

Through the veil of dust to inflation

Konstantinos Tassis

University of Crete

Foundation for Research and Technology – Hellas

The PASIPHAE Collaboration

FOUNDATION FOR RESEARCH AND TECHNOLOGY - HELLAS

Our Sponsors

European Research Council

Established by the European Commission

IΔΡΥΜΑ ΣΤΑΥΡΟΣ ΝΙΑΡΧΟΣ STAVROS NIARCHOS FOUNDATION

Magnetized Galactic dust also emits polarized microwaves

ESA/ LFI & HFI Consortia

Magnetized Galactic dust also emits polarized microwaves

Planck 2015 X

ESA/ LFI & HFI Consortia

CMB dust emission removal:

Magnetized Galactic dust also emits polarized microwaves

Planck 2015 X

ESA/ LFI & HFI Consortia

CMB dust emission removal:

Magnetized Galactic dust also emits polarized microwaves

Frequency (GHz)

Magnetized Galactic dust also emits polarized microwaves

ESA/ LFI & HFI Consortia

CMB dust emission removal:

- Map at high frequencies (dust dominates)
- Subtract from lower frequencies (CMB dominates)

"Map & Subtract" cannot work with polarization

Polarization ROTATES between frequencies because of **multiple clouds** and **misaligned B-fields**

Tassis & Pavlidou 2015

"Map & Subtract" cannot work with polarization

Polarization ROTATES between frequencies because of **multiple clouds** and **misaligned B-fields**

Tassis & Pavlidou 2015

frequency decorrelation *most unconstrained effect*

Planck Collaboration L 2017, Poh & Dodelson 2017, Hensley & Bull 2017, Puglisi et al 2017, Martizez-Solaeche et al. 2017, Planck Collaboration XXX 2016, Planck 2018 results. XI., BeyondPlanck XIV. 2021, Mangilli et al. 2021, etc.

21cm data to the rescue!

- # of clouds along the los (Panopoulou & Lenz 2020)
- direction of B-field from morphology of H clouds (Clark & Hensley 2019)

Control → 1 cloud = no LOS decorrelation expected Target → multiple clouds + missaligned = LOS decorrelation expected

21cm data to the rescue!

Clark et al. 2014

21cm data to the rescue!

- # of clouds along the los (Panopoulou & Lenz 2020)
- direction of B-field from morphology of H clouds (Clark & Hensley 2019)

Control → 1 cloud = no LOS decorrelation expected Target → multiple clouds + missaligned = LOS decorrelation expected

Control → 1 cloud = no LOS decorrelation expected Target → multiple clouds + missaligned = LOS decorrelation expected

Pelgrims et al. 2021

Pelgrims et al. 2021

The Solution: 3D Magnetic Tomography

- Use stars of **known distances** as lamp posts
- Measure stellar polarization
 ✓ get B direction in different clouds
 ✓ measure and model out 3D effects

i = 1, N

j = 1, K

The Solution: 3D Magnetic Tomography

• Use stars of known distances as lamp posts

Possible for the first time

PASIPHAE optopolarimetric survey

The PASIPHAE survey:

- > Will observe all stars with Rmag ≤ 16
- Will deliver mean polarization down to 0.1% at 3σ for 0.25 deg² pixels
- Survey rate: 8 deg²/night (Skinakas 1.3m) -- 7 deg² /night (SAAO1.0 m) assuming 70% efficiency
- ➤ ~ 1,500 deg² / yr

PASIPHAE optopolarimetric survey

Measure polarization of **several million stars**

PASIPHAE optopolarimetric survey

WALOPs: the PASIPHAE polarimeters

WALOP - S

WALOP - N

Wide Area Linear Optical Polarimeter (WALOP)

- Innovative and well-tested technology of RoboPol
- Implements low-systematics design in a wide field
- Commissioning by the end of the year

Polarization Systematics

RoboPol standards program

Tomography

Panopoulou et al. 2019

 $\begin{array}{c} \text{Galactic Longitude} \\ 105.0^{\circ} \quad 104.0^{\circ} \quad 103.0^{\circ} \end{array}$

Improving CMB foreground subtraction

1.0

1.5

Is polarization due to absorption predictive of emission polarization?

