B-decay discrepancies after Moriond 2019

Presented by Peter Stangl

Laboratoire d'Annecy-le-Vieux de Physique Théorique

Outline

1 B-decay discrepancies

2 New physics interpretations

- **b** $\rightarrow s\ell\ell$ in the weak effective theory
- The global picture in the Standard Model effective field theory (SMEFT)
- Simplified leptoquark model

3 Conclusions

Based on:

Jason Aebischer, Wolfgang Altmannshofer, Diego Guadagnoli, Méril Reboud, PS, David M. Straub [arXiv:1903.10434]

Outline

B-decay discrepancies

- 2 New physics interpretations
 - **b** \rightarrow *s* $\ell \ell$ in the weak effective theory
 - The global picture in the Standard Model effective field theory (SMEFT)
 - Simplified leptoquark model

3 Conclusions

$b ightarrow s \, \mu^+ \mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions by $2-3\sigma$:

- Angular observable P_5' in $B \to K^* \mu^+ \mu^-$. LHCb, arXiv:1512.04442
- Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731

Hints for LFU violation in $b ightarrow s \ell^+ \ell^-$ decays

Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ showed deviations from SM by about 2.5 σ each. LHCb, arXiv:1406.6482, arXiv:1705.05802

$${\sf R}_{{\sf K}^{(*)}}=rac{{\sf BR}(B
ightarrow{{\sf K}^{(*)}}\mu^+\mu^-)}{{\sf BR}(B
ightarrow{{\sf K}^{(*)}}e^+e^-)}$$

Hints for LFU violation in $b ightarrow s \ell^+ \ell^-$ decays

New results at Moriond 2019

- Updated measurement of R_K by LHCb
- New measurement of R_{K*} by Belle

LHCb, arXiv:1903.09252

Belle, arXiv:1904.02440

Hints for LFU violation in $b ightarrow c \,\ell \, u$ decays

Measurements of LFU ratios R_D and R_{D^*} by BaBar, Belle, and LHCb showed combined deviation from SM by 3.8σ .

LHCb, arXiv:1506.08614, arXiv:1708.08856 Belle, arXiv:1507.03233, arXiv:1607.07923, arXiv:1612.00529

Hints for LFU violation in $b ightarrow c\,\ell\, u$ decays

New results at Moriond 2019

Updated measurements of R_D and R_{D*} by Belle

Belle, arXiv:1904.08794

HFLAV, hflav.web.cern.ch

see talks by Adam Morris and Dawid Gerstel and discussion session on R_D and R_{D*}

ATLAS, arXiv:1812.03017

Combination of $B_{s,d} ightarrow \mu^+ \mu^-$ measurements

Measurements of BR($B_{s,d} \rightarrow \mu^+ \mu^-$) by LHCb, CMS, and ATLAS show combined deviation from SM by about 2σ .

 $\times 10^{-10}$ 6 ATLAS LHCb 5CMS full comb. $\mathrm{BR}(B^0 \to \mu^+ \mu^-)$ Gaussian comb. SM prediction 1 0 0 $\times 10^{-9}$ $\overline{\mathrm{BR}}(B_s \to \mu^+ \mu^-)$

Outline

B-decay discrepancies

2 New physics interpretations

- **b** $\rightarrow s\ell\ell$ in the weak effective theory
- The global picture in the Standard Model effective field theory (SMEFT)
- Simplified leptoquark model

3 Conclusions

Setup

- Global likelihood from smelli python package for comparing theory predictions to experimental data Aebischer, Kumar, PS, Straub, arXiv:1810.07698
- Quantify agreement between theory and experiment by likelihood *L*, $\Delta \chi^2$, and pull

$$\operatorname{pull}_{1D} = 1\sigma \cdot \sqrt{\Delta\chi^2}$$
, where $-\frac{1}{2}\Delta\chi^2 = \ln L(\vec{0}) - \ln L(\vec{C}_{\operatorname{best fit}})$.

$$\operatorname{pull}_{\operatorname{2D}} = 1\sigma, 2\sigma, 3\sigma, \dots$$
 for $\Delta\chi^2 \approx 2.3, 6.2, 11.8, \dots$

- New physics scenarios in effective field theories:
 - Weak Effective Theory (WET) at scale m_b
 - Standard Model Effective Field Theory (SMEFT) at scale 2 TeV
- Simplified leptoquark model matched to SMEFT at 2 TeV

