#### **Charmless B-meson Decays**

Emilie Bertholet LPNHE



Thomas Grammatico LPNHE

LPNHE

PARIS

INTENSITY

frontier

GDR-InF



### 3-body decays



$$\bar{A} = \sum \bar{c_i} F_i(m_{13}^2, m_{23}^2)$$

Strong and weak dynamics give access to Branching Fractions (BF), CP asymmetries  $(A_{cp}),...$ 

### Why charmless B decays ?



Contributions from both tree and penguin processes

Amplitudes can be comparable  $\rightarrow$  sensitive to CP violation

Loops involved → probe new physics

Give access to many observables: BFs, A<sub>co</sub>, CKM phases, polarization fractions...

### **Recent LHCb Charmless studies**

3-body decays but not only !

- Amplitude analysis of  $B^0_{\ s} \rightarrow K^0_{\ s} K^{\pm} \pi_{\mp}$  decays [JHEP 06 (2019) 114]
- Measurement of CP asymmetries in charmless four-body  $\Lambda^0_{\ b}$  and  $\Xi^0_{\ b}$  decays [Eur. Phys. J. C79 (2019) 745 ]
- Amplitude analysis of the  $B^0_{(s)} \rightarrow K^{*0}\overline{K}^{*0}$  decays and measurement of the branching fraction of the  $B^0 \rightarrow K^{*0}\overline{K}^{*0}$  decay [JHEP 07 (2019) 032]

- Study of the  $B^0 \rightarrow \rho(770)^0 K^*(892)^0$  decay with an amplitude analysis of  $B0 \rightarrow (\pi^{\pm}\pi^{\mp})(K^{\pm}\pi^{-})$  decays [JHEP 05 (2019) 026]

- First measurement of the CP-violating phase  $\phi^{d\bar{d}}_{s}$  in  $B^{0}_{s} \rightarrow (K^{+}\pi^{-})(K^{-}\pi^{+})$  decays [JHEP 03 (2018) 140]

- Amplitude analysis of the decay  $B^0 \rightarrow K^0_{\ S} \pi^+ \pi^-$  and first observation of CP asymmetry in  $B^0 \rightarrow K^*(892)^-\pi^+$  [Phys. Rev. Lett. 120 261801]

- Updated branching fraction measurements of  $B^0_{(s)} \rightarrow K_s h^+ h'^-$  [JHEP 11 (2017) 027 ]

### **Recent LHCb Charmless studies**

- Amplitude analysis of  $B_s^0 \rightarrow K_s^0 K^{\pm} \pi_{\mp}$  decays [JHEP 06 (2019) 114]

- Measurement of CP asymmetries in charmless four-body  $\Lambda_b^0$  and  $\Xi_b^0$  decays [Eur. Phys. J. C79 (2019) 745]

- Amplitude analysis of the  $B^0_{(s)} \rightarrow K^{*0}\overline{K}^{*0}$  decays and measurement of the branching fraction of the B<sup>0</sup>  $\rightarrow K^{*0}\overline{K}^{*0}$  decay [JHEP 07 (2019) 032] **Polarization** 

- Study of the  $B^0 \rightarrow \rho(770)^0 K^*(892)^0$  decay with an amplitude analysis of  $B0 \rightarrow (\pi^{\pm}\pi^{\mp})(K^{\pm}\pi^{-})$  decays [JHEP 05 (2019) 026]

- First measurement of the CP-violating phase  $\phi^{d\bar{d}}_{s}$  in  $B^{0}_{s} \rightarrow (K^{+}\pi^{-})(K^{-}\pi^{+})$  decays [JHEP 03 (2018) 140]

- Amplitude analysis of the decay  $B^0 \rightarrow K^0_{\ s} \pi^+ \pi^-$  and first observation of CP asymmetry in  $B^0 \rightarrow K^* (892)^- \pi^+$  [Phys. Rev. Lett. 120 261801]

- Updated branching fraction measurements of  $B^0_{(s)} \rightarrow K_s h^+ h^{-1}_{(s)}$  [JHEP 11 (2017) 027 ]

### **Recent LHCb Charmless studies**

- Amplitude analysis of  $B^0_{\ s} \rightarrow K^0_{\ s} K^{\pm} \pi_{\mp}$  decays [JHEP 06 (2019) 114]

- Measurement of CP asymmetries in charmless four-body  $\Lambda_{b}^{0}$  and  $\Xi_{b}^{0}$  decays [Eur. Phys. J. C79 (2019) 745 ]

- Amplitude analysis of the  $B^0_{(s)} \rightarrow K^{*0}\overline{K}^{*0}$  decays and measurement of the branching fraction of the  $B^0 \rightarrow K^{*0}\overline{K}^{*0}$  decay [JHEP 07 (2019) 032]

- Study of the  $B^0 \rightarrow \rho(770)^0 K^*(892)^0$  decay with an amplitude analysis of  $B0 \rightarrow (\pi^{\pm}\pi^{\mp})(K^{\pm}\pi^{-})$  decays [JHEP 05 (2019) 026]

- First measurement of the CP-violating phase  $\phi^{d\bar{d}}_{s}$  in  $B^{0}_{s} \rightarrow (K^{+}\pi^{-})(K^{-}\pi^{+})$  decays [JHEP 03 (2018) 140]

- Amplitude analysis of the decay  $B^0 \rightarrow K^0_{\ S} \pi^+ \pi^-$  and first observation of CP asymmetry in  $B^0 \rightarrow K^*(892)^-\pi^+$  [Phys. Rev. Lett. 120 261801]

- Updated branching fraction measurements of  $B^{0}_{(s)} \rightarrow K_{s}h^{+}h^{-}$  [JHEP 11 (2017) 027 ]

#### Will be discussed today

### Amplitude analysis of $B^0 \rightarrow K_s \pi^+\pi^-$ decays

First observation of CP asymmetry in  $B^0 \rightarrow K^*(892)^+\pi^-$  using 3 fb<sup>-1</sup>

- Could help with the "K  $\pi$  puzzle"  $\rightarrow\,$  contains intermediate states such as  $B^0 \,{\rightarrow}\, K^{*\text{-}}\pi^{+}$
- Time integrated  $\rightarrow$  CKM phases not accessible

- BUT direct CP asymmetries between flavour-specific (FS) states such as  $B^0 \rightarrow K^{*-}\pi^+$  and  $B^0 \rightarrow K^{*+}\pi^-$  are measured



