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Lots of theoretical and experimental experience with two-body problem in Newtonian mechanics

- Integrable
- Closed elliptical orbits; no perihelium precession
- Reducible to motion of effective particle around COM

- Laplace-Runge-Lenz vector
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- This conservation law is broken by relativistic effects, but a QFT
generalization exists — dual conformal symmetry

Generally-relativistic two-body problem is much more difficult and interesting

- Departure form Kepler’s result provided first observational
test of general relativity (perihelion precession of Mercury)

- Lots of data showing important GR effects
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LIGO & VIRGO: GWTC-1: A NEW CATALOG
OF GRAVITATIONAL-WAVE DETECTIONS

see next two talks for up-to-date data



Inspiral Merger Ringdown

Anatomy of a binary merger: from 1610.03567 Antelis & Moreno

Sy e

e Separation of scales: conservative dynamics vs. radiation emission
—> focus on conservative part



Inspiral Merger Ringdown

from 1610.03567 Antelis & Moreno
' B, @ o

Anatomy of a binary merger:

I

Post — Newtonian Numerical Perturbation
Theory Relativity Theory

Virial thm.
, v GM

* Closed orbits: expansion in two parameters: v°~ — <1

- Post-Newtonian expansion (weak field, nonrelativistic):

- Post-Minkowskian expansion (weak-field, relativistic):
 Expansionin G — <
*  Resummation of the velocity expansion

~ 1

- “Self-force” — expansion in a small mass ratio v? ~ GM/|r| ~ 1



PN vs PM expansion for non-spinning compact objects
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PN vs PM expansion for non-spinning compact objects

1
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PM results: Westfahl (79), Westfahl, Goller (80), Portilla (79-80), Bell et al (81), Ledvinka et al (10), Damour (16-17),
Guevara (17), Vines (17), Bini, Damour (17-18)

recent PM results: Bern, Cheung, RR, Solon, Shen, Zeng (19), Cheung, Solon (20), Kalin, Porto (20); Parra-Martinez, Ruf,
Zeng (20), Bern, Parra-Martinez, RR, Ruf, Solon, Shen, Zeng (21); Herrmann, Parra-Martinez, Ruf, Zeng (21)



How do scattering amplitudes fit here?



Scattering and bound state dynamics
are governed by the same (effective) Hamiltonian

Cheung, Rothstein, Solon;
Bern, Cheung, RR, Solon, Shen, Zeng

(1)

find Hamiltonian from
scattering amplitude —
considerations

use to study
bound state dynamics

“Integrate out the gravitons”



Generating function of scattering observables

(1.5) from Bern, Parra-Martinez, RR,

. . Ruf, Solon, Shen, Zeng
scattering amplitudes

=) Analytic continuation®to bound observables



o) Final-state scattering observables Kosower, Maybee, O’Connell

£(O)s = ¢(U[i[O, T|V)s + ¢ (V| THO, T]| V)

£(O)f = (9>‘< @/ O ><><

=) Analytic continuation™ to bound observables



Why PM expansion --

- Increase precision/extend the reach of PN calculations

- Unmodeled LIGO searches for transient events

- Explore the structure of gravitational perturbation theory

- Possible generalization of Laplace-Runge-Lenz symmetry to GR;
such generalization is present at O(G)

- Unexpected functional structures (both at O(G®) and O(G*))

- Unexpected structure for spin-dependent observables

explicit calculations — Structures and patterns

\ new technical tools /

&
new questions

Caron-Huot, Zahraee



Why PM expansion --

- Increase precision/extend the reach of PN calculations

- Unmodeled LIGO searches for transient events

- Explore the structure of gravitational perturbation theory

- Possible generalization of Laplace-Runge-Lenz symmetry to GR;
such generalization is present at O(G)

- Unexpected functional structures (both at O(G®) and O(G*))

- Unexpected structure for spin-dependent observables

- Complementary approach; new perspective on gravitational interactions

- Information for semi-analytic/semi-numerical approaches

- E.g. functional basis required for fitting numerical data

Caron-Huot, Zahraee



PHYSICAL REVIEW D 97, 044038 (2018)

High-energy gravitational scattering and the general relativistic
two-body problem

Thibault Damour
Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France

®  (Received 29 October 2017; published 26 February 2018)

A technique for translating the classical scattering function of two gravitationally interacting bodies into
a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D
94, 104015 (2016)]. Using this technique, we derive, for the first time, to second-order in Newton’s
constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly
relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a
tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio
binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano.
We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special
phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent)
linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing
these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect
our classical results to the quantum gravitational scattering amplitude of two particles, and we urge
amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar
masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.



