Parallel 2 summary: *b* and *c*-decays in heavy ions The B_c meson: a promising incomer

Guillaume Falmagne Laboratoire Leprince-Ringuet, Palaiseau (France)

Results from CMS, LHCb and ALICE

GdR Intensity Frontier, Sommières November 5th, 2019

The quark-gluon plasma probed by heavy quarks

QCD at very high temperature → deconfinement
 → quarks and gluons move freely in a quark-gluon plasma (QGP)

- Standard Model QCD... Not fully understood yet!
- Heavy quarks produced on smaller time scales than QGP expansion
 → brings information on the whole QGP history

QGP effect? —	compare to 'vacuum' pp:
R _{PbPb} =	$\frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$

Inclusive charm/beauty

VS

Exclusive heavy decays

Inclusive charm/beauty

VS Exclusive heavy decays

- 🗸 High stats
- Total quark cross-sections
- X No meson flavour discrimination
- X Smeared kinematics
- → Global medium properties

QGP effect? → compare to 'vacuum' pp:						
$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$						
Inclusive charm/beauty	VS Exclusive heavy decays					
✓ High stats	🗡 Low stats					
✓ Total quark cross-sections	✓ Precise flavour content					
× No meson flavour discrimination	Clear decay kinematics					
X Smeared kinematics	<pre>✓ Clean samples using resonances + PID (e.g. $J/\psi \rightarrow \mu\mu$ golden channel)</pre>					
→ Global medium properties	→ Detailed insight into medium dynamic					

Effects of the initial state / of the QGP

- Not everything comes from the hot medium: initial state matters!
 → PDFs, nuclear PDFs, fragmentation, ...
- Heavy quarks lose energy when traversing QGP
 → Mass hierarchy of energy loss?
- 3. Strangeness enhancement (thermal $s\bar{s}$ production from medium) $\rightarrow D_s/D$ and B_s/B ratios, to isolate effects on strangeness
- 4. Sequential suppression: dissociation of bound states depends on their size → Test exotic probes? χ_{c1}, X(3872), Ξ_{cc}
- 5. Recombination with c quarks in the medium... Unambiguous proof?
 → First look at B_c mesons in PbPb collisions
- 6. Perspectives/conclusion

Open heavy flavor production THEP 16 (2017) 147

• Exclusive decays, very clean. Subjected to (very) small branching fraction

Cross-section and ratios at different energies good agreement with theory predictions in p_T , y intervals in all LHCb acceptance.

Strong constrains to gluon PDF at small-x.

Reference for production in heavy-ion data.

Fragmentation

Fragmentation fraction depends on collision energy and kinematics

- ✓ $f_{\Lambda_b^0} \approx 8.9 \pm 1.2\%$ (PDG), ≈ 20% (LHCb)
- ✓ Inconsistency for $f_{\Lambda_c^+}$ cross experiments

Measurements in pp collisions with the same condition is essential for heavy ion data.

4/11/2019

Flavour dependence of energy loss

- Heavy quarks lose energy in the QGP (gluon radiation, elastic collisions), but:
 - Smaller color charge than gluons
 - Possible dead-cone effect

PLB 782 (2018) EPJC 78 (2018) JHEP 04 (2017)

 \rightarrow 1 > $R_{AA}(B)$ > $R_{AA}(D)$ > $R_{AA}(h^{\pm})$...

• **BUT** affects only low-*p_T*... Universal partonic energy loss at high-*p_T*? (jet quenching Arleo PRL 119, 062302)

Strangeness: a hot business

- *ss̄* mass is below QGP temperature
 → many thermally produced virtual pairs
- If the pair interacts with other quarks in the medium → more observed strange hadrons

Blackbody photon radiation

higher multiplicity = more strange hadrons

Guillaume Falmagne

Strange + heavy mesons: D_s and B_s

⇒ Interplay with heavy quarks (NRQCD potentials)
 ⇒ Dynamics of strange hadronization

charm + strange?

- Ratio D_s/D cancels the charm energy loss
- Double ratio PbPb/pp cancels the f_s/f_d fragmentation functions

$\begin{array}{l} \textbf{beauty + strange?} \\ \text{(First!) meas. of double ratio} \\ \frac{R_{\text{PbPb}}(B_s^0)}{R_{\text{PbPb}}(B^+)} \end{array}$

Parallel 2 summary: B_c meson in the QGP

Non vector quarkonia

 χ_{cJ} measured with both converted $(\gamma \rightarrow e^+e^-)$ and non-converted photon in *pp* data. Reduced statistics but χ_{c1} and χ_{c2} peaks better resolved.