Thomas Grammatico - LPNHE

7

5th November 2019

### Results



5th November 2019

### Amplitude analysis of $B_{s}^{0} \rightarrow K_{s}^{0} K^{\pm} \pi^{\mp}$ decays



9

### Results



5th November 2019

## Branching fraction measurements of $B^0_{(s)} \rightarrow K_S h^+h'^-$



Dataset divided into:

4 final states

- $2 K_s$  reconstruction categories
- 3 data-taking periods
- → 24 invariant-mass distributions

Five BFs are measured relative to that of  $B^0 \rightarrow K_s \pi^+\pi^-$ All are compatible with previous results

 $\frac{\mathcal{B}(B_s^0 \to K_s^0 K^+ K^-)}{\mathcal{B}(B^0 \to K_s^0 \pi^+ \pi^-)} \in [0.008 - 0.051] \text{ at } 90\% \text{ confidence level}$ 

[JHEP 11 (2017) 027]

5th November 2019

## Branching fraction measurements of $B^0_{(s)} \rightarrow K_S h^+h'^-$

Using 3 fb<sup>-1</sup>, all modes observed but  $B^{0}_{s} \rightarrow K_{s}K^{+}K^{-}$  $B^0$ T stations **B**<sup>0</sup><sub>s</sub> Candidates / ( $16.25 \text{ MeV}/c^2$ ) magnet  $10^{2}$ ed Supressed ТΤ T track VELO Favoured ed 10 = upstream track long track Supressed ed **VELO track** 5200 downstream track Dataset divided into: 4 final states  $2 \text{ K}_{s}$  reconstruction categories Five BFs are measured relative to that 3 data-taking periods of  $B^0 \rightarrow K_s \pi^+ \pi^-$ All are compatible with previous results → 24 invariant-mass distributions

## Branching fraction measurements of $B^0_{(s)} \rightarrow K_S h^+h'^-$



Dataset divided into:

4 final states

- $2 K_s$  reconstruction categories
- 3 data-taking periods
- → 24 invariant-mass distributions

Five BFs are measured relative to that of  $B^0 \rightarrow K_s \pi^+\pi^-$ All are compatible with previous results

 $\frac{\mathcal{B}(B_s^0 \to K_s^0 K^+ K^-)}{\mathcal{B}(B^0 \to K_s^0 \pi^+ \pi^-)} \in [0.008 - 0.051] \text{ at } 90\% \text{ confidence level}$ 

[JHEP 11 (2017) 027]

5th November 2019

#### Analysis strategy



- Shapes taken from Monte-Carlo, except for combinatorial background

- ${\rm B_d}$  and  ${\rm B_s}$  masses and widths from fit to data
- Gaussian constraints on yields of misidentified signal and partially reconstructed background
- Fast Monte-Carlo developed for partially reconstructed background modelling

**Current Status** 

2016, DD – LHCb unofficial

Analysis updated using run I + 2016 data ~ 5 fb<sup>-1</sup>

Goals :

- Use run I + run II data ~ 9 fb<sup>-1</sup>
- search for  $B_s \rightarrow K_s K^+ K^-$

- Silmultaneous fit :

- 4 final states

2 K<sub>s</sub> reconstruction categories

- 6 data-taking periods

→ 42 invariant-mass distributions

Analysis ongoing in Paris, Clermont, Bogota and Warwick

#### **Current Status**

Goals :

- Use run I + run II data ~ 9 fb<sup>-1</sup> - search forB<sub>s</sub> → K<sub>s</sub>K⁺K⁻
- Silmultaneous fit :
  - 4 final states
  - 2 K<sub>s</sub> reconstruction categories
  - 6 data-taking periods
- → 42 invariant-mass distributions



2016, DD – LHCb unofficial

Analysis performed using run I + 2016 data ~ 5 fb<sup>-1</sup>

#### 5th November 2019

**Extraction of the CKM angle**  $\gamma$  using charmless 3-body *B*-meson decays

## Why measuring the CKM 2 parameters?

1.5

1.0

excluded area has CL > 0.95

### **CKM** parameters

- Precision measurements
- Test the unitarity of the CKM matrix
- $\Rightarrow$  Over-constrain the triangle

### Measure $\gamma$

- From tree decays  $\rightarrow$  precise value
- From loop decays → probe for new physics



 $\Delta m_a \& \Delta m_s$ 

# $\gamma$ from tree decays

CP violation measurement requires interference



# LHCb $\gamma$ combination

4

- 98 experimental observables, 40 free parameters in the fit
- hadronic parameters ( $r_B$ ,  $\delta_B$ ) also extracted along with  $\gamma$

Frequentist treatment

| B decay                             | D decay                                  | Method     | Ref. | $\mathrm{Dataset}^{\dagger}$ | Status since last com | 1–                   |
|-------------------------------------|------------------------------------------|------------|------|------------------------------|-----------------------|----------------------|
|                                     |                                          |            |      |                              | bination $[3]$        |                      |
| $B^+ \to DK^+$                      | $D \rightarrow h^+ h^-$                  | GLW        | [14] | Run 1 & 2                    | Minor update          |                      |
| $B^+ \to DK^+$                      | $D \rightarrow h^+ h^-$                  | ADS        | [15] | Run 1                        | As before             |                      |
| $B^+ \to DK^+$                      | $D \rightarrow h^+ \pi^- \pi^+ \pi^-$    | GLW/ADS    | [15] | Run 1                        | As before             |                      |
| $B^+ \to DK^+$                      | $D  ightarrow h^+ h^- \pi^0$             | GLW/ADS    | [16] | Run 1                        | As before             |                      |
| $B^+ \to DK^+$                      | $D  ightarrow K_{ m s}^0 h^+ h^-$        | GGSZ       | [17] | Run 1                        | As before             |                      |
| $B^+ \to DK^+$                      | $D  ightarrow K_{ m s}^0 h^+ h^-$        | GGSZ       | [18] | $\operatorname{Run} 2$       | New                   |                      |
| $B^+ \to DK^+$                      | $D  ightarrow K_{ m s}^{ m 0} K^+ \pi^-$ | GLS        | [19] | Run 1                        | As before             |                      |
| $B^+ \to D^* K^+$                   | $D \rightarrow h^+ h^-$                  | GLW        | [14] | Run 1 & 2                    | Minor update          |                      |
| $B^+ \to DK^{*+}$                   | $D \rightarrow h^+ h^-$                  | GLW/ADS    | [20] | Run 1 & 2                    | Updated results       |                      |
| $B^+ \to DK^{*+}$                   | $D  ightarrow h^+ \pi^- \pi^+ \pi^-$     | GLW/ADS    | [20] | Run 1 & 2                    | New                   | -                    |
| $B^+ \rightarrow D K^+ \pi^+ \pi^-$ | $D \rightarrow h^+ h^-$                  | GLW/ADS    | [21] | Run 1                        | As before             | $\tilde{\mathbf{O}}$ |
| $B^0 \to DK^{*0}$                   | $D \to K^+ \pi^-$                        | ADS        | [22] | Run 1                        | As before             | ~                    |
| $B^0 \rightarrow DK^+\pi^-$         | $D \rightarrow h^+ h^-$                  | GLW-Dalitz | [23] | Run 1                        | As before             |                      |
| $B^0 \to DK^{*0}$                   | $D \rightarrow K_{\rm s}^0 \pi^+ \pi^-$  | GGSZ       | [24] | Run 1                        | As before             |                      |
| $B_s^0 \to D_s^{\mp} K^{\pm}$       | $D_s^+ \rightarrow h^+ h^- \pi^+$        | TD         | [25] | Run 1                        | Updated results       |                      |
| $B^0 \rightarrow D^{\mp} \pi^{\pm}$ | $D^+ \rightarrow K^+ \pi^- \pi^+$        | TD         | [26] | Run 1                        | New                   |                      |