Scattering amplitudes — bread and butter of quantum field theory calculations

(Older) Textbook approach — Feynman diagrams
-- excessively complex beyond tree diagrams

Novel methods make possible previously unimaginable calculations in gauge and gravity theories
On-shell recursion relations Britto, Cachazo, Feng, Witten

Generalized unitarity Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng
Color-kinematics duality

Double copy construction
New integration methods

Bern, Carrasco, Johansson

The key: manifest gauge invariance at all intermediate stages
Some milestones:

4-point amplitudes through 5 loops full color N=4 super-Yang-Mills theory
4-point amplitudes through 5 loops N=8 supergravity
4-point amplitudes through 4 loops N=4 supergravity
4-point amplitudes through 2 loops full color N=2 super-QCD
- Supersymmetry is not essential, but it does make things simpler
- Higher-point amplitudes have also been computed through these methods



Post-Minkowskian expansion plays on amplitudes’ strengths

All-orders in v/c plays on strengths of amplitude technology

Great tools for perturbative gravity calculations: Unitarity, KLT relations, BCJ, integration techniques
Bern, Dixon, Dunbar, Kosower; Kaway, Lewellen, Tye; Bern, Carrasco, Johansson

Use EFT techniques to integrate out gravitons Goldberger, Rothstein; Neill, Rothstein; Cheung, Rothstein, Solon

Model black holes as point-particles; suitable at large separation

Amplitudes-based approach can easily incorporate other properties, Goldberger, Ridgway; Shen; etc; Vadya;
such as spin and finite size Guevara et al; Donoghue et al. ; Guevara, Ochirov, Vines;
O’Connell, Maybee, Vines; Bern, Luna, RR, Shen, Zeng; etc

Where are we at?
- Computation of effective interaction potentials between massive bodies (O(G?) and O(G*)" )
- Conservative radiation contributions to observables (O(G?))
- Dissipative observables (energy/momentum loss, O(G?))
- Spin-dependent observables; conjectured generating fct of open-orbit observables O(S*G?)

- Leading order finite-size effects; structure



More structure: an amplitude-action relation Bern, Parra-Martinez, RR, Ruf, Solon, Shen, Zeng

S-matrix unitarity
SSt =1 S=1+iT =— 9ImT =TT"

Purely-elastic/conservative processes: ~ only 2-particle states

Theory of a single scalar —— better solution: S = e® *= phase shift operator
Classical limit: (p+q,E|S|p, E) = @ (1+ O(h ZMk

What is I,.(q) :

- With fixed time and coordinate:

<tf7 xf‘S’tia 371> — S (=(1),p(t)) (1 + 0(h)) Scl(m(t),p(t)) — / (pdq; — H(p, aj))
trajectory
- Legendre-transform to fixed energy: (use assumed conservative nature of scattering)
. . . ty
It is the radial action: I, =Sq+ FEt = / pdx dI,. = —xdJ + AtdE + . ..
i trajectory

* Direct relation between elastic scattering amplitudes in classical limit and radial action



The two-body matter Hamiltonian through 4PM:

Hamiltonian — general form:
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The classical limit of the potential-scattering part of the 4-scalar amplitude at 3 loops:
Bern, Parra-Martinez, RR, Ruf, Solon, Shen, Zeng
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NB: 4PM potential does not contain the complete conservative physics.
- signal: IR divergence; scheme dependence
- resolution: additional terms needed, related gravitational radiation
emitted and reabsorbed by the two-body system (tail effect)
known in a PN expansion, but not in a PM expansion
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Binding energy

Ae/le]

Energetics of two-body Hamiltonians in post-Minkowskian gravity

Andrea Antonelli,’ Alessandra Buonanno,'” Jan Steinhoff," Maarten van de Meent,' and Justin Vines'
'Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Miihlenberg 1, Potsdam 14476, Germany

