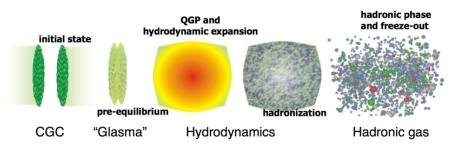
QGP studies with exclusive b and c-decays at CMS The B_c meson: a promising incomer

Guillaume Falmagne
Laboratoire Leprince-Ringuet, Palaiseau (France)
On behalf of the CMS collaboration



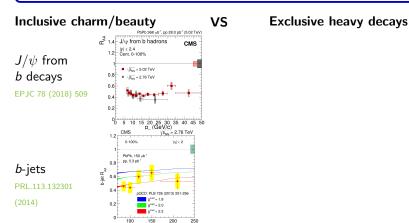
GdR Intensity Frontier, Sommières November 4th, 2019

The quark-gluon plasma probed by heavy quarks

QCD at very high temperature → deconfinement
 → quarks and gluons move freely in a quark-gluon plasma (QGP)

- Standard Model QCD... Not fully understood yet!
- Heavy quarks produced on smaller time scales than QGP expansion
 brings information on the whole QGP history

QGP effect? \rightarrow compare to 'vacuum' pp: $R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{1}$ pp cross-section


Inclusive charm/beauty

VS

Exclusive heavy decays

QGP effect? -> compare to 'vacuum' pp:

$$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$$

QGP effect? \longrightarrow compare to 'vacuum' pp:

$$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$$

Inclusive charm/beauty

VS

Exclusive heavy decays

- ✓ High stats
- ✓ Total quark cross-sections
- X No meson flavour discrimination
- Smeared kinematics
- Contamination from non-b partons
- → Global medium properties

QGP effect? \rightarrow compare to 'vacuum' pp:

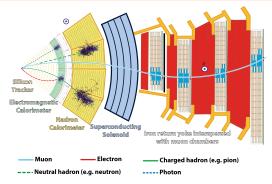
$$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$$

Inclusive charm/beauty

- High stats
- ✓ Total quark cross-sections
- No meson flavour discrimination
- X Smeared kinematics
- X Contamination from non-b partons
- → Global medium properties

VS

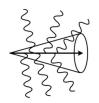
Exclusive heavy decays


- X Low stats
- Depends on branching ratios and fragmentation
- ✓ Precise flavour content
- ✓ Clear decay kinematics
- ✓ Clean samples using resonances + PID (e.g. $J/\psi \to \mu\mu$ golden channel)
- → Detailed insight into medium dynamics

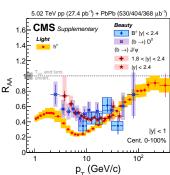
Effects of the QGP

Quantify/discriminate effects \longrightarrow fundamental properties of the medium : thermodynamics/transport/impact on bound states/...

- 1. Heavy quarks lose energy when traversing QGP
 - 1.1 Mass hierarchy of energy loss?
 - \rightarrow Suppression of light hadrons vs D vs B
- 2. Strangeness enhancement (thermal ss production from medium)
 - → Quantify it?
 - 2.1 Compare D_s and D mesons, to isolate effects on strangeness
 - 2.2 Compare B_s and B (idem)
- 3. Recombination with c quarks in the medium
 - → Still debated... Unambiguous proof?
 - 3.1 First look at B_c mesons in PbPb collisions
- 4. Perspectives/conclusion

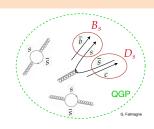

CMS detector

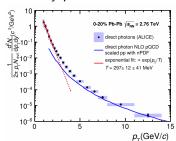
- \checkmark 4 π detector, specialized for muons
- ✓ Good displaced vertex reconstruction \rightarrow B vertices
- ✓ High luminosity → exclusive decays until $p_T \lesssim 50$ GeV
- X Strong magnet \rightarrow limited low- p_T acceptance for muons \rightarrow Limits the reconstruction of low- p_T hadrons


Flavour dependence of energy loss

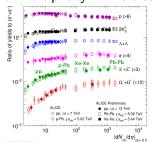
- Heavy quarks lose energy in the QGP (gluon radiation, elastic collisions), but:
 - Smaller color charge than gluons
 - → smaller energy loss than light hadrons
 - Possible dead-cone effect
 - → smaller energy loss than light quarks

PLB 782 (2018) EPJC 78 (2018) JHEP 04 (2017)