**LHCb combination**  $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$  Run 2 measurements were performed with an integrated luminosity of 2fb<sup>-1</sup> @13TeV. Analyses with the full 6fb<sup>-1</sup> dataset still to come.





- In agreement with world averages (CKMfitter, UTfit, HFLAV).
- Supersedes the previous LHCb measurement.
- Most precise determination of  $\gamma$  from a single experiment to date.

**Extraction of the CKM angle**  $\gamma$  **using charmless 3-body decays of** *B* **mesons** 

- theoretical method developed by B. Bhattacharya, M. Imbeault and D. London <u>Phys. Lett. B728 (2014) 206-209</u>
- combine information coming from several charmless modes
- potentially sensitive to new physics
- goal of the study: extract  $\gamma$  with its uncertainty

## In a nutshell

6



## In a nutshell



## In a nutshell



measured amplitudes over the DP

use BABAR analysis results



#### **Theoretical amplitudes**

functions of theoretical parameters +  $\gamma$ 

Fit to extract  $\gamma$ 

## **Experimental inputs**

BABAR amplitude-analysis results of 5 decay modes

$${}^{1)}B^{0} \to K^{0}_{S}K^{0}_{S}K^{0}_{S} \qquad {}^{2)}B^{0} \to K^{+}\pi^{0}\pi^{-} \qquad {}^{3)}B^{+} \to K^{+}\pi^{+}\pi^{-}$$

$${}^{4)}B^{0} \to K^{0}_{S}K^{+}K^{-} \qquad {}^{5)}B^{0} \to K^{0}_{S}\pi^{+}\pi^{-}$$

 1) Phys. Rev. D85 (2012) 054023
 2) Phys. Rev. D83 (2011) 112010
 3) Phys. Rev. D78 (2009) 112004

 4) Phys. Rev. D78 (2012) 112010
 5) Phys. Rev. D80 (2009) 112001

## **Experimental inputs**

BABAR amplitude-analysis results of 5 decay modes

$${}^{(1)}B^{0} \to K^{0}_{S}K^{0}_{S}K^{0}_{S} \quad {}^{(2)}B^{0} \to K^{+}\pi^{0}\pi^{-} \quad {}^{(3)}B^{+} \to K^{+}\pi^{+}\pi^{-}$$

$${}^{(4)}B^{0} \to K^{0}_{S}K^{+}K^{-} \quad {}^{(5)}B^{0} \to K^{0}_{S}\pi^{+}\pi^{-}$$

 1) Phys. Rev. D85 (2012) 054023
 2) Phys. Rev. D83 (2011) 112010
 3) Phys. Rev. D78 (2009) 112004

 4) Phys. Rev. D78 (2012) 112010
 5) Phys. Rev. D80 (2009) 112001
 3) Phys. Rev. D78 (2012) 112010

Description of the amplitude in the DP: the isobar model

Total amplitude of the decay modelled as a coherent sum of partial amplitudes.

$$\mathscr{A}(m_{12}^2, m_{23}^2) = \sum_{j=1}^{N} c_j e^{i\phi_j} F_j(m_{12}^2, m_{23}^2)$$
**Isobar parameters**
Weak and strong interactions
**Lineshape**
Strong dynamics



## Observables

From the experimental amplitudes we construct **momentum-dependent observables** 

$$X(m_{13}^2, m_{23}^2) \stackrel{\text{def}}{=} |\mathscr{A}(m_{13}^2, m_{23}^2)|^2 + |\overline{\mathscr{A}}(m_{13}^2, m_{23}^2)|^2 \quad \text{branching ratio}$$

$$Y(m_{13}^2, m_{23}^2) \stackrel{\text{def}}{=} |\mathscr{A}(m_{13}^2, m_{23}^2)|^2 - |\overline{\mathscr{A}}(m_{13}^2, m_{23}^2)|^2 \quad \text{direct } A_{CP}$$

$$Z(m_{13}^2, m_{23}^2) \stackrel{\text{def}}{=} \operatorname{Im}[\mathscr{A}^*(m_{13}^2, m_{23}^2)\overline{\mathscr{A}}(m_{13}^2, m_{23}^2)] \quad \text{indirect } A_{CP}$$

## Observables

From the experimental amplitudes we construct **momentum-dependent observables** 

$$X(m_{13}^2, m_{23}^2) \stackrel{\text{def}}{=} |\mathscr{A}(m_{13}^2, m_{23}^2)|^2 + |\overline{\mathscr{A}}(m_{13}^2, m_{23}^2)|^2 \quad \text{branching ratio}$$

$$Y(m_{13}^2, m_{23}^2) \stackrel{\text{def}}{=} |\mathscr{A}(m_{13}^2, m_{23}^2)|^2 - |\overline{\mathscr{A}}(m_{13}^2, m_{23}^2)|^2 \quad \text{direct } A_{CP}$$

$$Z(m_{13}^2, m_{23}^2) \stackrel{\text{def}}{=} \operatorname{Im}[\mathscr{A}^*(m_{13}^2, m_{23}^2)\overline{\mathscr{A}}(m_{13}^2, m_{23}^2)] \quad \text{indirect } A_{CP}$$