Outline

B-decay discrepancies

2 New physics interpretations

- $b
 ightarrow s\ell\ell$ in the weak effective theory
- The global picture in the Standard Model effective field theory (SMEFT)
- Simplified leptoquark model

3 Conclusions

$b ightarrow s\ell\ell$ in the weak effective theory

► Effective Hamiltonian at scale m_b : $\mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff}^{bs\ell\ell} + \mathcal{H}_{eff}^{bs\ell\ell}$

$$\mathcal{H}_{\mathrm{eff,\,NP}}^{bs\ell\ell} = -\mathcal{N}\sum_{\ell=e,\mu}\sum_{i=9,10,\mathcal{S},\mathcal{P}} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \mathrm{h.c.}$$

• Operators considered here ($\ell = e, \mu$)

$$\begin{array}{ll} O_9^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_L b\right) (\bar{\ell}\gamma^\mu \ell) \,, & O_9'^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_R b\right) (\bar{\ell}\gamma^\mu \ell) \,, \\ O_{10}^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_L b\right) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, & O_{10}'^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_R b\right) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \\ O_S^{bs\ell\ell} &= m_b (\bar{s}P_R b) (\bar{\ell}\ell) \,, & O_S'^{bs\ell\ell} &= m_b (\bar{s}P_L b) (\bar{\ell}\ell) \,, \\ O_P^{bs\ell\ell} &= m_b (\bar{s}P_R b) (\bar{\ell}\gamma_5 \ell) \,, & O_P'^{bs\ell\ell} &= m_b (\bar{s}P_L b) (\bar{\ell}\gamma_5 \ell) \,. \end{array}$$

Not considered here

- Dipole operators: strongly constrained by radiative decays.
 e.g. [arXiv:1608.02556]
- Four quark operators: dominant effect from RG running above m_B.

Jäger, Leslie, Kirk, Lenz [arXiv:1701.09183]

Scenarios with a single Wilson coefficients

Coefficient	type	best fit	1σ	$\text{pull}_{1\text{D}} = \sqrt{\Delta\chi^2}$
$m{\mathcal{C}}_9^{bs\mu\mu}$	$L \otimes V$	-0.97	[-1.12, -0.81]	5.9 σ
$C_9^{\prime b s \mu \mu}$	$R\otimes V$	+0.14	[-0.03, +0.32]	0.8σ
$m{\mathcal{C}}_{10}^{bs\mu\mu}$	$L\otimes A$	+0.75	[+0.62, +0.89]	5.7 σ
$C_{ m 10}^{\prime b s \mu \mu}$	$R\otimes A$	-0.24	[-0.36, -0.12]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$L\otimes R$	+0.20	[+0.06, +0.36]	1.4 σ
$m{\mathcal{C}}_{9}^{bs\mu\mu}=-m{\mathcal{C}}_{10}^{bs\mu\mu}$	$L \otimes L$	-0.53	[-0.61, -0.45]	6.6 σ

Only small pull for

- Coefficients with $\ell = e$ (cannot explain $b \rightarrow s\mu\mu$ anomaly)
- Scalar coefficients (can only reduce tension in $B_s \rightarrow \mu \mu$)

see also similar fits by other groups: Algueró et al., arXiv:1903.09578 Kowalska et al., arXiv:1903.10932

Ciuchini et al., arXiv:1903.09632 Datta et al., arXiv:1903.10086 Arbey et al., arXiv:1904.08399

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and ${\it R}_{\it K}$ & ${\it R}_{\it K^*}$

WET at 4.8 GeV

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and ${\it R_{K}}$ & ${\it R_{K^{*}}}$

After Moriond 2019:

Updated R_{K} measurement by LHCb and new R_{K^*} measurement by Belle closer to SM value LHCb, arXiv:1903.09252 Belle, arXiv:1904.02440

Tension between fits to $R_{\rm K}$ & $R_{\rm K^*}$ and $b \rightarrow s \mu \mu$ observables in C_9 direction

WET at 4.8 GeV

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and $R_{\!K}$ & $R_{\!K^*}$

After Moriond 2019:

Updated R_{K} measurement by LHCb and new R_{K^*} measurement by Belle closer to SM value LHCb, arXiv:1903.09252 Belle, arXiv:1904.02440

Tension between fits to $R_K \& R_{K^*}$ and $b \rightarrow s \mu \mu$ observables in C_9 direction