X(3872)

Hadronic molecular?

							DD Motecu
state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'	X(3872)
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69	3.872
$\Delta E [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05	0.00001 ± 0.00027

Satz, J. Phys. G 32 (3) 2006

Another system to test sequential suppression/comover?

X(3872)

Accessible in proton-Pb collision, more suppressed in Pbp data?

X(3872)

Accessible in proton-Pb collision, more suppressed in Pbp data?

Ξ_{cc}^{++} production

• Difficult due to low production rate and small detection efficiency

- Production mechanism similar to J/ψ in PbPb collisions
 - > Dissociation of primary production + medium recombination at low $p_{\rm T}$
 - ► $E_b(ccq) = 1/2E_b(c\bar{c})$, may be comparable rate of recombination as J/ψ
 - > $N(\Xi_{c+}^{++}) \approx 0.02$ /PbPb at mid y for 0-10% centrality, enhanced by ×10 ($R_{AA} \gg 1$), however yield is strongly reduced at $p_T > 4$ GeV

Hope to reach low $p_{\rm T}$ in the future!

PR D97 (2018) 074003

Recombination with charm?

- In LHC PbPb central collisions: up to 100-1000 charm quarks produced !
 → No enhancement of number of *c* quarks, but change of <u>hidden charm</u> ?
- How to discriminate among many recombination models for J/ψ?
 - Statistical hadronization (binding of uncorrelated deconfined c and c̄)
 - Transport model (continuous dissocation/recombination of bound state)

Hard processes

- ...
- B_c difficult to produce in 1 hard collision: need a bb and a cc pair.
 → If a b quark can recombine with charm in the medium ... dramatic augmentation! Up to 10³ 10⁴ in some papers (Rafelski et al. PRC62 (2000))
 → Could bring new insights/discriminate on recombination mechanisms!

Dissociation

B_c^+ : a new and challenging QGP probe

- Possible dramatic recombination of B_c ! But:
 - Mostly for $p_T \leq m_{B_c}$
 - Added to suppression mechanisms (b energy loss etc.)
- Two different heavy quarks bound

14 / 28

→ original view of flavour dependence of energy loss

- Challenge of B_c exclusive decay measurement: low yields!
 - $p_T(B_c)$ peaks at 3 GeV \rightarrow try to lower p_T thresholds
 - CMS: use 2018 PbPb data, with lumi 4 \times \mathcal{L}_{2015} ! ALICE, LHCb: aim for Run3
 - Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$)

- Small B_c displacement from primary vertex
 - Optimize signal selection with BDT

Analysis strategy

B_c^+ : Hadronic or semi-leptonic channel?

Low cross section:

- Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$):
 - Hadronic channel observed in pp 2017 data, but $4 \times$ less equivalent lumi in PbPb + potential suppression + higher track background→ hopeless in PbPb

 - Smeared kinematics (possible p_T unfolding)

B_c^+ production

- Subjected to dissociation and recombination in medium
 - \blacktriangleright recombination dominate production in central collisions, enhanced by ~10
- LHCb measurement with $B_c^+ \rightarrow J/\psi \pi^+$ > 2 fb⁻¹ pp data at 8 TeV

Reasonably clean signal, $N_{sig} \approx 3100$. p_T distribution well modelled by BCVEGPY[hep-ph/0504017]

 $\frac{R(B_c^+ \to J/\psi\pi^+)}{R(B^+ \to J/\psi K^+)} = (0.68 \pm 0.02)\%$

PR C62 (2000) 024905

B_c : Analysis strategy (CMS)

- Preselection with standard selections for muons, dimuons, charged tracks
- Use discriminant variables to improve signal significance, via BDT
 - Lifetime significance
 - μ displacement from PV
 - angle $\overrightarrow{p_{3\mu}} \overrightarrow{[PV, SV]}$
 - Vertex probability

•
$$\sum_{i,j=1,2,3} |\Delta R(\mu_i, \mu_j)|$$

- $m_{corr}(\mu\mu\mu)$, corrected for $p_{\perp}(
 u)$
- ...