#### **13 observables for the 5 modes**

#### Inputs

measured amplitudes over the DP use BABAR analysis results

**Experimental observables** functions of measured amplitudes

#### **Theoretical amplitudes**

functions of theoretical parameters +  $\gamma$ 

Fit to extract  $\gamma$ 

#### Inputs

measured amplitudes over the DP use BABAR analysis results

**Experimental observables** functions of measured amplitudes

#### **Theoretical amplitudes**

functions of theoretical parameters +  $\gamma$  based on flavour-SU(3) symmetry

Fit to extract  $\gamma$ 

#### $B \rightarrow Khh$ modes: several diagrams



 $\gamma$  from 3-body decays:  $N_{\rm obs} < N_{\rm params}$ 

#### $B \rightarrow Khh$ modes: several diagrams



electroweak penguin



 $\gamma$  from 3-body decays:  $N_{\rm obs} < N_{\rm params}$ 

need to reduce number of parameters ⇒ Flavour SU(3) hypothesis

#### $B \rightarrow Khh$ modes: several diagrams



electroweak penguin



 $\gamma$  from 3-body decays:  $N_{\rm obs} < N_{\rm params}$ 

need to reduce number of parameters ⇒ Flavour SU(3) hypothesis

#### Flavour-SU(3)

Quark masses are the same

3 identical particles in the final state

Tree and penguin diagrams are proportional:

$$P_{\rm EW}^{(c)} = \kappa T^{(c)}$$
 with  $\kappa \approx 0.5$ 

Phys. Rev. D.84.034040

#### $B \rightarrow Khh$ modes: several diagrams



electroweak penguin



 $\gamma$  from 3-body decays:  $N_{\rm obs} < N_{\rm params}$ 

need to reduce number of parameters ⇒ Flavour SU(3) hypothesis

#### Flavour-SU(3)

Quark masses are the same 3 identical particles in the final state  $\left. \right\} \Rightarrow$  symmetrised amplitudes Tree and penguin diagrams are proportional:  $P_{\rm FW}^{(c)} = \kappa T^{(c)}$  with  $\kappa \approx 0.5$ 

#### Phys. Rev. D.84.034040

# Amplitude symmetrisation<sup>12</sup>

*Different final-state symmetrisations* are possible (fully symmetric, totally antisymmetric, mixed states)

**Choice for this work** 

**Fully-symmetrised amplitudes** 

$$\mathscr{A}_{\rm fs}(m_{12}^2, m_{23}^2) = \frac{1}{\sqrt{6}} \left( \mathscr{A}(m_{12}^2, m_{13}^2) + \mathscr{A}(m_{12}^2, m_{23}^2) + \mathscr{A}(m_{13}^2, m_{23}^2) + \mathscr{A}(m_{13}^2, m_{12}^2) + \mathscr{A}(m_{23}^2, m_{12}^2) + \mathscr{A}(m_{23}^2, m_{13}^2) \right)$$

## Fully symmetric DP divided into 6 regions containing the same information

Both theoretical and experimental amplitudes must be symmetrised in the same way


$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$   $\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$   $A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$  $\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$ 

 $2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$   $\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$   $A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$  $\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$ 

• 5 effective diagrams: A, B, C, D and  $\tilde{P}'_{uc}$ 

 $2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$   $\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$   $A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$  $\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$ 

- 5 effective diagrams: A, B, C, D and  $\tilde{P}'_{uc}$
- 1 weak phase:

$$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$$

$$A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$$

$$\sqrt{2}A_{\rm fs}(B^+ \to K^+ \pi^+ \pi^-) = -Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B$$

• 5 effective diagrams: A, B, C, D and  $\tilde{P}'_{uc}$ 

- 1 weak phase: γ
- 1 parameter related to flavour SU(3) breaking:  $\alpha_{SU(3)}$

$$2A_{\rm fs}(B^0 \to K^+ \pi^0 \pi^-) = Be^{i\gamma} - \kappa C$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^0 \pi^+ \pi^-) = -De^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa D$$

$$A_{\rm fs}(B^0 \to K^0 K^0 \overline{K}^0) = \alpha_{\rm SU(3)}(\tilde{P}'_{\rm uc}e^{i\gamma} + A)$$

$$\sqrt{2}A_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)}(-Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B)$$

$$\sqrt{2}A_{\rm fs}(B^+ \to K^+ \pi^+ \pi^-) = -Ce^{i\gamma} - \tilde{P}'_{\rm uc}e^{i\gamma} - A + \kappa B$$

• 5 effective diagrams: A, B, C, D and  $\tilde{P}'_{uc}$ 

- 1 weak phase:
- 1 parameter related to flavour SU(3) breaking:  $\alpha_{SU(3)}$

| Parameter counting |             |                  |  |  |  |  |
|--------------------|-------------|------------------|--|--|--|--|
|                    | th. params. | exp. observables |  |  |  |  |
| 4 modes            | 10          | 11               |  |  |  |  |
| 5 modes            | 11          | 13               |  |  |  |  |

#### Inputs

measured amplitudes over the DP use BABAR analysis results

#### **Experimental observables**

functions of measured amplitudes

#### **Theoretical amplitudes**

functions of theoretical parameters +  $\gamma$  based on flavour-SU(3) symmetry

Fit to extract  $\gamma$ 

#### Inputs

measured amplitudes over the DP use BABAR analysis results

#### **Experimental observables**

functions of measured amplitudes

#### **Theoretical amplitudes**

functions of theoretical parameters +  $\gamma$  based on flavour-SU(3) symmetry

 $X, Y, Z \dots = f_i(\mathscr{A}_{\mathrm{fs}}, \overline{\mathscr{A}}_{\mathrm{fs}})$ 



Fit to extract  $\gamma$ 

## Extracting $\gamma$ using one DP point <sup>15</sup>



- Observables (X, Y, Z) for all the modes.
- Covariance matrix including the correlations.
- Scan on  $\gamma$ : fix  $\gamma$  to consecutive values and evaluate the other parameters minimising a  $\chi^2$  function.



## Extracting $\gamma$ using one DP point <sup>15</sup>



• Observables (X, Y, Z) for all the modes.

Covariance matrix including the correlations.
Scan on γ: fix γ to consecutive values and evaluate the other parameters minimising a χ<sup>2</sup> function.

Cov matrix: 11x11 (13x13)



## Extracting $\gamma$ using one DP point <sup>15</sup>



- Observables (X, Y, Z) for all the modes.
- Covariance matrix including the correlations.
  Scan on γ: fix γ to consecutive values and evaluate the other parameters minimising a χ<sup>2</sup> function.

