

LPSC Grenoble

04/11/2019

GDR-InF

Systematic effects on measurement of the neutron electric dipole moment

UNIVERSITÉ Grenoble Alpes

Laura Ferraris-Bouchez

Introduction Motivations

NECESSARY

- Matter / antimatter asymmetry
 - No complex antimatter nuclei
 - No radiation excess (annihilation)
- Sakharov conditions
 - Baryon number violation
 - Interactions out of thermal equilibrium
 - C and CP violations

Paul Scherrer Institute nEDM experiment General principle

$$f_n = \frac{2}{h} |\mu_n B \pm d_n E|$$

Statistical sensibility $\rightarrow 1.1 \times 10^{-26} e$ cm

Laura Ferraris-Bouchez | GDR-InF

Paul Scherrer Institute nEDM experiment Magnetic field

- $1 \mu T$ vertical field generated by B_0 coil
 - Very uniform $\rightarrow \frac{\delta B_0}{B_0} \sim 10^{-3}$
- Non-uniformities reductions
 - 33 compensation coils (trimcoils)

• 1 run nEDM :

Laura Ferraris-Bouchez | GDR-InF

- *B*₀ **up / down**
- Set of currents i_c for the trimcoils
 - Minimization of non-uniformities
- 1 fixed value for the vertical gradient

 $\overline{B_0}$

Paul Scherrer Institute nEDM experiment Magnetic field

$$f_n = \frac{2}{h} |\mu_n B \pm d_n E|$$

• Magnetic field drifts

• Correction of f_n with Hg co-magnetometer

Paul Scherrer Institute nEDM experiment Magnetic non-uniformities effects

- Motional Hg false EDM
 - Relativistic field $\vec{v} \times \vec{E} / c^2$
 - Magnetic non-uniformities

$$d_{n} = d_{n}^{\text{true}} + d_{n \leftarrow \text{Hg}}^{\text{false}}$$
$$d_{n \leftarrow \text{Hg}}^{\text{false}} = \frac{h \gamma_{n} \gamma_{\text{Hg}} R^{2}}{8 c^{2}} (\mathbf{G}_{\text{grav}} + \widehat{\mathbf{G}})$$

Gravitational gradient $G_{grav} = G_{1,0}$ $+AG_{3,0} + BG_{5,0} + \cdots$

Residual gradient \widehat{G} $\widehat{G} = A'G_{3,0} + B'G_{5,0} + \cdots$

- Gravitational shift $\langle z \rangle = -0.39(3)$ cm
 - Hg atoms: gas (uniformly distributed)
 - Very low energy UCNs (lower than Hg)

$$\mathcal{R} = \frac{f_{\rm n}}{f_{\rm Hg}} = \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| \cdot \left(1 \pm \frac{\langle z \rangle}{B_0} G_{\rm grav} \right)$$

Paul Scherrer Institute nEDM experiment Magnetic non-uniformities effects

$$d_{\rm n} = d_{\rm n}^{\rm true} + \frac{h \gamma_{\rm n} \gamma_{\rm Hg} R^2}{8 c^2} \left(G_{\rm grav} + \widehat{G} \right) \text{ AND}$$

$$\mathcal{R} = \frac{f_{\rm n}}{f_{\rm Hg}} = \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| \cdot \left(1 \pm \frac{\langle z \rangle}{B_0} G_{\rm grav} \right)$$

Magnetic field mapping Panorama

• Goal: \hat{G} and $\langle B_T^2 \rangle$ per run

- Mapper
 - Fluxgate (3 axes magnetometer)
 - Radial motion on a rotating support
- 3 campaigns (2013, 2014 et 2017) ~ 300 maps
 - Remanent field
 - B0 up / down
 - Trimcoils
 - nEDM runs magnetic configuration

Mapping analysis Global analysis

9

Mapping analysis 1 map analysis method

10

Laura Ferraris-Bouchez | GDR-InF

1.0

1.5

2.0

Mapping results **Field reproducibility**

-- $\mathcal{N}(0, \sigma_{\widehat{G}}^2)$

up 2013

up 2014 up 2017 down 2013 down 2014

🗖 down 2017

 $\sigma_{\widehat{G}} = 0.56 \text{ pT/cm}$

-1.5 -1.0 -0.5 0.0 0.5

 $\widehat{G} - \overline{\widehat{G}}$ (pT/cm)

Crossing point analysis Mapping corrections on double-blinded data

Statistical sensibility $\rightarrow 106 \times 10^{-28} e$ cm

- \widehat{G} correction run by run:
 - Correction to $d_{\times} \Rightarrow -57 \times 10^{-28} e \text{ cm}$ \Rightarrow More than 50% of the error bar
 - Contribution to $\Delta d_{\times} \Longrightarrow 8 \times 10^{-28} e \text{ cm}$
- $\langle B_T^2 \rangle$ correction run by run:
 - Correction to $d_{\times} \Longrightarrow 1 \times 10^{-28} e \text{ cm}$
 - Contribution to $\Delta d_{\times} \Longrightarrow 5 \times 10^{-28} e \text{ cm}$

Crossing point analysis Single-blinded data

nt analyzes with 2

2 independent analyzes with 2 different blinding factors

1st unblinding:

- Identical results (18% of the error bar)
- Identical statistical error
- Unchanged \hat{G} correction
- Unchanged $\langle B_T^2 \rangle$ correction

Soon the results for non-blinded data ...

