

Dark Sector at Belle II: First results and prospects

Outline

- The Belle II experiment at SuperKEKB collider
- Data taking phases
- Dark Matter at Belle II:
 - Z' to invisible **To be submitted to PRL soon**
 - Axion Like Particles Box opening soon
 - Dark Photon High priority with upcoming data
- Summary & Outlook

Dark Sector: Introduction

 Many astrophysical observations provide evidence for the existence of a kind of matter that almost does not interact with the Standard Model (SM) particles (*mostly* gravitational interaction) → *Dark Matter (DM)*

How to search it?

1) Detect the energy of nuclear recoil

3) DM weakly couples to SM particles and it can be produced in *SM-particles annihilation* at *colliders*

2) Detect the *flux of visible particles* produced by *DM annihilation* and decay

\rightarrow In this presentation I will focus on the search at electron-positron colliders

B-Factories: the high intensity frontier

B-factories: dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent $B\overline{B}$ pairs \rightarrow **CPV studies**.

$$e^+e^- \rightarrow \Upsilon(4S) \ [10.58 \text{ GeV}] \rightarrow B\overline{B}$$

 $\Upsilon(nS) =$ bound state of b quark and b anti-quark

First generation of B-factories

URL PTD THE COMPAREMENT

at the KEKB collider (KEK, Japan)

at the PEP II collider (SLAC, California)

• Clean environment \rightarrow lower				
background, high resolution				
• Hermetic detector with excellent PID				
capability $ ightarrow$ efficient reconstruction of				
<i>neutrals</i> (π^0 , η ,), recoiling system and				
<i>missing energy</i> final states				

B-Factories: the high intensity frontier

B-factories: dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent BB pairs \rightarrow **CPV studies**. $\gamma(nS) = bound state of$

$$e^+e^- \rightarrow \Upsilon(4S) \ [10.58 \text{ GeV}] \rightarrow B\overline{E}$$

L.Zani, Dark matter searches at Belle II – Sommières, 2019.11.06

b quark and anti-quark

Second Generation: SuperKEKB

Belle II Detector

• The Belle II detector has better resolution, PID and capability to cope with higher background

Belle II Data Taking plan

Phase 2: April 26th– July 17th 2018

- 1/8th VXD
- Verify nano-beam scheme, commission the detector and the machine
- Lower backgrounds, flexible hardware triggers and passthrough software trigger
- Max peak luminosity 0.5 \times $10^{34}~cm^{-2}\,s^{-1}$
- 0.5 fb⁻¹ collected → Dark Searches
 <u>Phase 3: March 2019 ...</u>
- VXD detector installed
- * \rightarrow 4 full layers of silicon strips
- \rightarrow 1 full of pixels +1/6
 - (installation finalized ~2021)
- ~6.5 fb⁻¹ collected during spring runs

- autumn run restarted October 15, plan to go up with luminosity by squeezing βy^* (2 \rightarrow 1 mm) and beam currents ~300 mA
- expected 20 fb⁻¹ by end of the year, 200 fb⁻¹ \rightarrow FINAL GOAL : 50 ab⁻¹

Belle II Performances in Phase 2

Belle II Performances in Phase 2: photon reconstruction

Belle II Phase 3 snapshot

Panoramic view on dark searches

Panoramic view on dark searches: dark portals

Z' to Invisible: L_{μ} - L_{τ} model

- New gauge boson Z' coupling only to the 2^{nd} and 3^{rd} generation of leptons $(L_{\mu}\text{-}L_{\tau})$
 - May explain the $(g-2)_{\mu}$ anomaly
 - May solve the light DM puzzle (e.g. sterile neutrinos, Dirac light fermions)
 - May explain anomalies observed in rare B decays, $B \rightarrow K^* \mu \mu$, $R_{_{K(*)}}$
- Invisible signature investigated for the first time in the process

 $^-e^+e^- \rightarrow \mu^+\mu^- + missing mass$

(Muonic dark force searches at BaBar \rightarrow only visible final state to two muons)

Z' to invisible: analysis overview

- Look for a peak in the recoil mass spectrum against a μ+μ- pair (dimuon candidate) in event where nothing else is detected.
- Reject *QED background* by applying a signal-like selection on the distribution of the transverse momentum of the dimuon candidate $pT_{\mu\mu}$
- $e^+e^- \rightarrow \tau \tau (\gamma)$ is the main source of background contamination:
 - dedicated τ suppression optimized by maximizing *Punzi Figure Of Merit*

- Intense program of data validation studies and systematic effects evaluation on 2018 data (Phase 2, 0.5 fb⁻¹)+ estimation of sensitivities
- Extract the signal yield by applying a Poisson counting experiment technique for each recoil mass bin
- Compute 90% CL upper limit in each mass bin defined for the simulated Z' masses.

Z' to invisible: results and prospects

will decrease with new data

To be submitted to PRL

L.Zani, Dark matter searches at Belle II – Sommières, 2019.11.06

M₇[GeV/c²]

Phase 3 analysis started

LFV Z' to invisible

L.Zani, Dark matter searches at Belle II – Sommières, 2019.11.06

Axion Like Particles (ALPs)

ALPs: Experimental Signature

- Signal signatures: 3γ final state, several topologies \rightarrow 4 categories
- ALPS may also decay to invisible (DM) ightarrow single photon topology

ALPs: Sensitivity

- $\stackrel{\scriptstyle >}{}$ Only dominant $e^+e^- \rightarrow \gamma \gamma (\gamma)$ background included
- > 135 fb⁻¹ assumes no $\gamma\gamma$ veto in the barrel

The Dark Photon

- A possible U(1) extension of the SM include a new massive $(m_{A'})$ gauge boson A' of spin = 1 coupling to the SM through the kinetic mixing with strength $\varepsilon \rightarrow$ the *dark photon*
- At e⁺e⁻ colliders we investigate the ISR production $e^+e^- \rightarrow \gamma A'$.

