

My brilliant collaborators:

Sadra Jazayeri David Stefanyszyn Scott Melville (Postdoc) (Postdoc) (Hawking Fellow)

Jakub Supeł (PhD student)

Harry Goodhew (PhD student)

Gordon Lee (PhD student)

All results are based on a series of recent papers

- 2004.09587: "On the symmetries of Cosmological Correlators", with D. Green
- 2007.00027: "The Boostless Bootstrap: Amplitudes without Lorentz Boosts", with J. Supel & D. Stefanyszyn
- 2009.02898: "The Cosmological Optical Theorem", with H. Goodhew and S. Jazayeri
- 2010.12818: "A Boostless Bootstrap for the Bispectrum"
- 2103.08649: "From Locality and Unitarity to Cosmological Correlators", with S. Jazayeri and D. Stefanyszyn
- 2103.09832: "Cosmological Cutting Rules", with S. Melville

Motivations

- Cosmological observations probe quantum field theory on curved spacetime and the perturbative regime of quantum gravity
- Studying the primordial universe we hope to learn about new degrees of freedom and interactions beyond the standard model and perhaps collect hints on the UVcompletion of gravity
- In this talk I will describe recent progress in computing and understanding primordial observables using fundamental principles such as unitarity, locality and symmetries

The future boundary

- The goal of (primordial cosmology) is to compute Ψ at the end of inflation (on the reheating surface). We don't see the time dependence!
- Mathematically this is the space-like future conformal boundary of quasi de Sitter spacetime, $t \rightarrow infinity$ (or $\eta \rightarrow 0$ in conformal time)

The wavefuncion

 The wavefunction of the universe, is a functional of the all fields in the theory (including the metric) at some time:

$$\Psi[\phi] = \exp\left[-\sum_{n=2}^{\infty} \int \psi_n \phi(\mathbf{k}_1) \dots \phi(\mathbf{k}_n)\right],$$

All probabilities can be computed as in QM

$$\langle \mathcal{O} \rangle = \int d\phi \, \Psi^* \, \mathcal{O} \Psi$$

It can be computed perturbatively from a path integral

$$\Psi[\phi(\mathbf{x}); \eta_0] = \int_{\text{vacuum}}^{\phi(\mathbf{x}, \eta_0)} [\mathcal{D}\phi] e^{iS[\phi]}$$

Cosmological correlators

- The Ψ_n coefficient are closely related to cosmological correlators, which determine the statistic of the Cosmic Microwave Background anisotropies and of Large Scale Structure inhomogeneities (e.g. galaxies, Dark Matter, ...)
- For example

$$P(k) = \frac{1}{2 \operatorname{Re} \psi_2(k)}$$

$$B_3 = -\frac{2}{\prod_a^3 \operatorname{Re} \psi_2(k_a)} \operatorname{Re} \psi_3$$

$$B_4 = -\frac{2}{\prod_a^4 \operatorname{Re} \psi_2(k_a)} \left[\operatorname{Re} \psi_4 - \sum_{s,t,u} \frac{\operatorname{Re} \psi_3 \operatorname{Re} \psi_3}{\operatorname{Re} \psi_2} \right]$$

Making predictions

How do we make predictions?

Option 1 is great when we have a well-established theory, e.g.
 General relativity or the Standard Model, and many observables

Feynman Diagrams

- Given a model, e.g. GR + a scalar, we can compute the wavefunction with the following Feynman rules.
- For a given set of fields (i.e. of free propagators), the vertices F are computed from the model Lagrangian

$$\psi_n = \psi_n(\{k\}; \{p\}; \{k\})$$

$$= \psi_n(\text{external energies; internal energies; contractions})$$

"Bulk" computations

This approach is straightforward conceptually but has a few *drawbacks*:

- 1. The relation between Lagrangian and observables is many to one because of *field redefinitions and gauge symmetries*
- 2. Many different "Bulk Lagrangians" give the similar boundary observables
- 3. Even at tree-level there are V *nested integrals* (due to the lack of time-translation invariance; cf. amplitudes). Hard to compute!
- 4. Fundamental principles (e.g. unitarity & locality) are obscured: How do I know a given wavefunction comes from a unitary & local theory?
- 5. More ambitiously, to derive cosmological positivity bounds and nonperturbative correlators we need a more fundamental understanding

Making predictions: the Bootstrap approach

 Option 2 is great when we have too many theories, e.g. inflation or Beyond the Standard Model, and we compute always the same observables, e.g. cosmo correlators or amplitudes

Observed symmetries

- Cosmological perturbations are observed to be statistically homogeneous and isotropic
- Primordial perturbations are also observed to be approximately scale invariant
- Anything else?
 - With de Sitter boost we can derive general results and connect with Conformal Field Theory and holography. See beautiful progress by Maldacena, Pimentel, Arkani-Hamed, Baumann, Joyce, etc...
 - If we are instead more interested in phenomenology, we cannot assume Boost invariance. Here is why...