2Department of Physics, University of Maryland, College Park, Maryland 20742, USA

orbits to merger

® (Received 25 January 2019; published 6 May 2019)
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Binding energy vs. orbital frequency



Energetics with 4PM potential

Khalil, Buonanno, Steinhoff, Vines (in preparation)

Even with incomplete Hamiltonian, it is worth probing energetics to see if we are on track

Binding energy
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Various EOB-type models including partial 4PM data
VS.
numerical GR

- Only the finite part of potential is used

1
- ZM! isdropped
Hypyw/o tail € 4 PP
EOB
Hapx - Scale dependence also gone

NGR

- Not yet conclusive but quite encouraging

- Motivation to complete the tail calculation



Motion of spinning bodies

An all-order conjecture for open-orbit observables: Bern, Luna, RR, Shen, Zeng
AO = e XP[O, eXP]
. 8X 89
Dg=xg+D : D ,g) = — gk gk 2 2
XDy = xg + Ds1(x; 9) sz (X, 9) a;2 « 557 317

M5152—>5151 — CeiX - 1
X = conservative eikonal phase of the 5155 — 5155 amplitude

- General proof at O(G y); explicit check at O(G3;) through orders (S152, 5%, S5 )
recent checks at Sll and SS Luna, Kosmopoulos vs. Liu, Porto, Yang

- Points to remarkable simplicity and structure in the solution to spinning Hamilton’s egs.

- One might expect that a direct relation between X and observables exists to all orders

- The eikonal phase or its improved version, the radial action I, = /p -dx , are generating
functions of open-orbit observables v

Other amplitudes-based approaches: Maybee, O’Connell, Vines ; Guevara, Ochirov, Vines



Radiative observables in (classical) scattering processes

Kosower, Maybee, O’Connell

£(APfaq)t = Z li

gravitons
LO & NLO:

ApD) — G*m’v 3r (50% — 1) b Apt) _ G*m*?2 (1-20%)2 [ 1 o L@u
LT TRR T Vo1 A UEN GRS VI U
(@) B2 4 . s, O arcsinhy/ 7%= |

Apl,rad — |b|3 mm 1 (0) + f3 (0) m Herrmann, Parra-Martinez, Ruf, Zeng

: o—1 1
sl | 7o) 1 folo)og (1) 4 (o) TV 2
21J1 2 g 5 3 m |

Agreement with other approaches at this order (divergence of (’)(G4) potential) Damour



From Amplitudes to effective two-body Hamiltonian

Aq Aq

Ay Ay

Construct an effective theory of positive-energy matter particles whose
scattering amplitudes in the classical limit are the same as those of
General Relativity coupled to scalar fields in the classical limit

Lepr = A10; A1 + A0; Ay — H

H(p,r,G) = \/p?>+mi+ \/p?>+ m5+V(p,r, Q)



Goal: interaction of classical heavy particles with spin while integrating out short distance gravitons

ff shell radiation
.. gul/:nm/“‘ho + h .
GR + (spinning) matter = - e S.rr = S.py(matter, hradiation)
. eff eff » uy
Subtlety: radiation can also be off shell

(Semi) classical limit: “all conserved charges are large”

In h=1 “classical”: de Broglie wavelength A of particles is much smaller than their
units: 1 1
-separation: A~ — < |b|~ — = |L|=|bxp|>1; |p|>|q|
p| [
- size: A~ pv— S — |S| = mri|lw| > 1
0

Classical limit/expansion: O(1/|L|) ~ O(1/|S]) ~ O(|q|/m) ~ O(q/m)

L . mG
Newton’s potential is classical VNewton ~ o

. . cijk(P) i(a-SY K
Structure of two-body classical potential: F,. [V(p,r, S), q} ~ BrER (Gm|q|) R (R|q|)

= Loops contain classical physics



From Amplitudes to effective Hamiltonian: the flowchart

Full theory
(GR + scalar fields)

Amplitudes methods:
double copy, KLT

Graviton-matter
tree amplitudes

Generalized unitarity,
double copy

Integral representation of
full theory 4-pt loop amplitude

Multi-loop
integration

Full-theory
4-pt matter amplitude

same
physics

Effective theory
(positive-energy matter)

l ansatz

V(p,q)A1 A1 Az As

Feynman graphs,
other

Integral representation of
EFT 4-pt loop amplitude

Multi-loop
integration

EFT 4pt amplitude



From Amplitudes to Classical Hamiltonian: the flowchart

Full theory
(GR + scalar fields)

