Hubble troubles

Licia Verde **ICREA & ICCUB**

C

Constant not constant

"The SHoE(S) that fits one pinches another"

Quote adapted from Carl Jung

Tip of the red giant branch

Electron-Degenerate Helium Core Mass-Luminosity Relation

From B. Madoore

Distance scale

The Hubble Constant in 3 Steps: Present Data

Baryon acoustic oscillations (BAO) as a Standard ruler

- Physics: sound waves in early Universe propagate until radiation and matter decouple
- Imprints a scale standard ruler
- Key Observable. rd (sound horizon)
- Useful for:
 - geometry of Universe (Dark Energy equation of state, or modifications to GR)
 - early Universe physics (well known) sets it

CMB and early universe physics in LCDM constrain the standard ruler length to 0.2%

Standard candles & Standard rulers

Type-Ia SNe measure relative distances, since there is large uncertainty on the absolute magnitude M of a fiducial SN NASA/JPL-Caltech

BAOs measure absolute distances, but depend on the value of sound horizon rdrag

Direct and inverse cosmic distance ladder

- Cuesta et al 2015, Auborg et al 2015
- Bernal et al 2016/21 Spline reconstruction of the expansion history H(z).

Direct cosmic distance ladder

Direct and inverse cosmic distance ladder

- Cuesta et al 2015, Auborg et al 2015
- Bernal et al 2016/21 Spline reconstruction of the expansion history H(z).

Direct cosmic distance ladder

Ho problem can be seen as an rs problem

Bernal et al 2016

Ho problem can be seen as an rs problem (again)

HO: Threading a needle from the other side of the Universe (quote by Adam Riess)

Good ladders need 2 good anchor points

Is there a problem?

Yes

Even George E. now agrees.

How much of a problem is cosmological-model dependent

Where is the problem?

Systematics!

Increasingly unlikely

Working hypothesis: early vs late

But there is not much wiggle room in the middle!

Bernal e tal 2016, Aylor et al 2017

Where is the problem?

Is it in any specific **data** set? (keeping the standard Λ CDM context)

Early: For a while some people put the blame on Planck....

BUT H0(Early) does not budge if you take Planck (or CMB data) out completely (even for Neff-extended models Shonenberg et al 2019)

Before works which dropped Planck used instead WMAP+ACT/SPT.

Aside: if not Lya BAO, use SNe

The length of the standard ruler is dictated by early time physics (BBN)

And again

e-BOSS DR16 2020

Where is the problem?

Is it in any specific **data** set?

It is not in CMB data

All early-Universe based determinations hoover well below 70km/s/Mpc

Many groups reanalized SHoES data...

Several independent low z determinations hoover above 70 km/s/Mpc

As time goes on seems less and less likely

Is it in any specific data set?

Where is the problem?

If not in the data then in the model...?

Where is the problem?

If not in the data then in the model...?

Early-time measurements assume standard Λ CDM. Effectively this yields rd (the length of the standard ruler)

$$r_s(z_D) = \int_0^{\tau_D} c_s(\tau) d\tau$$

z ~0 measurements "do not do" assumptions about cosmology

$$= \int_0^{a_{\rm d}} c_{\rm s} \frac{da}{a^2 H(a)}$$

Shall we look pre or after recombination?

pre-recombination solutions

Modify the model right where we most like it

$$r_{s} = \int_{0}^{t_{\rm d}} c_{\rm s} dt / a = \int_{0}^{a_{\rm d}} c_{\rm s} \frac{da}{a^{2} H(a)}$$

A tall order

Decrease the sound horizon, by 7%

without wreaking havoc on damping tail... and everything else

pre-recombination solutions

Modify the model right where we most like it

Decrease the sound horizon, by 7% without wreaking havoc on damping tail... and everything else

Early dark energy... affects the damplig tail (can look for signatures)

Change initial conditions

Extra components/ Extra interactions/Energy injection (localized!)

High T recombination

Change $H(z) \rightarrow$ change of inferred wm with scale

These are not all equivalent!

Post recombination?