YES!

emission, absorption Q,U are tightly correlated

3-d effects can account for most of scatter

Planck Intermediate results XXI (2015)

- Now: modified-black-body model is fitted in each pixel (using e.g. Planck data)
- With PASIPHAE: fit one modified-black-body model for each cloud, using: B-field direction from PASIPHAE/Gaia + Planck data (T) + cloud edges, column density from all-sky HI surveys

Getting the value of the B-field

Without Alfvén waves $(B_{tot} = B_0)$

With Alfvén waves $(B_{tot} = B_0 + \delta B)$

MHD waves – Alfvén waves

Standing waves

Traveling waves

Credit: H. Spruit

DCF method - quantitatively

Magnetic energy density

$$\frac{B^2}{8\pi} = \frac{1}{8\pi} \left[B_0^2 + 2 \,\delta B \,\phi \phi + \delta B^2 \right]$$

Alfvén waves transverse: $\delta B \perp B_0 \Rightarrow \delta B \cdot B_0 = 0$ Energy Balance

Contamination from compressible modes

- Alfvén waves are coupled with the compressible modes Heyvaerts & Priest 1983
- Diffuse ISM clouds are highly compressible with M_s ~ 3
 Heiles & Troland 2003
- Compressible modes contribute in δv and $\delta B/B_0$ Cho & Lazarian 2002

Our method

Alfvénic turbulence

- Magnetic field vector $B = B_0 + \delta B$
- Alfvén waves transverse
 Goldreich & Sridhar 1995

 $\delta B \perp B_0 \Longrightarrow \delta B \cdot B_0 = 0$

• Magnetic energy density

 $\frac{B^2}{8\pi} = \frac{1}{8\pi} [B_0^2 + 2\delta B_0 + \delta B^2]$

Compressible turbulence

- Magnetic field vector $B = B_0 + \delta B$
- Compressible wave poroperties Bhattacharjee & Hameiri (1988), Bhattacharjee et al.

(1998)

$$\delta \rho \propto \delta B \cdot B_0 \implies \delta B \cdot B_0 \neq 0$$

Magnetic energy density

$$\frac{B^2}{8\pi} = \frac{1}{8\pi} \left[B_0^2 + 2 \delta B \cdot B_0 + \delta B^2 \right]$$

$$0^{\text{th}} \qquad 1^{\text{st}} \qquad 2^{\text{nd}}$$

Our method

Alfvénic turbulence

$$\frac{1}{2}\rho\delta v^2 = \frac{\delta B^2}{8\pi}$$
$$V_{A,0} = \delta v \left[\frac{\delta B}{B_0} \right]^{-1}$$

Davis 1951, Chandrasekhar & Fermi 1953

Compressible turbulence

Skalidis & Tassis 2021

Comparison between the different methods

Skalidis & Tassis 2021

- M_A=0.7 for every model
- The absolute mean relative deviation of our method is:

$$\epsilon = 17\%$$

Wider Impact

- 3-D Tomographic Map of Galactic B-field:
 - ✓ What is the origin of Galactic B-field?
 - Is the B-field dynamically important in interstellar clouds?
 - Where are ultra-high-energy cosmic rays coming from?

credit: Ntormousi et al. 2020

Wider Impact

- 3-D Tomographic Map of Galactic B-field:
 - ✓ What is the origin of Galactic B-field?
 - Is the B-field dynamically important in interstellar clouds?
 - Where are ultra-high-energy cosmic rays coming from?