- If $m_{A'} > 2m_{\chi} \rightarrow A'$ decays visibly to SM particle
- If $m_{A'} > 2m_{\chi} \rightarrow A'$ decays 100 % invisibly into DM particle, $e^+e^- \rightarrow \gamma + A'$, $A' \rightarrow \chi\chi$

Dark Photon to Invisible

- select events with NOTHING but a single high energetic *ISR photon*

 \rightarrow only one photon in the detector requires a dedicated **single**

photon trigger (at Belle was not available, $\sim 10\%$ BaBar data)

• Signal Signature:

L.Zani, Dark matter searches at Belle II – Sommières, 2019.11.06

Dark Photon to Invisible: Backgrounds

- Background dominated by QED processes:
 - $e^+e^- \rightarrow \gamma \gamma (\gamma)$ where one photon is not detected (ECL gaps) and the second out of acceptance
 - ⁻ radiative Bhabha $e^+e^- \rightarrow e^+e^- \gamma(\gamma)$ with the electron-positron pair out of acceptance.

Invisible Dark photon sensitivity

- Belle II advantages:
 - \checkmark No ECL cracks pointing to the Interaction region
 - ✓ KLM can compensate ECL photon detection gap
 - Better hermeticity (smaller boost, larger acceptance)
 - Improved L1 trigger lines

In barrel ECL, Belle II has **no projective cracks in** ∳ w.r.t. BaBar: → more hermetic → more efficient

Summary

- Belle II pilot run (2018, Phase 2) showed good results for the machine and detector commissioning: \mathbf{Q}
 - Peak luminosity $0.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - 0.5 fb⁻¹ collected \rightarrow used for Dark Searches
- Phase 3 started in March 2019, 6.5 fb⁻¹ available:
 - Rediscover resonances, B and charm physics
 - New analyses started!
- First Belle II physics results are coming soon!

A rich dark sector program is under investigation at Belle II which has a unique potential for searches never done before. \rightarrow Interplay with theory is crucial to connect with direct searches and effectively constrain dark sector models.

More references in The Belle II Physics Book, arXiv:1808.10567

(LFV) Z' to invisible search to be Phas submitted soon to PRL

ALPs search ready for box opening

Invisible dark photon (high priority with $\sim 20 \text{ fb}^{-1}$ good data)

Expected by 2020

5

Phase

- Visible Dark Photon
- $\Upsilon(1S)$ to invisible
- Muonic dark forces
- Dark scalars / Higgstrahlung
- Magnetic monopoles
- Long-lived particles

SuperKEKB Numbers

2017/September/1	LER	HER	unit	
Е	4.000	7.007	GeV	
	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξ×/ξγ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

Z' to invisible: τ suppression procedure

- Z' production is a final state radiation from a μ leg
- τ background is generated from undetected v's ٠ from both legs
- Different asymmetry in the event topologies ٠
- Discriminant variables which can quantify this ٠ different level of asymmetry:
 - Projection of the transverse recoil momentum onto the direction of the maximum/minimum lepton momentum

Z' to invisible: Data Validation and Performance studies

- *Commissioning data* are the first collected with a *new detector* at a *new accelerator*
 - \rightarrow good test for the experiment performance
 - \rightarrow good for some low multiplicity and dark sector physics, but need to be understood!
- To compare data (Phase 2, ~ 0.5 fb⁻¹) and MC simulation:
 - Validate shapes and absolute number of events for most relevant kinematics variables hadronic mode
 - Measure detector resolution effects and efficiencies (trigger bias, lepton ID, *track finding*)

 $n\pi$ Low multiplicity, but high density tracks (boosted topology)

Tag & probe method

TAG: select events by reconstructing one isolated *good* track consistent with a *electron/muon* hypothesis (1-prong side) + two good hadronic tracks on the opposite side (2-prong side), satisfying $\Sigma q = \pm 1$

PROBE: look for the 4th track in the event, satisfying loose selection requirement and $\Sigma q=0$.

Count the number of events were the probe track is found (N4) and not found $(N3): e^{meas} \times A = N4/(N4 + N3)$

Reference: "Track finding efficiency in BaBar" https://arxiv.org/abs/1207.2849

L.Zani, Dark matter searches at Belle II – Sommières, 2019.11.06

decay $1\pi^{\pm}1\pi^{0}\nu$ $1\pi^{\pm}\nu$ GOAL: estimate the discrepancy in tracking efficiency between data

others

leptonic

mode

 $3\pi^{\pm}1\pi^{0}\nu$

 $3\pi^{\pm}\nu$ 149

 $1\pi^{\pm}2\pi^{0}\nu$

and simulation to:

- correct for inefficiencies • observed in data
- assign a systematic uncertainty

Z' to invisible: Expected g' Sensitivities

 Results still limited by the quality of commissioning Phase 2 data and by statistics + inefficiency corrections measured from validation studies

Dark Photon to leptons: Sensitivity

From Belle II Physics Book, arXiv:1808.10567

Fig. 211: Existing exclusion regions (90% CL) on the dark photon mixing parameter ε and mass $M_{A'}$ (solid regions) for $A' \to \ell \ell$, with projected limits for Belle II and other future experiments (lines) (Figure reproduced from [1820]).