Amplitudes methods:
double copy, KLT

Graviton-matter
tree amplitudes

classical

limit

Generalized unitarity
double copy

Integral representation of
full theory 4-pt loop amplitude
in the classical limit

classical
+
limit

Multi-loop
integration

Full-theory
4-pt matter amplitude
in the classical limit

same
physics

Effective theory
(positive-energy matter)

l ansatz

V(p,q)A1 A1 Az As

Feynman graphs,
other

Integral representation of
EFT 4-pt loop amplitude
in classical limit

classical N l Multi-loop

limit integration

EFT 4pt amplitude
in the classical limit



Example -- scalar-coupled GR at tree level: contributions to the classical Hamiltonian

167G N 1 167G aym?m2 1
NR N 2 2. 2 NIt 2
Mtree 4E1E2 q2( (pl p2) m1m2) 4E1E2 qQ( o ) 9

P1 - P2

0‘ _=
m1mMmo 1 >
lCenter of mass
H(p,r) =\/P*+mi+\/P*+m3+V(p,7), V(p,v)=) ci(p’) (
i=1
2

v

C1 — %(ml + m2)2(1 — 20‘2) %

mimeo E1E2 El + E2
YV = f — 5 ’y = —
(E1 + E») my 4 mo




Gravitational scattering amplitudes

Feynman graph gravitational perturbation theory is complicated

Estimate for the 2-loop 4-scalar amplitude:

- 3 terms per s-s-graviton vertex

- about 100 terms per 3-graviton vertex
- 2-3 terms per graviton propagator

- some (large) number of 2-loop graphs

Most are gauge artifacts and cancel out in final expression

~ 10* terms

;: ~ 10° terms

Avoid handling them at all «—— loop amplitudes from tree amplitudes

Generalized unitarity

Reorganization of Feynman graph perturbation theory

Bern, Dixon, Dunbar, Kosower
1-loop improvements: Britto, Cachazo, Feng

Amplitudes’ integrands = rational functions with prescribed poles and residues

Poles = graph structure with given number of external lines and loops

Residues = generalized cuts = products of tree amplitudes = “generalized cuts”

> \ery convenient for our purpose: can weed out pieces that are not classical



Amplitudes from generalized unitarity and double copy

e Gravity trees from gauge theory trees through KLT relations: Kawai, Lewellen, Tye
M*(1,2,3,4) = —is10AY(1,2,3,4)AY (1,2, 4, 3)
ME(1,2,3,4,5) = is12834AY(1,2,3,4,5) A (2,1,4,3,5) + (2 < 3)
ME" = 12 terms of the type s°AgAg
- Hold state-by-state for external lines, following addition of helicities

e.g. scalar «— scalar x scalar htT «— AT x AT et AT x A~

- Hold in any dimension; implements all simplifications required by gauge invariance

 Color/kinematics, double-copy and generalized double-copy Bern, Carrasco, Johansson;
Bern, Carrasco, Chen, Johansson, RR
csM € cin € CuM €
e.g. iAZree(1,2,3,4) 292< s s(pa ) + t t(pa ) + U u(p7 ))
S t U
cs+c+c, =0 ne+ng+n, =0

iMEe(1,2,3.4) = <g>2 (ns(p, €)ns(p, €) N ni(p, €)1t (p, €) N N (P, €)1 (P, 6))

S t u

- Full power in relating loop level amplitudes; implications beyond amplitudes and gravitational theories

- Here used cut-by-cut; important for obtaining a graph-based organization






Example -- scalar-coupled GR at 1 loop: contributions to the classical limit
Neill, Rothstein;
Bjerrum-Bohr, Damgaard,
Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon

- Long-range force: scalar lines cannot touch
- Classical limit: every loop has at least one matter line

m3[23]

(3[1]2)
(2p2 - p3) (2p1 - p2)

Gauge theory building blocks:  A4(1°,2%,3%,4°) = Ay(1%,27,37,4%) =i

(23)(2p1 - p2)

Gauge theory cut: CyMm=2_p, pg Aal(47,1° 55 6M6) A, (25,35, —67 "6 —57"5)