Observed:

- Translations
- Rotaions
- Scale invariance

dS Boost:
Cosmological
Bootstrap
[Arkani-Hamed,
Baumann, Joyce,
Pimentel, etc]

dS boosts: boostless bootstrap [this talk]

Three theorems [Green & EP '20]

Assuming homogeneity, isotropy and scale invariance, I'll prove:

Theorem 1: The correlators of curvature perturbations are uniquely characterized by their soft limits (no field redefinition ambiguities)

Theorem 2: The only theory of *curvature perturbations* with full de Sitter symmetries is the free theory

Theorem 3: de Sitter symmetries are the largest possible set of symmetries for any single scalar field

Th. 1 & 2 are valid *only in single-clock cosmology* (while Th. 3 is general)

There are no further assumptions about the particle content (any mass and spin) or the interactions

Theorem 3

- The space of symmetries is constrained by self-consistent dynamics, as in the Coleman-Mandula theorem.
- The only symmetries that can be linearly-realized on single scalar are

assumed observed symmetries

$$\sum_{a=1}^{n} \vec{k}_a \langle \phi(k_1) \dots \phi(k_n) \rangle = 0 \quad \text{translations}$$

$$\sum_{a=1}^{n} k_a^{[i} \partial_{k_a^{j]}} \langle \phi(k_1) \dots \phi(k_n) \rangle = 0 \quad \text{rotations}$$

$$\sum_{a=1}^{n} (3 - \Delta + k_a \partial_{k_a}) \langle \phi(k_1) \dots \phi(k_n) \rangle = 0 \quad \text{dilations}$$

$$\sum_{a=1}^{n} \left[2\vec{k} \cdot \vec{\partial} \partial_i - k_i \partial^2 + 2(3 - \Delta) \partial_i \right] \langle \phi(k_1) \dots \phi(k_n) \rangle = 0 \qquad \text{dS boosts}$$
 additional

Th. 2: Conformal = free

De Sitter symmetries act on ζ as

$$P_{i}: \delta\zeta = -\partial_{x^{i}}\zeta,$$

$$M_{ij}: \delta\zeta = 2x_{[i}\partial_{x^{j}]}\zeta,$$

$$D: \delta\zeta = -\vec{x} \cdot \vec{\partial}\zeta,$$

$$K^{i}: \delta\zeta = -2x^{i} (\vec{x} \cdot \vec{\partial}\zeta) + x^{2}\partial_{x^{i}}\zeta,$$

translations rotations dilations boosts

Single-clock cosmology must also be invariant under

$$D_{\mathrm{NL}}:\delta\zeta=-1-\vec{x}\cdot\vec{\partial}\zeta\,,$$
 soft $K_{\mathrm{NL}}^{i}:\delta\zeta=-2x^{i}-2x^{i}\left(\vec{x}\cdot\vec{\partial}\zeta
ight)+x^{2}\partial^{x^{i}}\zeta\,$ theorems

Locality

- Locality is colloquially the fact that what happens here cannot affect a system far away. Operators commute for space-like separation and correlators must factorise at large distances (cluster decomposition).
- A common sufficient condition for locality is Manifest Locality: Lagrangian interactions are products of operators at the same spacetime point. No inverse laplacians are allowed.
- Remarkably, we proved that the wavefunction must satisfy the very simple Manifestly Local Test (MLT) [Jazayeri, EP & Stefanyszyn '21]

$$\frac{\partial}{\partial k_c} \psi_n(k_1, ..., k_n; \{p\}; \{\mathbf{k}\}) \Big|_{k_c=0} = 0, \quad \forall c = 1, ..., n,$$

Derivation

There are two derivations: (i) a pure boundary derivation using unitarity and singularities (see paper) and (ii) a bulk derivation that uses the Feynman rules.