Global likelihood:

Contribution to purely left-handed $C_9^{bs\mu\mu} = -C_1^{bs\mu\mu}$ yields very good fit to experimental data

- LFU contribution only affects $b \rightarrow s \mu \mu$ observables
- ► Tension between fits to $b \rightarrow s\mu\mu$ observables and $R_K \& R_{K^*}$ could be reduced by LFU contribution to C_9
- Perform two-parameter fit in space of $C_9^{\text{Univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$:

$$\begin{split} C_9^{bsee} &= C_9^{\text{univ.}} & C_{10}^{bsee} &= 0 \\ C_9^{bs\mu\mu} &= C_9^{\text{univ.}} + \Delta C_9^{bs\mu\mu} & C_{10}^{bs\mu\mu} &= -\Delta C_9^{bs\mu\mu} \\ C_9^{bs\tau\tau} &= C_9^{\text{univ.}} & C_{10}^{bs\tau\tau} &= 0 \end{split}$$

scenario first considered in Algueró et al., arXiv:1809.08447

WET at 4.8 GeV

Before Moriond 2019:

Fit compatible with $C_9^{\text{univ.}} = 0$ and only contribution to $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

► Before Moriond 2019: Fit compatible with $C_9^{\text{univ.}} = 0$ and only contribution to $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

After Moriond 2019: Preference for non-zero C₉^{univ.}

WET at 4.8 GeV

WET at 4.8 GeV

► Before Moriond 2019: Fit compatible with $C_9^{\text{univ.}} = 0$ and only contribution to $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

- After Moriond 2019: Preference for non-zero C₉^{univ.}
- C₉^{univ.} can arise from RG effects:

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

Outline

B-decay discrepancies

2 New physics interpretations

- **b** \rightarrow *s* $\ell \ell$ in the weak effective theory
- The global picture in the Standard Model effective field theory (SMEFT)
- Simplified leptoquark model

3 Conclusions

RG effects require scale separation

Consider SMEFT at 2 TeV

Possible operators:

•
$$[O_{lq}^{(1)}]_{3323} = (\bar{l}_3 \gamma_\mu l_3)(\bar{q}_2 \gamma^\mu q_3)$$
:

Strong constraints from $B \to K \nu \nu$ require $[C_{lq}^{(1)}]_{3323} \approx [C_{lq}^{(3)}]_{3323}$

Buras et al., arXiv:1409.4557

- $[O_{qe}]_{2333} = (\bar{q}_2 \gamma_\mu q_3)(\bar{e}_3 \gamma^\mu e_3)$ cannot explain $R_{D^{(*)}}$
- Four-quark operators cannot explain R_{D(*)}, models yielding large enough contributions already in tension with data

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \implies C_9^{\text{univ.}} \text{ (RG effect)} \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \implies \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

$$\begin{split} & [C_{lq}^{(1)}]_{3223} = [C_{lq}^{(3)}]_{3323} \quad \Rightarrow \quad C_9^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{lq}^{(1)}]_{2223} = [C_{lg}^{(3)}]_{2223} \quad \Rightarrow \quad \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

After Moriond 2019: Clear preference for non-zero $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323}$

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \quad \Rightarrow \quad C_9^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \quad \Rightarrow \quad \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

• After Moriond 2019: Clear preference for non-zero $[C_{iq}^{(1)}]_{3323} = [C_{iq}^{(3)}]_{3323}$

$m{R}_{p^{(*)}}$ explanation: Agreement with combined $R_{\kappa^{(*)}}$ and $b ightarrow s \mu \mu$ explanation has improved

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \quad \Rightarrow \quad C_9^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \quad \Rightarrow \quad \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

• After Moriond 2019: Clear preference for non-zero $[C_{iq}^{(1)}]_{3323} = [C_{iq}^{(3)}]_{3323}$

$m{R}_{p^{(*)}}$ explanation: Agreement with combined $R_{\kappa^{(*)}}$ and $b ightarrow s \mu \mu$ explanation has improved

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \quad \Rightarrow \quad C_9^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \quad \Rightarrow \quad \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

• After Moriond 2019: Clear preference for non-zero $[C_{iq}^{(1)}]_{3323} = [C_{iq}^{(3)}]_{3323}$

$R_{p^{(*)}}$ explanation: Agreement with combined $R_{\kappa^{(*)}}$ and $b \rightarrow s \mu \mu$ explanation has improved

