QGP studies with exclusive b and c-decays at CMS The B_c meson: a promising incomer Guillaume Falmagne Laboratoire Leprince-Ringuet, Palaiseau (France) On behalf of the CMS collaboration GdR Intensity Frontier, Sommières November 4th, 2019 # The quark-gluon plasma probed by heavy quarks QCD at very high temperature → deconfinement → quarks and gluons move freely in a quark-gluon plasma (QGP) - Standard Model QCD... Not fully understood yet! - Heavy quarks produced on smaller time scales than QGP expansion brings information on the whole QGP history QGP effect? \rightarrow compare to 'vacuum' pp: $R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{1}$ pp cross-section Inclusive charm/beauty VS **Exclusive heavy decays** QGP effect? -> compare to 'vacuum' pp: $$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$$ QGP effect? \longrightarrow compare to 'vacuum' pp: $$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$$ ### Inclusive charm/beauty VS Exclusive heavy decays - ✓ High stats - ✓ Total quark cross-sections - X No meson flavour discrimination - Smeared kinematics - Contamination from non-b partons - → Global medium properties QGP effect? \rightarrow compare to 'vacuum' pp: $$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$$ ### Inclusive charm/beauty - High stats - ✓ Total quark cross-sections - No meson flavour discrimination - X Smeared kinematics - X Contamination from non-b partons - → Global medium properties ### VS ### **Exclusive heavy decays** - X Low stats - Depends on branching ratios and fragmentation - ✓ Precise flavour content - ✓ Clear decay kinematics - ✓ Clean samples using resonances + PID (e.g. $J/\psi \to \mu\mu$ golden channel) - → Detailed insight into medium dynamics ## Effects of the QGP Quantify/discriminate effects \longrightarrow fundamental properties of the medium : thermodynamics/transport/impact on bound states/... - 1. Heavy quarks lose energy when traversing QGP - 1.1 Mass hierarchy of energy loss? - \rightarrow Suppression of light hadrons vs D vs B - 2. Strangeness enhancement (thermal ss production from medium) - → Quantify it? - 2.1 Compare D_s and D mesons, to isolate effects on strangeness - 2.2 Compare B_s and B (idem) - 3. Recombination with c quarks in the medium - → Still debated... Unambiguous proof? - 3.1 First look at B_c mesons in PbPb collisions - 4. Perspectives/conclusion ### CMS detector - \checkmark 4 π detector, specialized for muons - ✓ Good displaced vertex reconstruction \rightarrow B vertices - ✓ High luminosity → exclusive decays until $p_T \lesssim 50$ GeV - X Strong magnet \rightarrow limited low- p_T acceptance for muons \rightarrow Limits the reconstruction of low- p_T hadrons # Flavour dependence of energy loss - Heavy quarks lose energy in the QGP (gluon radiation, elastic collisions), but: - Smaller color charge than gluons - → smaller energy loss than light hadrons - Possible dead-cone effect - → smaller energy loss than light quarks PLB 782 (2018) EPJC 78 (2018) JHEP 04 (2017) - $\rightarrow 1 > R_{AA}(B) > R_{AA}(D) > R_{AA}(h^{\pm})...$ - **BUT** affects only low- p_T ... Universal partonic energy loss at high- p_T ? (jet quenching Arleo PRL 119, 062302) ## Strangeness: a hot business - ss̄ mass is below QGP temperature many thermally produced virtual pairs - If the pair interacts with other quarks in the medium more observed strange hadrons ### Blackbody photon radiation ### higher multiplicity = more strange hadrons # Strange + heavy mesons: D_s ### Exclusive strange-heavy meson decays - → Interplay with heavy quarks (NRQCD potentials) - → Dynamics of strange hadronization ### charm + strange? - Ratio D_s/D cancels the charm energy loss - → isolates effect of strangeness - Double ratio PbPb/pp \longrightarrow cancels the f_s/f_d fragmentation functions # Strange + heavy mesons: B_s ### beauty + strange? Coalescence of heavy