- Background studies: data-driven (sidebands, dimuon+track) + MC J/ ψ
- Signal extraction from template fit of trimuon mass (but presented today: only pre-fit!)
- From signal yields + acceptance&efficiency corrections $\rightarrow R_{PbPb}(B_c)$

Mastering the backgrounds

Fake J/ψ

- charge ± 1 trimuon \rightarrow 2 opposite-sign dimuons = 2 possible J/ψ
- Events with one dimuon in sidebands, and one in peak region: split between signal and background samples

→ Obtain smooth trimuon mass distr. for lower and higher sidebands

 Will fit both sidebands, and take the average shape as extrapolation under the peak

Analysis strategy

$B \rightarrow J/\psi X$ with muon misidentification

• $K \to \mu \text{ misID} = 0.3 - 0.5\%$ and $\pi \to \mu \text{ misID} \simeq 0.1\%$ $\implies B \to J/\psi X$ resonances (or partially reconstructed) give high background (e.g. $B^+ \to J/\psi K^+$)

B

- Obtained with non-prompt $J/\psi~{
 m MC}$
- This MC *should* also describe: displaced J/ψ + [other track from companion B or combinatorial]

Multiple data-driven methods tried now to find appropriate shape for this background

Scan of BDT cut values

BDT lower cut

6.5 7 trimuon mass [GeV]

signal efficiency

B

pp preliminary result

background rejection 0.4 B_c candidates mass with valBDT>0.10 z CMS Work in proaress 30 BCMASS background 25 signal region $\varepsilon_{signal} = 0.618$ 200 $1 - \varepsilon_{background} = 0.950$ $S/\sqrt{S+B} = 33.5$ 150 $N_{signal}^{MC} = 2073$ 100

• Same sign + + + / - - sample only shown for illustration

- More work needed on J/ψ -track combinatorics: here, ad-hoc shape extrapolated from high-mass control region
- J/ψ sidebands
- non-prompt J/ψ MC
- Signal MC B_c

3.5

PbPb

- 4 times less nucleon-nucleon equivalent luminosity in PbPb than pp
- Possible suppression
- More track background than in pp
 - \rightarrow Challenging to observe B_c signal!
- ... but promising first results, that could lead to the first $R_{PbPb}(B_c)$ measurement

Possible in ALICE and LHCb too?

ALICE upgrades

Run 2: only the muon arm ($-4 < \eta < -2.5$) for $B_c \rightarrow \mu\mu\mu$ detection. Upgrades for ALICE Run 3 could make it realistic to detect B_c in PbPb:

B

- new Muon Forward Tracker (MFT) to match muon tracks before and after the absorber
 - \rightarrow allow for prompt / non-prompt J/ψ separation
- new Inner Tracking System (ITS)
 improvement in the impact parameter resolution by a factor 3 (5) in the transverse (longitudinal) direction

B_c feasibility in ALICE: trimuon channel

- Cross-sections from FONLL
- ratio of trimuon/hadronic branching fractions from LHCb PRD 90, 032009 (2014)
- Acc×Eff for J/ψ : from current PbPb measurements
- Third muon efficiency: considering efficiency of (MFT muon arms) matching

B_c feasibility in ALICE: background estimation

- Combinatorial J/ψ background
- Various true/fake muon backgrounds
- Cut $M_{trimuon} > 5.5$ GeV to cut away correlated background
 - $B_c^+ \rightarrow J/\psi + \mu^+ + \nu_{\mu}$ significance estimation

- With these assumptions significance expected to be larger than ~5 for $p_{\rm T}$ > 4 GeV/c
- Improvement with MFT (additional improvement could come from selection of displaced vertices)

n1/n/

$B_c \rightarrow D^{*+} + \bar{D}^0$ channel

- $B_c \rightarrow D(K\pi\pi) D(K\pi)$ channel also studied (with non-optimized selections), but quite hopeless due to much lower predicted (theoretical) branching fraction
- \bullet Would need 100× more luminosity than ALICE predicted Run 3

26 / 28

B_c^+ production with SL decays

- $B(B_c^+ \to J/\psi \mu^+ \nu) = 1 8\%$, about $15 \times B(B_c^+ \to J/\psi \pi^+)$
- LHCb measurement at 7 (1 fb⁻¹) and 13 TeV (1.7 fb⁻¹)
 - ▶ $p_T(B_c^+) > 4$ GeV to reject background
 - Signal obtained from $m_{\rm cor} = \sqrt{m(J/\psi\mu^+)^2 + p_\perp^2} + p_\perp$ using templates
 - ✓ Signal, feed-down: simulated $B_c^+ \to J/\psi \mu^+ \nu$, $\psi', \chi_c \mu^+ \nu, J/\psi \tau^+ \nu$ decay
 - ✓ Background: inclusive $b \rightarrow J/\psi$ decay from simulation

Almost background free. Total yields: 4K at 7 TeV and 15K at 13 TeV, about ×3 larger compared to $B_c^+ \rightarrow J/\psi \pi^+$. Losses due to p_T and other selection criteria.