- $\rightarrow 1 > R_{AA}(B) > R_{AA}(D) > R_{AA}(h^{\pm})...$
 - **BUT** affects only low- p_T ... Universal partonic energy loss at high- p_T ? (jet quenching Arleo PRL 119, 062302)

Strangeness: a hot business

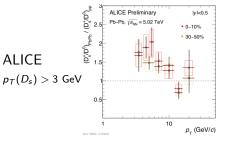

- ss̄ mass is below QGP temperature
 many thermally produced virtual pairs
- If the pair interacts with other quarks in the medium
 more observed strange hadrons

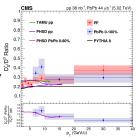
Blackbody photon radiation

higher multiplicity = more strange hadrons

Strange + heavy mesons: D_s

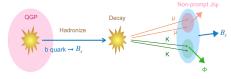
Exclusive strange-heavy meson decays


- → Interplay with heavy quarks (NRQCD potentials)
- → Dynamics of strange hadronization



charm + strange?

- Ratio D_s/D cancels the charm energy loss
 - → isolates effect of strangeness
- Double ratio PbPb/pp \longrightarrow cancels the f_s/f_d fragmentation functions

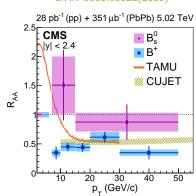


Strange + heavy mesons: B_s

beauty + strange?

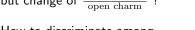
Coalescence of heavy quark with *s*-quark from the medium?

 \rightarrow (First!) meas. of double ratio $\frac{R_{\text{PbPb}}(B_s^0)}{R_{\text{PbPb}}(B_s^+)}$

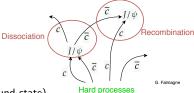

Comparison with:

- TAMU: Langevin transport model, with recombination
- CUJET: pQCD-based, without recombination

Incoming update on B_s/B with 2018 data!



arXiv 1810.03022(2018)


Recombination with charm?

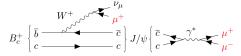
- In LHC PbPb central collisions:
 up to 100-1000 charm quarks produced!
 - \rightarrow No enhancement of number of c quarks, but change of $\frac{\text{hidden charm}}{\text{open charm}}$?

- How to discriminate among many recombination models for J/ψ ?
 - Statistical hadronization (binding of uncorrelated deconfined c and \bar{c})
 - Transport model (continuous dissocation/recombination of bound state)

- .
- B_c difficult to produce in 1 hard collision: need a $b\bar{b}$ and a $c\bar{c}$ pair.
 - \rightarrow If a *b* quark can recombine with charm in the medium ... dramatic augmentation! Up to $10^3 10^4$ in some papers (Rafelski et al. PRC62 (2000))
 - → Could bring new insights/discriminate on recombination mechanisms!

B_c^+ : a new and challenging QGP probe

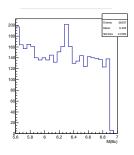
- Possible dramatic recombination of $B_c!$ But:
 - Mostly for $p_T \lesssim m_{B_c}$
 - Added to suppression mechanisms (b energy loss etc.)

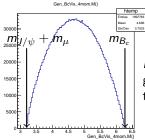


→ original view of flavour dependence of energy loss

- Challenge of B_c exclusive decay measurement: low yields!
 - $p_T(B_c)$ peaks at 3 GeV \longrightarrow try to lower p_T thresholds
 - Use 2018 PbPb data, with lumi $4 \times \mathcal{L}_{2015}$!
 - Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$)

- Small B_c displacement from primary vertex
 - → Optimize signal selection with BDT

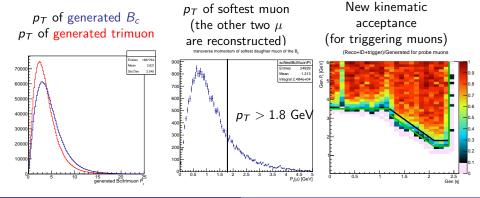

B_c^+ : Hadronic or semi-leptonic channel?


