LiteBIRD Testing cosmic inflation from L2

reBIRO

Cosmological frontiers in fundamental physics APC - Perimeter - Solvay 26 May 2021

Davide Poletti (SISSA)
On behalf of the LiteBIRD joint study group

LiteBIRD

Almost 300 members of the joint study group //

LiteBIRD: the next CMB satellite mission

Satellite for probing cosmic inflation through the cosmic microwave background polarization

May 2019: Selected as JAXA's Strategic large-class mission

Inflation

Big Bang model: problems

- Horizon
- Flatness
- Monopole
- Initial conditions

> INFLATION

What physics drives it?

Beyond the standard model? What energy scale?

Did it actually occur?

Can we make falsifiable predictions?

- Near scale-invariant initial conditions
- Gravitational wave background

B-modes in the CMB

Scientific objectives

Use CMB polarization to search for signal of cosmic inflation

- making a discovery or ruling out well-motivated inflationary models
- insight into the quantum nature of gravity

Requirements (no external data)

- For tensor-to-scalar ratio r=0, total uncertainty on $\delta r<0.001$
- For r=0.01, 5σ -detection of reionisation ($2 \le \ell \le 10$) and recombination bump ($11 \le \ell \le 200$)

Extra science outcomes

Further improving sensitivity on r with external data

 Characterization of B-modes and search for source fields (e.g scale-invariance, non-Gaussianity, parity violation)

- Power spectrum features in polarization
- Large-scale E-modes, their implications for reionization history and the neutrino mass
- Cosmic birefringence
- SZ effect (thermal and relativistic correction)
- Elucidating anomalies
- Galactic science

•

Why space and complementarity with the ground

- Only way to access largest scales
- Ideal environment (no atmosphere, no ground pickup, no limitations on the choice of the frequency bands)

Strategic L-class mission at JAXA

- Flagship science mission with HIIA/H3 vehicle
- 30B yen cost cap (300M USD for 1 USD = 100 yen)

L-class #3 to be planned

_															
	20	21	22	23	24	25	26	27	28	29	30	31	32		

XRISM (recovery of Hitomi)

L-class #1
Martian
Moons
eXploration
(MMX)

L-class #2
LiteBIRD
(selected in May 2019)

HIIA

Observation

The satellite

Payload

Rotating half-wave plate (HWP) for 1/f noise & systematics reduction

Medium- and High-Frequency Telescopes

Focal plane units

c) HF-FPU

Polarized foregrounds and LiteBIRD bands

- Thermal dust: $A_d \left(\frac{\nu}{\nu_0}\right)^{\beta_d+1} \frac{e^{\frac{h\nu_0}{k_BT_d}}-1}{e^{\frac{h\nu}{k_BT_d}}-1}$
- Synchrotron: $A_s \left(\frac{\nu}{\nu_0}\right)^{\beta_s}$

Reference sky: pysm3 d1s1 (Thorne+, 2016) Based on:

- Planck 2015 for dust
- Haslam and WMAP 9-year for synchrotron

Foregrounds amplitude

Component separation in LiteBIRD

- (G)NILC (Delabrouille+, 2008; Remazeilles+, 2011; Basak+, 2012, ...)
- Harmonic moment expansion (Chluba+, 2017; Mangilli+, 2021; Vacher+, in prep)
- B-SeCRET (de la Hoz, 2020)
- Delta-map (Ichiki+, 2019)
- COMMANDER (Eriksen+, 2004; Eriksen+, 2008, ...)
- FGBuster (Stompor+, 2016; Errard+, 2019; Poletti+, in prep)

Parametric fitting

Data model
$$d_p^{(\nu)} = \sum_c A_{\nu,c} s_p^{(c)} + n_p^{(\nu)}$$

Likelihood
$$-2 \ln \mathcal{L}(s,\beta) = [d - As]^{\mathsf{T}} N^{-1} [d - As] + \text{const}$$

Solution

- 1. Numerical optimization problem to fit the non-linear parameters
- 2. Closed-form to fit the component amplitudes $\hat{s} = (A^T N^{-1} A) A^T N^{-1} d$

How to choose the non-linear parameters? What resolution?

Multipatch approach (Errard and Stompor, 2019) constant spectral parameters over healpix pixels of given nside

d1s1 noiseless sims 40% sky

High resolution spectral parameters are needed Post-component separation noise and statistical residuals (analytic model)

→ high-resolution degrades performances

different parameters have very different requirements

Sky: spectral indices vary

Cleaning:

- Very localized fit → high statistical residuals
- High S/N fit → high systematic residuals

Different tradeoff for different parameters

Multiresolution setup for LiteBIRD: different resolution for different parameters AND sky area

Power spectrum and parameters

Path forward

- Optimizing further the balance between statistical and systematic residuals
- Keep increasing the complexity of the foregrounds (or decrease it?!)
 - More spatial variations? Decorrelation? (See, e.g., Tassis, 2015; Pelgrims+, 2021)

 See next talk by K. Tassis
 - Up to which complexity the performances are robust?
 - Are we able to detect an incorrect modeling of the SEDs?

 Keep increasing the integration between foreground cleaning, calibration and systematics mitigation

Coming soon

A comprehensive review of LiteBIRD is in preparation.

- Mission concept
- Instrumental design
- Calibration strategy
- Systematics assessment
- Component separation
- Science outcome
 - 1
 - Extra science

Beyond B-modes

- Cosmic-variance-limited E-modes:
 an important, and guaranteed, legacy for LiteBIRD
- Constrain the reionization history, $\sigma(\tau) = 0.002$
- Contribute to the measurement of $\sum m_{
 u}$ by constraining au

Beyond B-modes

Large number of frequency bands and high sensitivity

- Map hot gas in the universe with thermal Sunyaev-Zeldovich effect
- Rayleigh scattering
- Constrain cosmic birefringence
- Primordial magnetic fields
- Galactic science

125°00′00″ GLON

 120°

130°

125°00′00″

GLON

 120°

 130°

Summary

- LiteBIRD: selected as the next CMB space mission. Launch in late 2020s.
- Probe for inflation: $\delta r < 0.001$ if r = 0 or 5σ -detection of reionisation and recombination bump if r = 0.01
- Rich extra-science and legacy
- Foreground rejection is central
 - 15 bands from 34 to 448 GHz
 - Tailored component separation techniques are being developed

A comprehensive review of the mission concept and expected science outcome is in preparation, stay tuned