Cov matrix: 11x11 (13x13)



## Combining several points<sup>16</sup>

#### The use of several points allows:

- Using the maximum amount of information.
- Improving the validity of flavour SU(3) hyp.



Extract  $\gamma$  using the maximum number of points in the DP.



But, due to very high correlations between certain points we are limited to the use of **3 points** simultaneously

Cov matrix: 33x33 (39x39)

#### In practice

- Several hundred combinations of 3 points randomly scattered over the DP.
- For each set of points:
  - γ scan (500 fits with random initial parameters).
  - Extract minima and statistical uncertainties
- Combine results of all the scans.

## **Baseline results**

|          |            | central<br>value | "stati<br>unce |                |  |
|----------|------------|------------------|----------------|----------------|--|
|          | Minimum    | $\hat{\gamma}$   | $\sigma_L$     | $\sigma_R$     |  |
|          | $\gamma_1$ | $12.9^{\circ}$   | $4.3^{\circ}$  | $8.4^{\circ}$  |  |
| <b>,</b> | $\gamma_2$ | $36.6^{\circ}$   | $6.1^{\circ}$  | $6.6^{\circ}$  |  |
|          | $\gamma_3$ | $68.9^{\circ}$   | $8.6^{\circ}$  | $8.6^{\circ}$  |  |
|          | $\gamma_4$ | $223.2^{\circ}$  | $7.5^{\circ}$  | $10.9^{\circ}$ |  |
|          | $\gamma_5$ | $266.4^{\circ}$  | $10.8^{\circ}$ | $9.2^{\circ}$  |  |
|          | $\gamma_6$ | $307.5^{\circ}$  | $8.1^{\circ}$  | 6.9°           |  |

$$\gamma_{\text{WorldAverage}} = \left(73.5^{+4.2}_{-5.1}\right)^{\circ}$$

- use 4 modes ( $\alpha_{{
  m SU}(3)}=1$ )
- 501 sets of random 3-points combinations
- for each set: hundreds of fits randomising initial values of parameters
- fit convergence = 100%



## Systematic uncertainties<sup>18</sup>

Influence of "poorly resolved" minima



**Poorly resolved minimum:** the statistical uncertainty cannot be extracted.

⇒ not included in the average for the baseline result

$$Syst = |\hat{\gamma}^{\text{baseline}} - \hat{\gamma}^{\text{all}}|$$

**Baseline** combination

Including the poorly resolved minima

## Systematic uncertainties<sup>19</sup>

Influence of 
$$SU(3)_f$$
 breaking

The baseline fit **does not** take into account  $SU(3)_f$  breaking.  $\Rightarrow$  Extract  $\gamma$  again with the 5 modes, letting  $\alpha_{SU(3)}$  float in the fit.



results compatible with the baseline model

$$Syst = |\hat{\gamma}^{\text{baseline}} - \hat{\gamma}^{\text{5modes}}|$$

### Summary of systematic <sup>20</sup> uncertainties

| Minimum    | Poorly resolved minima | Flavour $SU(3)$ breaking |
|------------|------------------------|--------------------------|
| $\gamma_1$ | $0.8^{\circ}$          | 1.0°                     |
| $\gamma_2$ | $0.3^{\circ}$          | $2.6^{\circ}$            |
| $\gamma_3$ | $0.2^{\circ}$          | $2.4^{\circ}$            |
| $\gamma_4$ | $0.7^{\circ}$          | $0.7^{\circ}$            |
| $\gamma_5$ | $1.4^{\circ}$          | $1.3^{\circ}$            |
| $\gamma_6$ | $0.7^{\circ}$          | $0.9^{\circ}$            |

#### ⇒"Statistical" error dominates

## Summary and results

Using BABAR results we found 6 possible values for  $\gamma$ :

- $\gamma_1 = [12.9^{+8.4}_{-4.3} \text{ (stat)} \pm 1.3 \text{ (syst)}] \circ$
- $\gamma_2 = [36.6^{+6.6}_{-6.1} \text{ (stat)} \pm 2.6 \text{ (syst)}] \circ$

$$\gamma_3 = [68.9^{+8.6}_{-8.6} \text{ (stat)} \pm 2.4 \text{ (syst)}] \circ$$

- $\gamma_4 = [223.2^{+10.9}_{-7.5} \text{ (stat)} \pm 1.0 \text{ (syst)}] \circ$
- $\gamma_5 = [266.4^{+9.2}_{-10.8} \text{ (stat)} \pm 1.9 \text{ (syst]} \circ$
- $\gamma_6 = [307.5 + 6.9 8.1] (stat) \pm 1.1 (syst)] \circ$

- Uncertainty < 11° (BABAR results only!)
- Statistical uncertainty dominates
- Solutions well separated

$$\gamma_{\text{WorldAverage}} = \left(73.5_{-5.1}^{+4.2}\right)^{\circ}$$

It is **possible to extract**  $\gamma$  with an acceptable uncertainty with this method.

#### PhysRevD.99.114011

## Perspectives

#### Add information from other symmetry states

- totally anti-symmetric states
- mixed states

May help to decrease the statistical uncertainties and reduce the number of solutions.

 The amplitude analyses of these modes can also be done at LCHb or Belle II with more data.

 Interesting longer term possibility: dedicated analysis in a single experiment (LHCb, BELLE II...) or even a joint analysis(?)

## Backup

# Impact of $SU(3)_f$ breaking<sup>24</sup>

**First test** 

$$\mathscr{A}_{\rm fs}(B^0 \to K^+ K^0 K^-) = \alpha_{\rm SU(3)} \mathscr{A}_{\rm fs}(B^+ \to K^+ \pi^+ \pi^-)$$

$$\downarrow$$

$$\alpha_{SU(3)} = 1 \text{ if } SU(3)_f \text{ is conserved}$$

We define the ratio  $R(m_{13}^2, m_{23}^2)$ 

$$R(m_{13}^2, m_{23}^2) = \begin{cases} \mathscr{A}_{\rm fs}(B^+ \to K^+ \pi^+ \pi^-) + \mathscr{A}_{\rm fs}(B^- \to K^- \pi^- \pi^+) \\ \mathscr{A}_{\rm fs}(B^0 \to K^+ K_S^0 K^-) + \mathscr{A}_{\rm fs}(\overline{B}{}^0 \to K^+ K_S^0 K^-) \end{cases}$$

 $R(m_{13}^2, m_{23}^2) \in \mathbb{R}$ 

## The impact of $SU(3)_f$ breaking<sup>25</sup>

First test



Flavour SU(3) symmetry is conserved when averaging over many points in the DP.