Low cross section:

- Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$):
 - Hadronic channel observed in pp 2017 data, but 4× less equivalent lumi in PbPb + potential suppression + higher track background → hopeless in PbPb
 - Non-peaking signal

 have to master the backgrounds!
 - Smeared kinematics (possible p_T unfolding)

 $B_c^+ o J/\psi \ \pi^+$ reco+selected pp data 5 TeV $N_{B_c} \simeq 120$

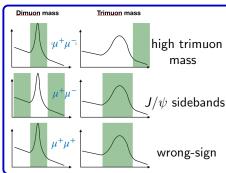


 $B_c^+ \to \mu\mu\mu$ generated trimuon mass

Lowering p_T thresholds

Low cross section:

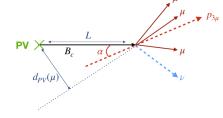
B_c production peaks at p_T = 3 GeV → aim at lower p_T muons
 → Push down muon kinematic acceptance cuts + allow a 3rd muon (not firing the dimuon trigger) in a looser acceptance



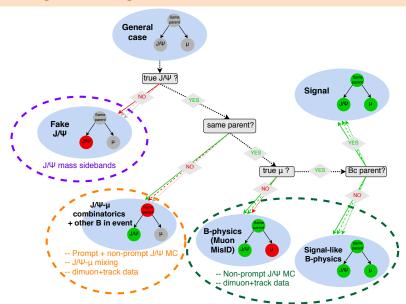
Used samples

- pp 2017 (300 pb $^{-1}$) and PbPb 2018 (1.5 nb $^{-1}$) at 5.02 TeV, with dimuon (J/ψ) trigger
- For B_c signal: use BCVEGPY2.2 specific generator, then: PYTHIA, EVTGEN, GEANT, ...

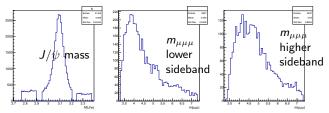
For background studies:


- Define samples w.r.t. trimuon sign $(\pm 1 \text{ or } \pm 3)$ and J/ψ or trimuon mass sidebands
- MC for prompt J/ψ and non-prompt J/ψ (daughter of B^0 , B^+ , B_s)

• Dimuon+track data sample for track $\rightarrow \mu$ mis-identification

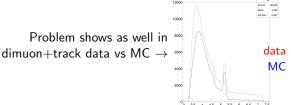

Analysis strategy

- Preselection with standard selections for muons, dimuons, charged tracks \longrightarrow \mathcal{B}_c candidate = dimuon at J/ψ mass + μ pointing to same displaced vertex, total charge ± 1
- Use discriminant variables to improve signal significance, via MultiVariate Analysis (Boosted Decision Tree, BDT):
 - Lifetime significance
 - ullet μ displacement from PV
 - angle $\overrightarrow{p_{3\mu}} [\overrightarrow{PV}, \overrightarrow{SV}]$
 - Vertex probability
 - $\sum_{i,j=1,2,3} |\Delta R(\mu_i, \mu_j)|$
 - $m_{corr}(\mu\mu\mu)$, corrected for $p_{\perp}(\nu)$
 - ..


- Background studies: data-driven (sidebands, dimuon+track) + MC J/ψ
- Signal extraction from template fit of trimuon mass (but presented today: only pre-fit!)
- From signal yields + acceptance&efficiency corrections \longrightarrow $R_{PbPb}(B_c)$

Mastering the backgrounds

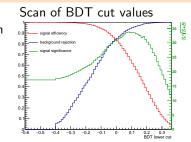
Fake J/ψ


- charge ± 1 trimuon \longrightarrow 2 opposite-sign dimuons = 2 possible J/ψ
- Cannot choose 'the closest to the J/ψ mass' (possible undersubstraction of fake J/ψ from under the J/ψ mass peak)
- Events with one dimuon in sidebands, and one in peak region: split between signal and background samples (w/ appropriate weights)
 - → Obtain smooth trimuon mass distr. for lower and higher sidebands

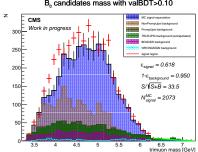
- Correct some variables for biased kinematics (incorrect dimuon mass)
- Will fit both sidebands, and take the average shape as extrapolation under the peak

$B \rightarrow J/\psi X$ with muon misidentification

- $K \to \mu$ misID = 0.3 0.5% and $\pi \to \mu$ misID \simeq 0.1% \longrightarrow $B \to J/\psi X$ resonances (or partially reconstructed) give high background (e.g. $B^+ \to J/\psi K^+$)
- ullet Obtained with non-prompt J/ψ MC
- This MC should also describe:
 - displaced J/ψ + other track from companion B
 - Combinatorial J/ψ + (fake) muon
- BUT control region (high trimuon mass) shows underprediction of MC
 - \rightarrow Need data-driven methods for J/ψ +track 'uncorrelated' background


'Uncorrelated' J/ψ +track

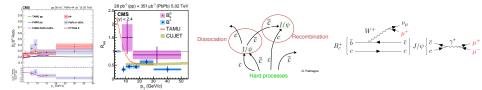
Finding a shape for this background is enough