1 2
E2 + 02 9 2> 1 £ = 1 [—t12823 + Sa3t1e, — S23tor, + Qtleltzel}

Cym = 2<7 + mims
Bis b1, toe, O = E% — (sa3mi + sastie, + t3,,)(S23m3 — Sastor, +t5,,)

Gravity cut:  Car=—533 > p,. e Ay(4%,1° 5M5 6M6) A (1%,4%,5"5 6M6)A4(2°,3%,—67 "6 —57"5)A4,(3%,2°, —67 "6 57 "5)

1 111 1
Cer = 2[—4 (E4+ O* + 6£202) +m;lm3” n ” . ]
t tie,  lagy | [t20, P304



Example -- scalar-coupled GR at 1 loop; contributions to the classical limit
Neill, Rothstein;
Bjerrum-Bohr, Damgaard,
Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon

- Long-range force: scalar lines cannot touch
- Classical limit: every loop has at least one matter line

Gravity cut:

2

1
£ = 1 [—t12823 + S23t10, — S23toy, + 2t1élt2131]

1 1 1 1 1
OGRzzlt—4(54+(94+652(92)+m‘1*m§][ + H +

tie,  tag, | [t2r, T30, | O =& — (s23mi + sastus, +17,,) (5235 — sa3tos, +15,)
2 3 3 2 5 3 2 3
Graph organization: 1 lo I Iy I Iy [ Iy
1 4 1 4 1 4 1 4
( ) ( J
Y |
V(Gn) _V(GN) V(Gn) .
Fully accounted for by New term in the
1-loop EFT Feynman graph potential

Damour; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon



The classical limit of the potential 4-scalar at 3 loops; 3-loop radial action:
Bern, Parra-Martinez, RR, Ruf, Solon, Shen, Zeng
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Simple dependence on symmetric mass ratio consistent with arguments of Damour & Bini, Damour, Geralico



Explore gravitational interactions of spinning bodies
New conceptual and technical challenges
- description of higher-spin fields
- their minimal and nonminimal interactions with gravity
- EFT description of spin

Vast PN literature provides guidance:

Barker & R. O’Connell; Porto, Rothstein;+Ross; Damour; +Bini; +Nagar; Steinhoff, Schafer, Hergt, Hartung, Levi,
Steinhoff; Holstein, Ross, Vaidya; Levi, McLeod, von Hippel; Siemonsen, Vines; Blanchet, Buonanno, Faye;
Khalil, Buonanno, Steinhoff, Vines; ...

Various amplitudes-based PM and PN approaches:

Vaidya; Chung, Huang, Kim, Lee, Guevara, Ochirov, Vines; Maybee, O’Connel, Vines; Vines, Steinhoff, Buonanno;...

We use Lagrangian that covariantizes the most general parity-even stress tensor Bern, Luna, RR, Shen, Zeng

Craon (-8 an Cremir [(q-S n
" (p1, q) plplz = (q n§p1)> qppg“S (p1 ”)”Z 251 1+) (q m(pl))

- Many useful properties, including double-copy structure

- Kerr black hole: all unit coefficients from comparison w/ Kerr stress tensor of Vines



Same general strategy in presence of spin: Bern, Luna, RR, Shen, Zeng

- Tree-level and 1-loop amplitudes to O(S1.55):

Mree 4G | (o) , . ’ (1,5) (2,1) ici i
_ ) . S. 2PN . coefficients in paper
BB lal +ZZ_:1‘11 (pxq) Sj+a""q-51q-5 rest-frame bap
o spin vectors
Ml loop 27‘(’2G2
AE\ By, |q] [ J”Za(” (pxq)-S;+a"Vq-S1q- S+ a>?q* S1 - Sy +“é2’3)q2p'51p'52}

—iaplp — tagly

- Tree-level and 1-Ioop eikonal phase:

d2 2€

qJ_ e~ bJ_Mtree

i of 9dg
DSL (f?g) = - Z JkS(IzC 8SZ (9L9

d2 2€

a1 e taL: bJ_MA-i-V

a=1,2
e 4m1m2\/027/ 2m)2 2 (01.p)
- Observables: O € {Vy, S1, 52}

AxO = [O,ixa] + 5[—@(17 [0,ix1]] + iDsr(—ix1, [O,ix1]) + [O, %DSL(le,le)]

aligned spin — agreement w/Guevarra, Ochirov, Vines; PN — agreement w/ Steinhoff, Schaffer, +Hergt, +Hartung