Extract  $\alpha_{SU(3)}$  from fits at several single points ( $\approx$  400) over the DP fixing  $\gamma$  to the values of the 6 minima found previously.





Flavour SU(3) symmetry is conserved when averaging over many points in the DP.

• 32 possible final states  $\Rightarrow$  many possible choices of subsets of decays to extract  $\gamma$  $\Rightarrow$  4 classes of decays:  $B \rightarrow \pi \pi \pi, B \rightarrow K \pi \pi, B \rightarrow K K \pi, B \rightarrow K \overline{K} K$ 

- 32 possible final states  $\Rightarrow$  many possible choices of subsets of decays to extract  $\gamma$  $\Rightarrow$  4 classes of decays:  $B \rightarrow \pi\pi\pi$ ,  $B \rightarrow K\pi\pi$ ,  $B \rightarrow KK\pi$ ,  $B \rightarrow K\overline{K}K$
- amplitudes in terms of diagrams:

2-body case  $\rightarrow$  9 diagrams: *T*, *C*, *P*<sub>*uc*</sub>, *P*<sub>*tc*</sub>, *P*<sub>EW</sub>, *P*<sup>*C*</sup><sub>EW</sub>, *A*, *E*, *PA* 

3-body case  $\rightarrow$  more diagrams (2 ways of popping a pair of quarks from the vacuum)

- 32 possible final states  $\Rightarrow$  many possible choices of subsets of decays to extract  $\gamma$  $\Rightarrow$  4 classes of decays:  $B \rightarrow \pi\pi\pi$ ,  $B \rightarrow K\pi\pi$ ,  $B \rightarrow KK\pi$ ,  $B \rightarrow K\overline{K}K$
- amplitudes in terms of diagrams:

2-body case  $\rightarrow$  9 diagrams: *T*, *C*, *P<sub>uc</sub>*, *P<sub>tc</sub>*, *P<sub>EW</sub>*, *P<sup>C</sup><sub>EW</sub>*, *A*, *E*, *PA* neglected

3-body case  $\rightarrow$  more diagrams (2 ways of popping a pair of quarks from the vacuum)

- 32 possible final states  $\Rightarrow$  many possible choices of subsets of decays to extract  $\gamma$  $\Rightarrow$  4 classes of decays:  $B \rightarrow \pi\pi\pi$ ,  $B \rightarrow K\pi\pi$ ,  $B \rightarrow KK\pi$ ,  $B \rightarrow K\overline{K}K$
- amplitudes in terms of diagrams:
   2-body case → 9 diagrams: *T*, *C*, *P<sub>uc</sub>*, *P<sub>tc</sub>*, *P<sub>EW</sub>*, *P<sup>C</sup><sub>EW</sub>*, *A*, *E*, *PA* 3-body case → more diagrams (2 ways of popping a pair of quarks from the vacuum)
- π<sup>+</sup>, π<sup>-</sup>, π<sup>0</sup> are identical under isospin (idem for *K*s).
   3-body: 2 possibilities for the relative angular momentum 2 identical particles (*l* = 0 or 1)
   ⇒ *CP*-even and *CP*-odd cases considered separately
   ⇒ amplitudes = fncts of momentum-dependent strong parameters (∝ number of
  - diagrams) +  $\gamma$  (momentum independent)

- 32 possible final states  $\Rightarrow$  many possible choices of subsets of decays to extract  $\gamma$  $\Rightarrow$  4 classes of decays:  $B \rightarrow \pi\pi\pi$ ,  $B \rightarrow K\pi\pi$ ,  $B \rightarrow KK\pi$ ,  $B \rightarrow K\overline{K}K$
- amplitudes in terms of diagrams:
   2-body case → 9 diagrams: *T*, *C*, *P<sub>uc</sub>*, *P<sub>tc</sub>*, *P<sub>EW</sub>*, *P<sup>C</sup><sub>EW</sub>*, *A*, *E*, *PA* 3-body case → more diagrams (2 ways of popping a pair of quarks from the vacuum)
- π<sup>+</sup>, π<sup>-</sup>, π<sup>0</sup> are identical under isospin (idem for *K*s).
   3-body: 2 possibilities for the relative angular momentum 2 identical particles (*l* = 0 or 1)
   ⇒ *CP*-even and *CP*-odd cases considered separately
   ⇒ amplitudes = fncts of momentum-dependent strong parameters (∝ number of diagrams) + γ (momentum independent)
- use SU(3)<sub>f</sub> to reduce nb of th. params ( $P = \kappa T$ )  $\Rightarrow$  symmetrisation (FS, AS, mixed)

- 32 possible final states  $\Rightarrow$  many possible choices of subsets of decays to extract  $\gamma$  $\Rightarrow$  4 classes of decays:  $B \rightarrow \pi\pi\pi$ ,  $B \rightarrow K\pi\pi$ ,  $B \rightarrow KK\pi$ ,  $B \rightarrow K\overline{K}K$
- amplitudes in terms of diagrams:
   2-body case → 9 diagrams: *T*, *C*, *P<sub>uc</sub>*, *P<sub>tc</sub>*, *P<sub>EW</sub>*, *P<sup>C</sup><sub>EW</sub>*, *A*, *E*, *PA* 3-body case → more diagrams (2 ways of popping a pair of quarks from the vacuum)
- π<sup>+</sup>, π<sup>-</sup>, π<sup>0</sup> are identical under isospin (idem for *K*s).
   3-body: 2 possibilities for the relative angular momentum 2 identical particles (*l* = 0 or 1)
   ⇒ *CP*-even and *CP*-odd cases considered separately
   ⇒ amplitudes = fncts of momentum-dependent strong parameters (∝ number of diagrams) + γ (momentum independent)
- use SU(3)<sub>f</sub> to reduce nb of th. params ( $P = \kappa T$ )  $\Rightarrow$  symmetrisation (FS, AS, mixed)
- in principle  $\gamma$  can be obtained from  $B \to K\pi\pi$  modes, but 2  $\pi^0$  in the final state are difficult experimentally  $\Rightarrow$  combination of  $B \to K\pi\pi$  and  $B \to K\overline{K}K$

