dark matter component

Projected precision on branching ratios at 50 ab⁻¹ Belle II data, with FEI hadronic tag

K(*)

В

Mode	Stat. uncertainty	Total uncertainty
B [*] → K [*] v⊽	9.5%	10.7%
B⁺ → K*⁺ v∇	7.9%	9.3%
$B^* \rightarrow K^{\star 0} \sqrt{V}$	8.2%	9.6%

Standard model observations of these modes could be made with ~18 ab⁻¹