quark with *s*-quark from the medium? \rightarrow (First!) meas. of double ratio $\frac{R_{\text{PbPb}}(B_s^0)}{R_{\text{PbPb}}(B_s^+)}$ ### Comparison with: - TAMU: Langevin transport model, with recombination - CUJET: pQCD-based, without recombination Incoming update on B_s/B with 2018 data! ### arXiv 1810.03022(2018) ### Recombination with charm? - In LHC PbPb central collisions: up to 100-1000 charm quarks produced! - \rightarrow No enhancement of number of c quarks, but change of $\frac{\text{hidden charm}}{\text{open charm}}$? - How to discriminate among many recombination models for J/ψ ? - Statistical hadronization (binding of uncorrelated deconfined c and \bar{c}) - Transport model (continuous dissocation/recombination of bound state) - . - B_c difficult to produce in 1 hard collision: need a $b\bar{b}$ and a $c\bar{c}$ pair. - \rightarrow If a *b* quark can recombine with charm in the medium ... dramatic augmentation! Up to $10^3 10^4$ in some papers (Rafelski et al. PRC62 (2000)) - → Could bring new insights/discriminate on recombination mechanisms! # B_c^+ : a new and challenging QGP probe - Possible dramatic recombination of $B_c!$ But: - Mostly for $p_T \lesssim m_{B_c}$ - Added to suppression mechanisms (b energy loss etc.) → original view of flavour dependence of energy loss - Challenge of B_c exclusive decay measurement: low yields! - $p_T(B_c)$ peaks at 3 GeV \longrightarrow try to lower p_T thresholds - Use 2018 PbPb data, with lumi $4 \times \mathcal{L}_{2015}$! - Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$) - Small B_c displacement from primary vertex - → Optimize signal selection with BDT # B_c^+ : Hadronic or semi-leptonic channel? #### Low cross section: - Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$): - Hadronic channel observed in pp 2017 data, but 4× less equivalent lumi in PbPb + potential suppression + higher track background → hopeless in PbPb - Non-peaking signal have to master the backgrounds! - Smeared kinematics (possible p_T unfolding) $B_c^+ o J/\psi \ \pi^+$ reco+selected pp data 5 TeV $N_{B_c} \simeq 120$ $B_c^+ \to \mu\mu\mu$ generated trimuon mass ### Lowering p_T thresholds ### Low cross section: B_c production peaks at p_T = 3 GeV → aim at lower p_T muons → Push down muon kinematic acceptance cuts + allow a 3rd muon (not firing the dimuon trigger) in a looser acceptance ### Used samples - pp 2017 (300 pb $^{-1}$) and PbPb 2018 (1.5 nb $^{-1}$) at 5.02 TeV, with dimuon (J/ψ) trigger - For B_c signal: use BCVEGPY2.2 specific generator, then: PYTHIA, EVTGEN, GEANT, ... ### For background studies: - Define samples w.r.t. trimuon sign $(\pm 1 \text{ or } \pm 3)$ and J/ψ or trimuon mass sidebands - MC for prompt J/ψ and non-prompt J/ψ (daughter of B^0 , B^+ , B_s) • Dimuon+track data sample for track $\rightarrow \mu$ mis-identification ## Analysis strategy - Preselection with standard selections for muons, dimuons, charged tracks \longrightarrow \mathcal{B}_c candidate = dimuon at J/ψ mass + μ pointing to same displaced vertex, total charge ± 1 - Use discriminant variables to improve signal significance, via MultiVariate Analysis (Boosted Decision Tree, BDT): - Lifetime significance - ullet μ displacement from PV - angle $\overrightarrow{p_{3\mu}} [\overrightarrow{PV}, \overrightarrow{SV}]$ - Vertex probability - $\sum_{i,j=1,2,3} |\Delta R(\mu_i, \mu_j)|$ - $m_{corr}(\mu\mu\mu)$, corrected for $p_{\perp}(\nu)$ - .. - Background studies: data-driven (sidebands, dimuon+track) + MC J/ψ - Signal extraction from template fit of trimuon mass (but presented today: only pre-fit!) - From signal yields + acceptance&efficiency corrections \longrightarrow $R_{PbPb}(B_c)$ ### Mastering the backgrounds # Fake J/ψ - charge ± 1 trimuon \longrightarrow 2 opposite-sign dimuons = 2 possible J/ψ - Cannot choose 'the closest to the J/ψ mass' (possible undersubstraction of fake