- 32 possible final states  $\Rightarrow$  many possible choices of subsets of decays to extract  $\gamma$  $\Rightarrow$  4 classes of decays:  $B \rightarrow \pi\pi\pi$ ,  $B \rightarrow K\pi\pi$ ,  $B \rightarrow KK\pi$ ,  $B \rightarrow K\overline{K}K$
- amplitudes in terms of diagrams:
   2-body case → 9 diagrams: *T*, *C*, *P<sub>uc</sub>*, *P<sub>tc</sub>*, *P<sub>EW</sub>*, *P<sup>C</sup><sub>EW</sub>*, *A*, *E*, *PA* 3-body case → more diagrams (2 ways of popping a pair of quarks from the vacuum)
- π<sup>+</sup>, π<sup>-</sup>, π<sup>0</sup> are identical under isospin (idem for *K*s).
   3-body: 2 possibilities for the relative angular momentum 2 identical particles (*l* = 0 or 1)
   ⇒ *CP*-even and *CP*-odd cases considered separately
   ⇒ amplitudes = fncts of momentum-dependent strong parameters (∝ number of diagrams) + γ (momentum independent)
- use SU(3)<sub>f</sub> to reduce nb of th. params ( $P = \kappa T$ )  $\Rightarrow$  symmetrisation (FS, AS, mixed)
- in principle  $\gamma$  can be obtained from  $B \to K\pi\pi$  modes, but 2  $\pi^0$  in the final state are difficult experimentally  $\Rightarrow$  combination of  $B \to K\pi\pi$  and  $B \to K\overline{K}K$

Model independent (no hadronic input needed) and data driven

### **Diagrams:** $B \rightarrow K\pi\pi$

28







## Sources of $SU(3)_f$ breaking

$$\frac{P'_{\text{EW},1,2} = \kappa T'_{1,2}}{\kappa \equiv -\frac{3}{2} \frac{|\lambda_t^{(s)}|}{|\lambda_u^{(s)}|} \frac{c_9 + c_{10}}{c_1 + c_2} \begin{cases} \lambda_p^{(s)} = V_{pb}^* V_{ps} \\ c_i : \text{Wilson coefficients} \end{cases}$$
assumptions:

assi

 $SU(3)_f$  symmetry holds

• 
$$\frac{c_1}{c_2} = \frac{c_9}{c_{10}}$$
 (holds to  $\approx 5\%$ )

 $\overline{b} \rightarrow \overline{s}$ : dominant contribution is  $P'_{tc}$ (EW penguin and tree diagrams are suppressed)  $\Rightarrow$  error relative to  $SU(3)_f$  breaking subdominant

 $B \rightarrow K\pi\pi$  and  $B \rightarrow KKK$ 

 $B \rightarrow K\overline{K}K$ :  $s\overline{s}$  pair in the final state  $B \to K\pi\pi$ :  $u\overline{u}/d\overline{d}$  pair in the final state

 $\Rightarrow$  SU(3)<sub>f</sub>-breaking effect is  $m_{u,d} \neq m_s$  considered to be the same for each diagrams ( $\alpha_{SU(3)}$ )

### $\pi$ 's and *K*'s

 $\pi$ 's and K's assumed to the identical particles while it's not the case

 $\Rightarrow$  also included in  $\alpha_{SU(3)}$ 

## Observables as functions of <sup>30</sup> the theoretical parameters

$$\begin{split} X^{th}_{K^+\pi^+\pi^-}(s_1,s_2) &= a^2 + (\kappa b)^2 + c^2 + 2ac\cos\phi_c\cos\gamma - 2\kappa ab\cos\phi_b - 2\kappa bc\cos(\phi_b - \phi_c)\cos\gamma \\ Y^{th}_{K^+\pi^+\pi^-}(s_1,s_2) &= -2\left(ac\sin\phi_c + \kappa bc\sin(\phi_b - \phi_c)\right)\sin\gamma , \\ X^{th}_{K^0_SK^+K^-}(s_1,s_2) &= (\alpha_{\rm SU(3)})^2 X^{th}_{K^+\pi^+\pi^-} , \\ Y^{th}_{K^0_SK^+K^-}(s_1,s_2) &= (\alpha_{\rm SU(3)})^2 \left(-c^2\cos\gamma - ac\cos\phi_c + \kappa bc\cos(\phi_b - \phi_c)\right)\sin\gamma , \\ Z^{th}_{K^0_S\pi^+\pi^-}(s_1,s_2) &= a^2 + (\kappa d)^2 + d^2 + 2ad\cos\phi_d\cos\gamma - 2\kappa ad\cos\phi_d - 2\kappa d^2\cos\gamma , \\ Y^{th}_{K^0_S\pi^+\pi^-}(s_1,s_2) &= -2ad\sin\phi_d\sin\gamma , \\ Z^{th}_{K^0_S\pi^+\pi^-}(s_1,s_2) &= \left(-d^2\cos\gamma - ad\cos\phi_d + \kappa d^2\right)\sin\gamma , \\ X^{th}_{K^0_S\pi^+\pi^-}(s_1,s_2) &= \left(-d^2\cos\gamma - ad\cos\phi_d + \kappa d^2\right)\sin\gamma , \\ X^{th}_{K^+\pi^+\pi^0}(s_1,s_2) &= \frac{1}{2} \left(b^2 + \kappa^2 c^2 - 2\kappa bc\cos\gamma\cos(\phi_b - \phi_c)\right) , \\ Y^{th}_{K^+\pi^+\pi^0}(s_1,s_2) &= \kappa bc\sin\gamma\sin(\phi_b - \phi_c) , \\ X^{th}_{K^0_SK^0_S}(s_1,s_2) &= 2(\alpha_{\rm SU(3)})^2 a^2 . \end{split}$$

## **Baseline results**

#### • $\alpha_{SU(3)} = 1$

- 501 sets of random 3-points combinations.
- 500 fits randomising the initial values of the parameters per set.
- Fit convergence = 100%.

|           | $\mu$           | $\sigma_L$     | $\sigma_R$     | $\chi^2$ |
|-----------|-----------------|----------------|----------------|----------|
| Minimum 1 | $12.9^{\circ}$  | $4.3^{\circ}$  | $8.4^{\circ}$  | 3.61     |
| Minimum 2 | $36.6^{\circ}$  | $6.1^{\circ}$  | $6.6^{\circ}$  | 1.99     |
| Minimum 3 | $68.9^{\circ}$  | $8.6^{\circ}$  | $8.6^{\circ}$  | 2.07     |
| Minimum 4 | $223.2^{\circ}$ | $7.5^{\circ}$  | $10.9^{\circ}$ | 2.15     |
| Minimum 5 | $266.4^{\circ}$ | $10.8^{\circ}$ | $9.2^{\circ}$  | 1.40     |
| Minimum 6 | $307.5^{\circ}$ | $8.1^{\circ}$  | $6.9^{\circ}$  | 1.74     |



Count Fraction (%)

| Minimum 1     | 484 | 96.6 |
|---------------|-----|------|
| $Minimum \ 2$ | 474 | 94.6 |
| Minimum 3     | 461 | 92.0 |
| Minimum 4     | 499 | 99.6 |
| Minimum 5     | 487 | 97.2 |
| Minimum 6     | 488 | 97.4 |

rates at which the different minima are obtained

## **Extraction of** $\gamma$ with 5 modes <sup>32</sup>



- 401 sets of random 3-points combinations.
- 500 fits randomising the initial values of the parameters per set.
- Fit convergence ≥ 80%.