Predictions from global likelihood in SMEFT scenario

Observable	1σ	SM
$R_{K^*}^{[0.045,1.1]}$	$0.88 {}^{+0.01}_{-0.01}$	0.926 ± 0.004
$R_{K^*}^{[1.1,6.0]}$	$0.81 {}^{+0.04}_{-0.04}$	0.9964 ± 0.0006
$R_{K^*}^{[0.1,8.0]}$	$0.83^{+0.04}_{-0.03}$	0.995 ± 0.002
$R_{K^*}^{[15,19]}$	$0.79^{+0.04}_{-0.04}$	0.99807 ± 0.00004
$R_{\kappa}^{[1.0,6.0]}$	$0.80 {}^{+0.04}_{-0.04}$	1.0008 ± 0.0003
$R_{\phi}^{[1.0,6.0]}$	$0.81 {}^{+0.04}_{-0.04}$	0.9970 ± 0.0003
$\langle P_5' angle^{[4.0,6.0]}$	$-0.58^{+0.13}_{-0.12}$	-0.763 ± 0.072
R _D	$0.34 {}^{+0.01}_{-0.01}$	0.303 ± 0.006
R_{D^*}	$0.29 {}^{+0.01}_{-0.01}$	0.255 ± 0.004
$\overline{{\sf BR}}({\it B_s} o \mu^+\mu^-)$	$2.98^{+0.20}_{-0.19}\times10^{-9}$	$(3.67\pm0.16) imes10^{-9}$
${\sf BR}({\it B}^{\pm} ightarrow{\it K}^{\pm} au^+ au^-)$	$3.05^{+1.78}_{-1.06}\times10^{-5}$	$(1.66 \pm 0.19) imes 10^{-7}$
$\overline{\text{BR}}(B_s o au^+ au^-)$	$1.41{}^{+0.80}_{-0.47}\times10^{-4}$	$(7.78 \pm 0.33) imes 10^{-7}$

see parallel session on $b \to s \, \tau^+ \tau^-$, talk by Olcyr Sumensari

Outline

B-decay discrepancies

2 New physics interpretations

- **b** $\rightarrow s\ell\ell$ in the weak effective theory
- The global picture in the Standard Model effective field theory (SMEFT)
- Simplified leptoquark model

3 Conclusions

see talk by Jonathan Kriewald

a

U₁ vector leptoquark (3, 1)_{2/3} couples quarks and leptons

$$\mathcal{L}_{\textit{U}_1} \supset \textit{g}_{\textit{lq}}^{\it{ji}}\left(ar{q}^{\it{i}}\gamma^{\mu}\textit{l}^{\it{j}}
ight)\textit{U}_{\mu} + ext{h.c.}$$

Generates semi-leptonic operators at tree-level

$$[C_{lq}^{(1)}]_{ijkl} = [C_{lq}^{(3)}]_{ijkl} = -rac{g_{lq}^{jk}g_{lq}^{jl*}}{2M_{U}^{2}}$$

► And dipole operators at one-loop, e.g. $[O_{dV}]_{ij} = (\bar{q}_i \sigma^{\mu\nu} V_{\mu\nu} d_j) \varphi, \quad V \in \{W, B, G\}:$

$$[C_{dV}]_{23} = \kappa_V \frac{Y_b}{16\pi^2} \sum_i \frac{g_{lq}^{i2} g_{lq}^{i3*}}{M_U^2}, \qquad \kappa_W = \frac{g}{6}, \quad \kappa_B = \frac{-4 g'}{9}, \quad \kappa_V = \frac{-5 g_s}{12}$$

- *R_D(*)* mostly depends on tauonic couplings *g³²_{lq}*, *g³³_{lq}*
- Dipole operators contribute to $BR(B \rightarrow X_s \gamma)$
- RG running contributes to leptonic τ decays
- Well defined allowed region for explaining R_D(*), select benchmark point

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.7$$

- ► R_{K^(*)} can be explained by muonic couplings g²²_{lg}, g²³_{lg}
- Vanishing tauonic couplings: Tension between fits to $R_{K^{(*)}}$ and $b \rightarrow s \mu \mu$ observables after Moriond 2019

- ► R_{K^(*)} can be explained by muonic couplings g²²_{Iq}, g²³_{Iq}
- Vanishing tauonic couplings: Tension between fits to $R_{K^{(*)}}$ and $b \rightarrow s \mu \mu$ observables after Moriond 2019

