$b \rightarrow s\ell\ell$ transitions @ LHCb

Julien Cogan, CPPM

4 November 2019, GDR-InF annual workshop

Outline

1. Introduction

2. Illustration with some recent and on-going LHCb analyses

$$B^{0}_{(s)} \rightarrow \tau^{+}\tau^{-}$$
$$B^{0}_{(s)} \rightarrow \tau^{\pm}\mu^{\mp}$$
$$B^{0} \rightarrow K^{*0}\tau^{\mp}\mu^{\pm}$$
$$B^{+} \rightarrow K^{+}\tau^{\pm}\mu^{\mp}$$
$$B^{0} \rightarrow K^{*0}\tau^{+}\tau^{-}$$

3. Conclusion and prospects

Introduction

$b \rightarrow s \ell \ell$ transitions

Strongly suppressed in the Standard Model

• Only occur through loop-diagrams (Flavour Changing Neutral Current)

 Sensitivity to new particles increase (even more if they generate tree-level contributions)

Allow to search for New Physics at higher scales than TeV

Why τ 's ?

 τ leptons offer unique window to NP:

- $\cdot \,\, m_{ au} \gg m_{\mu} \Rightarrow$ different sensitivity to new physics effects
- \cdot decay into measurable products \Rightarrow access to variables related to spin couplings
- comparison of transitions with τ and their counterpart with $\mu \Rightarrow {\sf LFU}$ tests

Flavour anomalies point to a violation of LFU, which suggests:

- a special role of the third family \Rightarrow enhancement of $b \rightarrow s \tau \tau$ decays ex: B. Capdevilla *et al.*, PRL 120, 181802 (2018) \longrightarrow
- a violation of LFV in many models \Rightarrow enhancement of $b \rightarrow s \tau \mu$ decays

Generalities on $B \rightarrow \tau X$ searches

Main features:

- Neutrino(s) escaping detection
- Very large background from $B \rightarrow D^{(*)}X$ decays (D life time and mass comparable to τ)

Main analysis ingredients:

- develop and use isolation variables
- use multi-variate techniques

Specific developments:

- custom *B*-mass reconstruction
- custom signal extraction

Each mode has its own specificities. Dedicated strategies must be developed for each search.

τ reconstruction

Main τ decay modes:

Mode	B	pros & cons
$\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau$	\sim 18%	trigger on μ no vertexing
$\tau^- \! \to \pi^- \nu_\tau$	\sim 11%	B factories only
$\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$	~ 9%	vertexing track multiplicity
$\tau^- \! \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$\sim 5\%$	neutral

Preferred mode: $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$

- intermediate resonances $\tau^- \rightarrow a_1(1260)^- \nu_\tau \rightarrow \rho^0(770)\pi^- \nu_\tau$ \Rightarrow helps in the signal selection
- decay model uncertainty
- unavoidable presence of $\tau^- \! \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$ accounted for

Status of some relevant decay modes

Modes	SM prediction	Exp. (limit @ 90% CL)	LHCb
$B^0 \rightarrow \tau^+ \tau^-$	$(2.22 \pm 0.19) 10^{-8}$ [1]	< 1.6 10 ⁻³ [3]	published
$B^0_s \rightarrow \tau^+ \tau^-$	$(7.73 \pm 0.49) 10^{-7}$ [1]	< 5.2 10 ⁻³ [3]	
$B^+ \rightarrow K^+ \tau^+ \tau^-$	$(1.20 \pm 0.12) 10^{-7}$ [2]	< 2.3 10 ⁻³ [4]	-
$B^0 \to K^{*0} \tau^+ \tau^-$	$(0.98 \pm 0.10) 10^{-7}$ [2]	-	in progress
$B^0 \rightarrow \tau^{\pm} e^{\mp} / \tau^{\pm} \mu^{\mp}$	×	$< 2.8 10^{-5}$ [5] / $< 1.2 10^{-5}$ [6]	published
$B^0_{\rm s} \rightarrow \tau^{\pm} e^{\mp} / \tau^{\pm} \mu^{\mp}$	×	- / < 3.4 10 ⁻⁵ [6]	published
$B^+\!\to\pi^+\tau^\pm e^\mp/~\pi^+\tau^\pm\mu^\mp$	×	$< 7.5 10^{-5}$ [7] / $< 7.2 10^{-5}$ [7]	-
$B^+ \rightarrow K^+ \tau^\pm e^\mp / K^+ \tau^\pm \mu^\mp$	×	$< 3.010^{-5}$ [7] / $< 4.810^{-5}$ [7]	in progress
$B^0 \to K^{*0} \tau^{\pm} e^{\mp} / K^{*0} \tau^{\pm} \mu^{\mp}$	×	-	in progress

LHCb:

- published analyses use run 1 data (3 fb⁻¹ @ \sqrt{s} = 7, 8 TeV)
- analyses in progress use run 1 and (part of) run 2 data (6 fb⁻¹ $\odot \sqrt{s}$ = 13 TeV)

 C. Bobeth *et al.*, PRL 112,101801(2014), [2] B. Capdevila *et al.*, PRL 120,181802(2018) (average over the neutral and charged modes), [3] LHCb, PRL 118,251802(2017), [4] BaBar, PRL 118,031802(2017), [5] BaBar, Phys.Rev.D77,091104(2008), [6] LHCb, arXiv:1905.06614, [7] BaBar, Phys.Rev.D86,012004(2012)

$$B^0_{(s)} \rightarrow \tau^+ \tau^-$$

$B^0_{(s)} \rightarrow \tau^+ \tau^-$: Search with run 1 data

Signal extraction:

- fit to the output of a neural network
- templates from signal and control regions

$$\mathcal{N}_{data}^{SR} = s \times \widehat{\mathcal{N}}_{sim}^{SR} + f_b \times \left(\mathcal{N}_{data}^{CR} - s \times \frac{\varepsilon^{CR}}{\varepsilon^{SR}} \times \widehat{\mathcal{N}}_{sim}^{CR} \right)$$

Results:

assuming TAUOLA BABAR-tune model for τ decay

- $\mathcal{B}(B_{\rm s}^0 \to \tau^+ \tau^-) < 6.8 \cdot 10^{-3} @ 95\% CL$ \Rightarrow world's first limit
- $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \cdot 10^{-3} @ 95\%$ CL \Rightarrow world's best limit (BABAR \div 2)

SR:(5)x(5); CR:(4, 5, 8)x(4, 8); BR:(1, 3, 7, 9)x-

$B^0_{(s)} \rightarrow \tau^+ \tau^-$: update with $\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$

Feasibility study performed with the $(3\pi - \mu)$ final state

- full event selection
- \cdot fit strategy
- toys-based estimate of the expected limits

Main outcomes

- large background
- + low signal-background separation ightarrow
- expected limits are 4-5 \times worse than the ones obtained with the $(3\pi 3\pi)$ final state
- $\cdot\,$ no fit to data attempted
- \Rightarrow Summarized in an internal note

$$B^0_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$$

$B^0_{(s)} \rightarrow \tau^\pm \mu^\mp$: Search with run 1 data

Custom mass reconstruction

- \cdot imposing the au mass, decay fully constrained
- + B mass reconstructed with $\sigma \simeq 100 \, {\rm MeV}/c^2$
- allow signal/background separation

Event selection

- multivariate classifiers (BDT) trained on same-sign data
- τ life-time used to remove $B \rightarrow D(\rightarrow \mu \overline{\nu}_{\mu}) 3\pi X$ decays (peaking)

Simultaneous fit to the mass distributions in bins of a final BDT

Results:

- · $\mathcal{B}(B_s^0 \rightarrow \tau^{\pm} \mu^{\mp}) < 4.2 \cdot 10^{-5}$ @ 95% CL ⇒ world's first limit
- · $\mathcal{B}(B^0 \rightarrow \tau^{\pm} \mu^{\mp}) < 1.4 \cdot 10^{-5} @ 95\% CL$ ⇒ world's best limit (BABAR ÷2)

 $B^0 \rightarrow K^{*0} \tau^{\mp} \mu^{\pm}$

$B^0 \rightarrow K^{*0} \tau^{\mp} \mu^{\pm}$: Search with run 1 and part of run 2 data

Mass reconstruction : $\sqrt{P_{T}^{2} + M_{ch}^{2}} + P_{T}$

Background:

- combinatorics + partially rec. B decays
- suppressed using multivariate techniques

Signal yield extraction

- counting experiment
- background yield extracted from 2D control regions: A = BC/D

Separate limits for

- $\cdot \ {\it B}^0
 ightarrow {\it K}^{*0} au^- \mu^+$, and
- $\cdot ~B^0 \!\rightarrow K^{*0} \tau^+ \mu^-$

 $B^+ \rightarrow K^+ \tau^{\pm} \mu^{\mp}$

Missing mass reconstruction:

- E_{B^+} reconstructed from B_{s2}^* and B^+ vertices
- $E_{\text{miss}} = E_{B^+} E_{K\pi}$

Strategy:

• fit m_{miss}^2 in bins of a BDT Sensitivity:

 \cdot expect few 10⁻⁵

- Use $B_{s2}^* \rightarrow K^- B^+ decays$
 - \cdot ~1% of B^+
 - \cdot inclusive τ

 $B^0 \rightarrow K^{*0} \tau^+ \tau^-$

$B^0 \rightarrow K^{*0} \tau^+ \tau^-$: Search with run 1 and run 2 data

ongoing

Exploring both $(3\pi - 3\pi)$ and $(3\pi - \mu)$ Very challenging analysis

- mass reconstructed using the au-mass and decay vertices constraints does not provide enough signal-background separation \longrightarrow
- large candidate multiplicity
- huge background

More details in Jacopo's talk tomorrow

Conclusion and prospects

Conclusion

Current bounds set on rare *B* decays with τ already provide strong constraints on some models proposed to explain the flavour anomalies, e.g.

C. Cornella, J. Fuentes-Martin and G. Isidori, JHEP 07(2019)168 v1

Before $B^0_{\rm s} \rightarrow \tau^{\pm} \mu^{\mp}$ measurement

Conclusion

Current bounds set on rare *B* decays with τ already provide strong constraints on some models proposed to explain the flavour anomalies, e.g.

C. Cornella, J. Fuentes-Martin and G. Isidori, JHEP 07(2019)168 v2

After $B^0_s \rightarrow \tau^{\pm} \mu^{\mp}$ measurement

Prospects

Scaling the current limits with the expected increase in statistics

Belle II with 5 ab⁻¹ @ Υ (5S) for the B_s^0 mode and 50 ab⁻¹ @ Υ (4S) for the B^0 modes [Belle II Physics book, arXiv:1808.10567]

-

$B_{(s)}^{0} \rightarrow \tau^{+} \tau^{-}$: update with run2 data with (3 π – 3 π)

Analysis update with 2016-2017 data ($\sim 3.5\, \rm fb^{-1})$

- \cdot \times 2 the run 1 statistics
- reproduce & improve
 ⇒ better SR and CR regions
 - agreement in the final NN →
- toys-based estimate of the expected limits

 \Rightarrow sensitivity as expected

Remaining

- \cdot optimize selection and final NN
- + add 2018 (and 2015) data (\sim 2.5 $\rm fb^{-1})$
- evaluate systematic uncertainties
- final fit combined with run 1

1