Phys.Atom.Nucl. 67 (2004) 1559

LHCb-PAPER-2019-033

Conclusion and prospects

• Rich zoology of flavour studies in the QGP to be done at LHC!

B,

- Initial state + reference in pp: complete map of fragmentation?
- All mentioned measurements: quantify c and b-quark energy loss
- Exotic bound states dissociation in medium
- B_s/B and D_s/D to isolate strangeness effects B_c/B to isolate charm recombination B_c/B_s to compare *c* recomb. and *s* enhancement? (more distant)

→ Could achieve a complete description of 'heavy' mesons in QGP
 → deeper understanding of QCD!

But: needs much more stats and manpower... Case for strong heavy ions program beyond Run 3, with our complementary experiments!

BACKUP

Introduction

• Unique probes of heavy-ion collisions

 $\gg m_Q \gg \Lambda_{QCD}$, production calculable with perturbative-QCD

 $> t_{prod} \sim 1/m_T$, information about initial and final state

- Information from heavy flavor
 - Initial state

nPDF [PRL121(2018)052004, arXiv:1906.02512] **saturation** [Nucl.Phys.A735(2004)248...]

Final state, medium properties

Elliptic flow [Nucl.Phys.A735(2004)248...]

Energy loss [Eur.Phys.J.A53(2017)5...]

Quarkonium dissociation/sequential suppression

[Int.J.ofMod.Phys.A 28(2013)1340012...]

Coalescence hadronization [PLB595(2004)202...]

HF@LHCb, GDR-InF19 (Yanxi ZHANG)

p (GeV/c)

Semi-leptonic decays

Decay	$p \operatorname{Pb}$	$\operatorname{Pb} p$
$B^+ ightarrow \overline{D}{}^0 \pi^+$	1958 ± 54	1806 ± 55
$B^+ \rightarrow J/\psi K^+$	883 ± 32	907 ± 33
$B^0\!\to D^-\pi^+$	1151 ± 38	889 ± 34
$\Lambda^0_b \! \to \Lambda^+_c \pi^-$	484 ± 24	399 ± 23

Yield will increase by ~ 10 using SL decays. B_s^0 will also be possible (about 3% statistical uncertainty).

Alice studied non-prompt D^0 , extended to B_s^0 , Λ_b^0 ?

Towards precise fragmentation data in heavy ion collisions

Lowering p_T thresholds

Low cross section:

B_c production peaks at p_T = 3 GeV → aim at lower p_T muons
 → Push down muon kinematic acceptance cuts + allow a 3rd muon (not firing the *dimuon trigger*) in a looser acceptance

32 / 28

Backup

Used samples

- pp 2017 (300 pb⁻¹) and PbPb 2018 (1.5 nb⁻¹) at 5.02 TeV, with dimuon (J/ψ) trigger
- For *B_c* signal: use BCVEGPY2.2 specific generator, then: PYTHIA, EVTGEN, GEANT, ...

For background studies:

- Define samples w.r.t. trimuon sign (± 1 or ± 3) and J/ψ or trimuon mass sidebands
- MC for prompt J/ψ and non-prompt J/ψ (daughter of B⁰, B⁺, B_s)

• Dimuon+track data sample for track $\rightarrow \mu$ mis-identification

'Uncorrelated' J/ψ +track

Finding a shape for this background is enough

- \rightarrow then, normalize with high trimuon mass control region
 - Ad-hoc shape / shape parameters in the fit? -> too high systematics
 - In (non)prompt J/ψ MC: $J/\psi + \mu$ not from same gen decay \rightarrow shape too wrong
 - Dimuon+track data sample: better (and includes B → J/ψ X decays) but still imperfect shape
 → would need p/K/π PID (impossible at CMS) to get correct shape
 - Best hope: consider all displaced J/ψ , flip the direction of their momentum and vertex displacement, and run trimuon analysis
 - If problems with B event activity, try event mixing: put J/ψ in similar-looking event (but risks of fine-tuning)