Including screening and modifications to GR etc.

My take: it's complicated as it would have to affect several different things at once, including time-delay distances

Increase the freedom of H(z); Bernal, Raveri, Joudaki, Keeley... The price is high: many extra degrees of freedom (epicycles?) or hide it where there are no data

It is also very hard to change rs by 7% one has to tinker with wb (hard) , wm (by ~20-30%) without changing rs/rd in the CMB... and equality scale

It is also hard to just mess around with the standard ruler as seen in BAO

How much wiggle room is there? H(z)/H0 reconstruction

 ΛCDM

Beyond HO

ΛCDM assumed

This is not just a H0 problem or a $r_{s_{j}} r_{d}$ problem.

It is a $\Omega_{\rm m}$ problem too

...And an age problem too

Bernal et al . 2102.05066

How old is the Universe anyway?

 $t(z) = rac{977.8}{H_0} \int_0^z rac{{\mathrm d} z'}{(1+z')E(z')} \, {\mathrm Gyr}_z$ Planck **SHOES** 14.0 **BAO+SNe** 13.5 *t*_U [Gyrs] 12.5 -12.0 -65 70 75 60 80 H_0 [km/s/Mpc]

Early : high t_0 Late: low t_0

D. Valcin

Back to the 90ies

The Universe can't be younger than the oldest objects it contains

- Example: old halo stars, globular clusters
- But.. Detemining accurately the absolute age of these objects has his own

Age of oldest Globular clusters

Age of the Universe from re-analysis of Globular clusters ages marginalize over: metalicity, absorption, He fraction, distance, etc.

 $\Lambda \mathsf{CDM}$ acts its age not its SH0ES size...

Valcin et al. 2007.06594 Valcin et al. <u>2102.04486</u>

Looking for Cinderella....

Looking for Cinderella

• The bad: w<-1, decaying dark matter,

• The ugly: neutrino interactions at early time, early dark energy-ish

• The good:....?

Looking for Cinderella....

The original Cosmic triangle

Science Bahcall et al 1999

Now.. 22 years later... Back to the future...

The new cosmic triangles

The new cosmic triangles

The new cosmic triangles

Theoretical solutions....

Should not break havoc where not needed: preserve the good agreement of LCDM with data Should improve (or not worsen) other tensions

> We should quantify improvement vs predictability (degrees of freedom) Parallelism with Λ

> > Model-dependent vs model independent approaches

At what point are we adding epicycles?

NICOLAI COPERNICI quoce epicyclum hoc modo. Sit mundo ac Soli homocentrus AB,& ACB diameter, in qua fumma ablis contingat. Et facto in A centro epicyclus describatur D E, ac rurfus in D centro epicycli= um F G, in quo terra uerletur, omniaco in eodem plano zodiaci, Sitos epicycli primi motus in fuccedetia, ac annuus fea rè, fecudi qq hocefto, fimi liter annuus, fed in præces dentia, ambo rumics ad A c lineam pares fint reuolutio nes . Rurfus cetrum terræ ex F in præce= dentia addat parumper ip= fip. Ex hoc

Cassini

Looking for Cinderella....

Discrepancy between model–dependent and model -independent determinations of H₀

If not in the data.... Then...in the model?

Boost expansion rate before recombination \rightarrow fixes the ladder Low redshift solutions \rightarrow very limited wiggle room

AND the troubles go well beyond H_0 and distance ladders- \rightarrow Matter density and age

Looking for Cinderella....

Age is insensitive to: dimming, screening, deviations from GR, distance measures...

If high t_U is confirmed, models with high H_0 and standard low redshift physics are disfavoured.

Two possible scenarios : local and global

Local:

affect local H₀ measurements (astrophysical or cosmological e.g., screening) leaving all else unchanged Global:

New physics affecting entire history both early and late. Impacts quantities well beyond H_{0.}

Will show up in new cosmological observations !

To conclude

I hope that the new cosmic triangles representation of the observational constraints will help discriminating between the two scenarios and help guide future efforts to find a solution to the Hubble troubles.

Bernal et al 2021

END