- → then, normalize with high trimuon mass control region
 - Ad-hoc shape / shape parameters in the fit? → too high systematics
 - In (non)prompt J/ψ MC: $J/\psi + \mu$ not from same gen decay shape too wrong
 - Dimuon+track data sample: better (and includes $B \to J/\psi X$ decays) but still imperfect shape
 - \rightarrow would need $p/K/\pi$ PID (impossible at CMS) to get correct shape
 - Best hope: consider all displaced J/ψ , flip the direction of their momentum and vertex displacement, and run trimuon analysis
 - If problems with B event activity, try event mixing: put J/ψ in similar-looking event (but risks of fine-tuning)

pp preliminary result

- Same sign + + + / - sample only shown for illustration
- More work needed on J/ψ -track combinatorics: here, ad-hoc shape extrapolated from high-mass control region
- J/ψ sidebands
- non-prompt J/ψ MC
- Signal MC B_c
- To improve BDT performance, will run BDT separately in categories: p_T (2 bins), rapidity (2 bins) ($\neq m_{J/\psi}$ resolution), and $m_{\mu\mu\mu}$ (2-3 bins) (very \neq backgrounds)

B_c candidates mass with valBDT>0.10

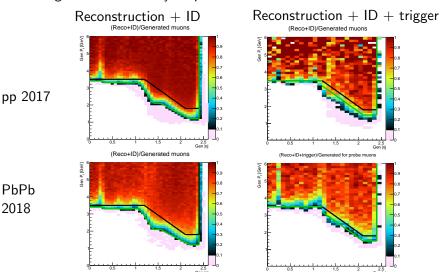

PbPb

- 4 times less nucleon-nucleon equivalent luminosity in PbPb than pp
- Possible suppression
- More track background than in pp
 - \rightarrow Challenging to observe B_c signal!

... but promising first results (too preliminary to be shown), that could lead to the first $R_{PbPb}(B_c)$ measurement

Conclusion and prospects

- Rich zoology of flavour studies in the QGP to be done at CMS!
 - All mentioned measurements: quantify c and b-quark energy loss
 - B_s/B and D_s/D : Strange hadronization/enhancement/nPDF
 - B_c/B : Isolate charm recombination? Discriminate recombin. models?
 - More distant goal: B_c/B_s to compare c recomb. and s enhancement?

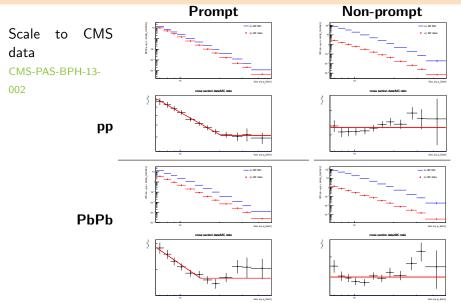

- → Could achieve a complete description of 'heavy' mesons in QGP
- → deeper understanding of QCD!

But: needs much more stats and manpower... Case for strong heavy ions program beyond Run 3!

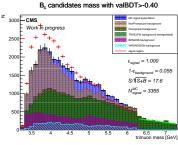
BACKUP

2017-2018 data: new single muon acceptance cuts

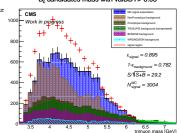
From single muon efficiency maps:

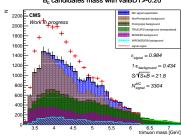

BDT & strategy for normalization

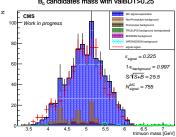
- Apply BDT after basic selection
- BDT needs normalizations of signal & background samples
- As preliminary study, no fit of data is done: use a priori normalizations, even for signal MC, and compare with data
- Signal MC: scale to cross section from pp 7 TeV measurement (average from LHCb [1,2] and CMS [3]). Extrapolate to 5 TeV and to the whole phase space with BCVEGPY.
- (Non-)prompt J/ψ MC: use pp and PbPb cross sections from CMS meas. in same kinematic range, extrapolated for $p_T(J/\psi) < 6.5$ GeV [4] [1]: PRL.114.132001 (2015)


pp, Prompt J/ψ

- JHEP 2012,93(4)


MC normalization for (non-)prompt J/ψ


pp trimuon mass for various BDT cuts


B_c candidates mass with valBDT>-0.05

B_c candidates mass with valBDT>-0.20

B_c candidates mass with valBDT>0.25