J/ψ from under the J/ψ mass peak) - Events with one dimuon in sidebands, and one in peak region: split between signal and background samples (w/ appropriate weights) - → Obtain smooth trimuon mass distr. for lower and higher sidebands - Correct some variables for biased kinematics (incorrect dimuon mass) - Will fit both sidebands, and take the average shape as extrapolation under the peak # $B \rightarrow J/\psi X$ with muon misidentification - $K \to \mu$ misID = 0.3 0.5% and $\pi \to \mu$ misID \simeq 0.1% \longrightarrow $B \to J/\psi X$ resonances (or partially reconstructed) give high background (e.g. $B^+ \to J/\psi K^+$) - ullet Obtained with non-prompt J/ψ MC - This MC should also describe: - displaced J/ψ + other track from companion B - Combinatorial J/ψ + (fake) muon - BUT control region (high trimuon mass) shows underprediction of MC - \rightarrow Need data-driven methods for J/ψ +track 'uncorrelated' background # 'Uncorrelated' J/ψ +track ### Finding a shape for this background is enough - → then, normalize with high trimuon mass control region - Ad-hoc shape / shape parameters in the fit? → too high systematics - In (non)prompt J/ψ MC: $J/\psi + \mu$ not from same gen decay shape too wrong - Dimuon+track data sample: better (and includes $B \to J/\psi X$ decays) but still imperfect shape - \rightarrow would need $p/K/\pi$ PID (impossible at CMS) to get correct shape - Best hope: consider all displaced J/ψ , flip the direction of their momentum and vertex displacement, and run trimuon analysis - If problems with B event activity, try event mixing: put J/ψ in similar-looking event (but risks of fine-tuning) ### pp preliminary result - Same sign + + + / - sample only shown for illustration - More work needed on J/ψ -track combinatorics: here, ad-hoc shape extrapolated from high-mass control region - J/ψ sidebands - non-prompt J/ψ MC - Signal MC B_c - To improve BDT performance, will run BDT separately in categories: p_T (2 bins), rapidity (2 bins) ($\neq m_{J/\psi}$ resolution), and $m_{\mu\mu\mu}$ (2-3 bins) (very \neq backgrounds) B_c candidates mass with valBDT>0.10 ### PbPb - 4 times less nucleon-nucleon equivalent luminosity in PbPb than pp - Possible suppression - More track background than in pp - \rightarrow Challenging to observe B_c signal! ... but promising first results (too preliminary to be shown), that could lead to the first $R_{PbPb}(B_c)$ measurement ### Conclusion and prospects - Rich zoology of flavour studies in the QGP to be done at CMS! - All mentioned measurements: quantify c and b-quark energy loss - B_s/B and D_s/D : Strange hadronization/enhancement/nPDF - B_c/B : Isolate charm recombination? Discriminate recombin. models? - More distant goal: B_c/B_s to compare c recomb. and s enhancement? - → Could achieve a complete description of 'heavy' mesons in QGP - → deeper understanding of QCD! But: needs much more stats and manpower... Case for strong heavy ions program beyond Run 3! # **BACKUP** ## 2017-2018 data: new single muon acceptance cuts From single muon efficiency maps: # BDT & strategy for normalization - Apply BDT after basic selection - BDT needs normalizations of signal & background samples - As preliminary study, no fit of data is done: use a priori normalizations, even for signal MC, and compare with data - Signal MC: scale to cross section from pp 7 TeV measurement (average from LHCb [1,2] and CMS [3]). Extrapolate to 5 TeV and to the whole phase space with BCVEGPY. - (Non-)prompt J/ψ MC: use pp and PbPb cross sections from CMS meas. in same kinematic range, extrapolated for $p_T(J/\psi) < 6.5$ GeV [4] [1]: PRL.114.132001 (2015) pp, Prompt J/ψ - JHEP 2012,93(4) # MC normalization for (non-)prompt J/ψ # pp trimuon mass for various BDT cuts #### B_c candidates mass with valBDT>-0.05 #### B_c candidates mass with valBDT>-0.20 #### B_c candidates mass with valBDT>0.25