Motion of spinning bodies Bern, Luna, RR, Shen, Zeng

An all-order conjecture for open-orbit observables:
AO = e XP[O, eXP]

xDPg = x9 +Dsr(x,9) Dsr (x,9) = — Z
a=1,2

ik ok OX 99
gk gk YA MYI
50 557 AL

Mg, 5,5,5, = CeX —1
X = conservative eikonal phase of the 5155 — 51.55 amplitude
- General proof at O(G y) ; explicit check at O(G3;) through orders (5152, 5%, 5%)
recent checks at S% and S% Luna, Kosmopoulos vs. Liu, Porto, Yang
- Points to remarkable simplicity and structure in the solution to spinning Hamilton’s egs.
- One might expect that a direct relation between X and observables exists to all orders

- The eikonal phase or its improved version, the radial action I, = /p -dx , are generating
functions of open-orbit observables Y



Spinning and nonspinning particles interacting with tidal deformations ‘

Large literature on tidal deformations, mainly from world line perspective g / /

Flanagan, Hinderer; Damour, Nagar; Carney, Wade, Irwin; Bini, Damour; + Geralico; companion
Steinhoff, Hinderer, Buonanno, Taracchini; Henry, Faye, Blanchet; Goldberger, Rothstein;...

- We use a QFT description of tidal effects
Gravitational generalization of linear and nonlinear susceptibilities in electrodynamics

- Lagrangian terms for linear and nonlinear tidal deformations: Bern, Parra-Martinez, RR, Sawyer, Solon

‘Scfa? m/d4xv Z k) ¢EAM1M2EM2M3 Auk'ulqb"‘_p(k) ¢BM1H2BM2M3 "'Bukul¢)+

k>2

Not all multilinears are independent; use relations to verify calculations and look for structure

see Aoude, Haddad, Helset for relations between multilinears



Example of structure in finite-size effects Bern, Parra-Martinez, RR, Sawyer, Shen
Consider nonlinear tidal operators: (£") = ¢E,,"?E,,"*...E, "¢ (B")=¢B,,"B,,"...B, "¢

- E and B have rank 3, reduced from 4 — not all are independent!

ny __ 1 F(p+Q) 2\p 3\q
(E") = ”2p§3;:n w31 T+ rg + ) =)

- E?,B* and E® have the same structure; for scattering off a spinless particle:

1 (r-uy)? (r-uq)?
(0) € {E) (B2, (B} £ 0) = 5 (a0 + hioy g + o) 51
Potential/Hamiltonian and eikonal phase at leading order:
Ny = (0 (kY o » T(L+ 2k — OT(2hn)
Voo _ n—kpl k=l (2 _ 1)2k—1_\2 2
©P") = "1 B, e ;}; (k) (z)% oo = T S Gk 1 Jhm)
Noyn LN A T(L+ 2k — DT(L(hn — 1))
O\" b) — n— bl k=l 2 1 2k—1—1/2 2 2
(O (p.b) = ! |b|nh_1];”§%(k)(l)a@ el (0%~ 1) k=1 T

agreement with world-line type approach of Cheung, Solon



Summary and outlook

Amplitudes — new powerful ways to look at gravitational problems with and without spin
— pushed state of the art for spinless interaction potential calculations to 3PM and 4PM

— pushed state of the art for spinning 2PM Hamiltonians
— a method to computing radiative observables

— a systematic approach to finite-size effects

— provide inspiration to find hidden structure and hidden simplicity

— close relation between amplitude and radial action
— analytic dependence of observables on velocity

— spinning eikonal conjecture; explicit tests through quadratic order in spin

— interactions of spinning and spinless particles and tidal deformations



Summary and outlook

Applications of amplitudes/particle physics methods to GW physics are only at the beginning

Many immediate and longer term questions, both conceptual and technical/computational

E.g. closer connection between open-orbit and closed-orbit observables w/ radiation

Methods and techniques are not exhausted and can be further improved
E.g. at least one more order is accessible

Methods (may) have applications to other areas of gravitational physics

Future looks bright; Expect renewed progress in the future