Notice that as k->0 there is no linear term in K

$$\lim_{k \to 0} K(k, \eta) = \lim_{k \to 0} (1 - ik\eta) e^{ik\eta} = \left(1 + 0 \times \frac{k\eta}{2} + \frac{1}{2} k^2 \eta^2 + \dots \right)$$

which is also true for all time derivatives. The same is then true for the wavefunction coefficient

$$\psi_n = \left[\prod_A^V \int d\eta_A \, F_A\right] \left[\prod_m^I G(p)\right] \left[\prod_a^n K(k_a)\right]$$

Manifest locality

- This is true as long as there are *only positive powers of k* in the interactions, i.e. the theory is *manifestly local*.
- All large non-Gaussianities in single field inflation come from manifestly local interactions in the EFT of inflation, e.g.

$$\mathcal{L} \supset \dot{\phi}^3 + (\partial \phi)^2 \dot{\phi} + \dot{\phi}^4 + \dots$$

 But gravity has not manifestly local interactions after we integrate out the non-dynamical lapse and shift (to which our MLT does not apply)

$$\mathcal{L}_{GR} \supset \dot{\zeta}^2 \nabla^{-2} \dot{\zeta} + \dots$$

 Manifest locality -> locality but not vice versa. How does locality relate inverse Laplacians to massless spinning particles in the spectrum, e.g. solid inflation?

Amplitude limit

- The residue of the total-energy pole (kT=k1+...+kn=0) of (tree-level) correlators is fixed by the (UV-limit of the) amplitude [Maldacena & Pimentel '11; Raju '12; Arkani-Hamed et al '17-'18; Benincasa '18]
- The precise relation is [Goodhew, Jazayeri & EP '20]

$$\lim_{k_T \to 0} B_n = \frac{(-1)^n H^{p+n-1}(p-1)!}{2^{n-1}} \times \frac{\operatorname{Re}\left(i^{1+n+p} A_n\right)}{\left(\prod_{a=1}^n k_a\right)^2 k_T^p},$$

 where p is fixed by dimensional analysis and scale invariance. For the bispectrum it's simply the number of derivatives. More generally [EP '20]

$$p = 1 + \sum_{\alpha} (D_{\alpha} - 4)$$

The MLT enforces the amplitude to be manifestly local, i.e. only have positive powers of momenta

Unitarity

Unitary time evolution

- In Quantum Mechanics we compute probabilities, which must be between 0 and 1 to make sense
- This requires the positive norm of states in the Hilbert space and Unitary time evolution, UU†=1. Colloquially this is the conservation of probabilities
- The consequences of unitarity for particle physics amplitudes were discover over 60 years ago: the Optical theorem and Cutkosky Cutting Rules.
- In cosmology we don't see the time evolution, so how can we see it's unitary?!

The Cosmological Optical Theorem (COT) [Goodhew, Jazayeri, EP '20]

- From unitarity, UU†=1, we found infinitely many relations.
- The simplest applies to contact n-point functions

$$\psi_n(\{k\}, \{\mathbf{k}\}) + \psi_n^*(-\{k\}, -\{\mathbf{k}\}) = 0$$

- It follows from unitarity time evolution, but the equation does not involve time! Time "emerges" at boundary as in holography...
- This is a Cosmological Optical Theorem (COT) and can be interpreted as fixing a "discontinuity"

$$\text{Disc}\psi_n(\{k\}, \{\mathbf{k}\}) \equiv \psi_n(\{k\}, \{\mathbf{k}\}) + \psi_n^*(-\{k\}, -\{\mathbf{k}\})$$

Exchange diagrams

 The next simplest case is a 4-particle exchange diagram (trispectrum). The Cosmo Optical Theorem (COT) is

General diagrams

• These relations are valid to all order in perturbation theory to any number of loops for fields of any mass and spin and arbitrary interactions (around any FLRW admitting a Bunch Davies initial condition) [Goodhew, Jazayeri & EP '21; Melville & EP '21]

 These are Cosmological Cutting Rules. With a 60 year delay over particle physics, we finally understand unitarity in cosmology.