credit: Ntormousi et al. 2020

- Polarimetric Database
 - ✓ Stellar Astrophysics
 - ✓ High-energy astrophysics

credit: McSwain 2014 credit: Pavidou 2015

More Information

• PASIPHAE WP on arXiv: 1810.05652 :

We gr Cornell University the Simons Fo			
Kiv.org > astro-ph > arXiv:1810.05652	Search All fields V Sear Help Advanced Search		
strophysics > Instrumentation and Methods for Astrophysics	Download:		
ASIPHAE: A high-Galactic-latitude, high-accuracy optopolarimetric survey	PDF Other formats (license)		
Konstantinos Tassis, Anamparambu N. Ramaprakash, Anthony C. S. Readhead, Stephen B. Potter, Ingunn K. Wehus, Georgia V. Panopoulou, Dmitry Blinov, Hans Kristian Eriksen, Brandon Hensley, Ata Karakci, John A. Kypriotakis, Siddharth Maharana, Evangelia Ntormousi, Vasiliki Pavlidou, Timothy J. Pearson, Raphael Skalidis PASIPHAE (the Polar-Areas Stellar Imaging in Polarization High-Accuracy Experiment) is an optopolarimetric survey aiming to measure the linear polarization from millions of stars, and use these to create a three-dimensional tomographic map of the magnetic field threading dust clouds within the Milky Way. This map will provide invaluable information for future CMB B-mode experiments searching for inflationary gravitational waves, providing unique information regarding line-of-sight integration effects. Optical polarization observations of a large number of stars at known distances, tracing the same dust that emits polarized microwaves, can map the magnetic field between them. The Gaia mission is measuring distances to a billion stars, providing an opportunity to produce a tomographic map of Galactic magnetic field directions, using optical polarization of starlight. Such a map will not only boost CMB polarization foreground removal, but it will also have a profound impact in a wide range of astrophysical research, including interstellar medium physics, high-energy astrophysics, and evolution of the Galaxy. Taking advantage of the novel technology implemented in our high-accuracy Wide-Area Linear Optical Polarimetres (WALOPs) currently under construction at IUCAA, India, we will engage in a large-scale optopolarimetric program that can meet this challenge: a survey of both northern and southern Galactic polar regions targeted by CMB experiments, covering over 10.000. Current dormer, which will measure linear optical polarization fore (marce 6, Burce 6			
		action square degrees, which win measure intear optical polarization of over 500 stars per square degree (over 5.5 minion stars, a 1000-fold increase over the state of the arc be conducted concurrently from the South African Astronomical Observatory in Sutherland, South Africa in the southern hemisphere, and the Skinakas Observatory in Crete, Gr north.	reece, in the Bookmark

Comments: 16 pages, 6 figures Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM) Cite as: arXiv:1810.05652 [astro-ph.IM] (or arXiv:1810.05652v1 [astro-ph.IM] for this version)

Submission history From: Konstantinos Tassis [view email] [v1] Fri, 12 Oct 2018 18:00:04 UTC (5,666 KB)

More Information

• Nature Astronomy Mission Control:

News & Comment >		
Editorial	Pushing the limits of discovery	
17 May 2021	Be it neutrinos, ultra-high-energy photons or gravitational waves, new cosmic messengers have expanded the available discovery space of astronomy by exploring previously inaccessible astrophysical environments.	
Mission Control	Lifting the dusty veil over inflation	
17 May 2021	Two novel imaging polarimeters are being installed on two 1-m-class telescopes in order to examine dust foregrounds in cosmic microwave background studies as part of the PASIPHAE survey.	
	A. Ramaprakash, A. C. S. Readhead & K. Tassis	
Research Highlight	The oxygen bait	
11 May 2021	Luca Maltagliati	

More Information

<u>http://pasiphae.science</u>:

HOME INSTRUMENTS TEAM SCIENCE NEWS JOBS LINKS

...

POLAR-AREAS STELLAR IMAGING IN POLARIZATION HIGH-ACCURACY EXPERIMENT

Thank you