Minimum 1

Minimum 2

Minimum 3

Minimum 4

Minimum 5

Minimum 6

| evts | 20      |      |     |     |        |                   | Π     |              |
|------|---------|------|-----|-----|--------|-------------------|-------|--------------|
| * 1  |         |      |     |     |        |                   |       |              |
|      |         | п    |     |     | Π      |                   |       |              |
|      | 80 - 08 | ľ    |     |     |        |                   |       |              |
|      |         |      |     |     |        | ]                 |       |              |
|      | 60      |      | 1   |     |        | Π                 |       |              |
|      |         |      |     |     |        | l l'              |       |              |
|      | 40 -    | JL J |     |     |        |                   |       |              |
|      |         |      |     |     | ſ      | ן ל ן             | ſĹ    |              |
|      |         | \[   |     |     | L<br>L |                   |       |              |
|      |         | ][/  |     |     |        | י ותו<br>ייי וארי |       |              |
|      | ٥       | 50   | 100 | 150 | 200    | 250               | 300   | 350<br>[dea] |
|      |         |      |     |     |        |                   | ۲ min | լսեցյ        |

| $\mu$           | $\sigma_L$     | $\sigma_R$     | $\chi^2$ | $ \mu - \mu^{all} $ | $ \mu^{4\mathrm{modes}} - \mu^{5\mathrm{modes}} $ |       |            | Count             | Fraction $(\%)$ |
|-----------------|----------------|----------------|----------|---------------------|---------------------------------------------------|-------|------------|-------------------|-----------------|
| $11.9^{\circ}$  | $5.8^{\circ}$  | $9.1^{\circ}$  | 3.53     | 1.3                 | 1.0                                               | minii | mum 1      | 306               | 76.3            |
| $39.2^{\circ}$  | $6.3^{\circ}$  | $6.7^{\circ}$  | 2.50     | 1.2                 | 2.6                                               | minii | mum 2      | 329               | 82.0            |
| $71.3^{\circ}$  | $9.5^{\circ}$  | $9.3^{\circ}$  | 2.58     | 0.4                 | 2.4                                               | minii | num 3      | 372               | 92.3            |
| $223.9^{\circ}$ | $7.4^{\circ}$  | $9.5^{\circ}$  | 2.92     | 0.1                 | 0.7                                               | minii | mum 4      | 383               | 95.5            |
| $265.0^{\circ}$ | $11.0^{\circ}$ | $10.0^{\circ}$ | 2.19     | 1.2                 | 1.3                                               | minii | 1000 mum 5 | 378               | 94.3            |
| $308.4^{\circ}$ | $8.8^{\circ}$  | $7.0^{\circ}$  | 2.49     | 0.6                 | 0.9                                               | minii | mum 6      | $\frac{391}{391}$ | 97.5            |

### rates at which the different minima are obtained

## Amplitude symmetrisations <sup>33</sup>

3 particles in the final state  $(1,2,3) \Rightarrow 6$  symmetrisations



2 identical particles in the final state  $\Rightarrow |A\rangle = 0$ 

3 identical particles in the final state  $\Rightarrow$   $|A\rangle = 0$  and  $|M_i\rangle = 0$ 

Each final-state symmetry has its own set of diagrams  $\Rightarrow T_1^{FS} \neq T_1^{AS}$ 

Fully symmetric: spin 1 resonances disappear Fully antisymmetric: S = 0, S = 2 resonances disappear

### **DP** mappings



**Goal:** find a mapping so that  $K\pi\pi$  planes are used completely

Idea: use a mapping into a square

 $\Rightarrow$  use the cosines of helicity angles  $c_{ii}$ 

 $\Rightarrow$  need to define fully-symmetric states in terms of  $c_{ij}$ 

 $c_{12} = \frac{M^2(m_1^2 - m_2^2 - s_{12}) + (m_2^2 - s_{12})(m_3^2 - s_{12}) - m_1^2(m_3^2 + s_{12}) + 2s_{12}s_{23}}{s_{12}\sqrt{\frac{m_1^4 + (m_2^2 - s_{12})^2 - 2m_1^2(m_2^2 + s_{12})}{s_{12}}}\sqrt{\frac{M^4 + (m_3^2 - s_{12})^2 - 2M^2(m_3^2 + s_{12})}{s_{12}}}}{c_{12}}, c_{13}, c_{23} \text{ not related by a relation like } m_{12}^2 + m_{13}^2 + m_{23}^2 = M^2 + \sum_{i=0}^3 m_i^2 c_{ij}^2 = -c_{ji}^2$ 

**How?** USE  $K_S^0 K_S^0 K_S^0$ : the symmetrisation with the mass must be exactly identical to the symmetrisation with the  $c_{ij}$ : different possibilities



#### "easiest" one

$$A_{fs} \propto A(c_{21}, c_{23}, c_{31}) + A(c_{23}, c_{21}, c_{13}) + A(c_{12}, c_{31}, c_{23}) + A(c_{32}, c_{13}, c_{21}) + A(c_{31}, c_{12}, c_{32}) + A(c_{13}, c_{32}, c_{12})$$

#### actually harder as it looks...

To a point  $(c_{13}, c_{23})$  is associated a different point  $(m_{13}^2, m_{23}^2)$  per mode (since the masses of the particles differ)...


## Thoughts on a dedicated analysis <sup>35</sup>

- Enough of data to perform
  time-dependent DP analyses
- Observables for each mode \_

 $\Rightarrow$  measure  $\gamma$  with a simultaneous fit using several charmless modes as inputs

• Measure  $\gamma$  directly from the data?

 $\Rightarrow$  need a relation between the parameters of the amplitude model and the theoretical parameters

- Isobar model?
  - $\Rightarrow$  not required by the method
  - $\Rightarrow$  could use alternative parametrisations, eg. QMI?

These are only ideas  $\Rightarrow$  phenomenological work needed before being able to measure  $\gamma$  this way