Loop corrections

 Unitarity gives us also loop corrections! For example we compute the leading 1-loop corrections for the power spectrum in the EFT of inflation, from tree-level results.

$$i$$
Disc $\left[i\psi_{\mathbf{k_1k_2}}^{1-\text{loop}}\right] = \frac{H^2}{f_{\pi}^4} \frac{ik^3}{480\pi} \frac{(1-c_s^2)^2}{c_s^4} \left[(4\tilde{c}_3 + 9 + 6c_s^2)^2 + 15^2 \right]$

Bootstrap Rules

- To complete the derivation we need a set of Bootstrap Rules
 [EP '20]
- As an example, let's bootstrap the bispectrum (3-point function) of a scalar

The calculation

 The Bootstrap Rules reduced the problem to determining the numerical constants C_mn via the Manifestly Local Test

$$\psi_3^{(p)}(k_1, k_2, k_3) = \frac{1}{k_T^p} \sum_{n=0}^{\lfloor \frac{p+3}{3} \rfloor} \sum_{m=0}^{\lfloor \frac{p+3-3n}{2} \rfloor} C_{mn} k_T^{3+p-2m-3n} e_2^m e_3^n,$$

$$\partial_{k_1} \psi_3 \Big|_{k_1=0} = 0$$

- This yields all manifestly local bispectra for a scalar to any order in derivatives in the EFT of inflation
- This gives order by order the shapes of non-Gaussianity that are constraint e.g. by the Cosmic Microwave Background, e.g. the Planck mission

Shapes of non-Gaussianity

$$\psi_3^{(0)} = A_0 \left[4e_3 - e_2 k_T + (3e_3 - 3e_2 k_T + k_T^3) \log(-k_T \eta/\mu) \right]$$

$$\psi_3^{(1)} = 0$$

$$\psi_3^{(1)} = 0$$

$$\psi_3^{(2)} = A_2 \left[-k_T^3 + 3k_T e_2 - 11e_3 + \frac{4e_2^2}{k_T} + \frac{4e_2 e_3}{k_T^2} \right]$$

$$\psi_3^{(3)} = A_3 \frac{1}{k_T^3} (k_T^6 - 3k_T^4 e_2 + 11k_T^3 e_3 - 4k_T^2 e_2^2 - 4k_T e_2 e_3 + 12e_3^2) + A_3' \frac{e_3^2}{k_T^3}$$

- Ψ contains the famous local non-Gaussianity, while Ψ the so-called equilateral and orthogonal non-Gaussianities, the main tar gets of non-Gaussian searches in the CMB and galaxy surveys!
- In the standard approach the numerical coefficient come from time integrations, here they're fixed algebraically

Comments and extensions

- A similar derivation gives all possible graviton non-Gaussianities! [EP '20; Cabass, EP, Stefanyszyn & Supel to appear]
- The bootstrap derivation
 - is numerical much faster than performing the traditional (in-in) time integrals.
 - makes the role of fundamental principle transparent
 - can be extended to any number of field of any spin

Exchange diagrams

 Also exchange diagrams can be computed using partial energy recursion relations. These use the Cosmo Optical Theorem to fix all residue of partial energy singularities.

Tree-level n-point function have only two types of singularities:

• Total energy poles, the residue is an amplitude:

$$k_T = \sum_{a=1}^n k_a \to 0$$

Partial energy poles, all residues are fixed by the COT

Partial Energy Recursion Relations

- The residues of all partial energy singularities of the exchange diagram are fixed by the Cosmo Optical Theorem
- Since the correlator is an analytic function, it is determined by these residues (plus a residue at infinity which is fixed by locality and unitarity up to a contact term)

$$\psi_4(E_L, E_R) = \oint \frac{dz}{z} \psi_4(E_L + z, E_R - z)$$

$$= \sum \text{Res [Cosmo Opt Th]} + \text{Boundary}$$

Summary

- Cosmological observations test high energy physics, the perturbative regime of quantum gravity and discover new particles and forces.
- In the last two years we have made tremendous progress on understanding how fundamental principles such as unitarity and locality are encoded in observables (cosmo correlators).
- We have a Cosmological Optical Theorem, a Manifestly Local Test that enforce unitarity and locality of the observables without any reference to time.
- Fundamental principles are so powerful that observables are bootstrapped directly from them, without the need to write down explicit models and Lagrangians.

Connections

This bootstrap program connects with many topics discussed at this workshop:

- de Sitter in String theory: from the singularity of correlators and unitarity we can prove whether a UV-complete correlator/wavefunction exists or not and if it comes from a string theory
- phenomenology, CMB & LSS: the bootstrap makes predictions for all primordial observables compatible with the chosen fundamental principle.
 So we can use the data to extract model-independent information
- Gravitational waves, scalar-tensor theories, modified gravity: we can predict all graviton correlators for any modified theory of gravity that respects unitarity locality and the chosen symmetries
- Quantum gravity in dS: this time-less history of time gives us the rules that
 the hypothetical CFT/QFT holographic dual of dS must obey. What does
 the Cosmo Optical Theorem and Manifestly Local test mean for the QFT/
 CFT??