Benchmark point explaining
$$R_{D^{(*)}}$$
,

$$g_{lq}^{32}=0.6, \qquad g_{lq}^{33}=0.7,$$

implies non-zero $C_9^{\rm univ.}$, $R_{\rm K^{(*)}}$ and $b \to s \mu \mu$ in good agreement after Moriond 2019

Constraint from LFV observables

Outline

- B-decay discrepancies
- 2 New physics interpretations
 - **b** \rightarrow *s* $\ell \ell$ in the weak effective theory
 - The global picture in the Standard Model effective field theory (SMEFT)
 - Simplified leptoquark model

3 Conclusions

Conclusions

- ▶ New and updated measurements of $R_{K^{(*)}}$ and $R_{D^{(*)}}$ as well as $B_s \rightarrow \mu\mu$.
- New physics in the single muonic Wilson coefficients $C_9^{bs\mu\mu}$, $C_{10}^{bs\mu\mu}$, and $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$ gives a clearly better fit to data than the SM (pull $\approx 6\sigma$).
- Slight tension between R_K(∗) fit and b → sµµ fit with only muonic Wilson coefficients can be reduced by lepton flavor universal C₉^{univ.}.
- Lepton flavor universal C_g^{univ.} can be generated through RG effects from semi-tauonic Wilson coefficients that can explain R_{D(*)}.
- ► U₁-leptoquark can generate these semi-tauonic Wilson coefficients in addition to semi-muonic ones that explain R_{K(*)}.

Backup slides

New physics in individual Wilson coefficients

Coefficient	type	best fit	1σ	pull
${\cal C}_{9}^{bs\mu\mu}$	$L \otimes V$	-0.97	[-1.12, -0.81]	5.9 σ
$C_9^{\prime b s \mu \mu}$	$R\otimes V$	+0.14	[-0.03, +0.32]	0.8σ
$m{\mathcal{C}}^{bs\mu\mu}_{10}$	$L\otimes A$	+0.75	[+0.62, +0.89]	5.7 σ
$C_{10}^{\prime bs\mu\mu}$	${\pmb R}\otimes {\pmb A}$	-0.24	[-0.36, -0.12]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$L\otimes R$	+0.20	[+0.06, +0.36]	1.4 σ
$\mathcal{C}_9^{bs\mu\mu}=-\mathcal{C}_{10}^{bs\mu\mu}$	$L \otimes L$	-0.53	[-0.61, -0.45]	6.6 σ
C_9^{bsee}	$L\otimes V$	+0.93	[+0.66, +1.17]	3.5σ
$C_9'^{bsee}$	$R\otimes V$	+0.39	[+0.05, +0.65]	1.2 σ
C_{10}^{bsee}	$L\otimes A$	-0.83	[-1.05, -0.60]	3.6σ
$C_{10}^{\prime bsee}$	${\it R}\otimes {\it A}$	-0.27	[-0.57, -0.02]	1.1σ
$C_9^{bsee}=C_{10}^{bsee}$	$L\otimes R$	-1.49	[-1.79, -1.18]	3.2σ
$C_9^{bsee} = -C_{10}^{bsee}$	$L \otimes L$	+0.47	[+0.33, +0.59]	3.5σ
$\left(\textit{\textit{C}}_{\textit{S}}^{\textit{bs}\mu\mu} = -\textit{\textit{C}}_{\textit{P}}^{\textit{bs}\mu\mu} ight) imes GeV$	$ar{L} R \otimes ar{R} L$	-0.006	[-0.009, -0.003]	2.8σ
$\left(\textit{\textit{C}}_{\textit{S}}^{\prime\textit{bs}\mu\mu}=\textit{\textit{C}}_{\textit{P}}^{\prime\textit{bs}\mu\mu} ight) imes { ext{GeV}}$	$ar{R}L\otimesar{L}R$	-0.006	[-0.009, -0.003]	2.8σ

$$C_9$$
 vs. $C_9 = -C_{10}$

Combination of ${\it B}_{{\it s},{\it d}} ightarrow \mu^+ \mu^-$ measurements

Combination of ${\it B}_{{\it s},{\it d}} ightarrow \mu^+ \mu^-$ measurements

New physics in right-handed quark current

Direct contraints on U₁ leptoquark

