

CMS Experiment at the LHC, CERN Data recorded: 2016-May-31 09:26:24.197376 GMT Run / Event / LS: 274250 / 1058807020 / 543

How charming is the Higgs boson?

L. Mastrolorenzo

RWTH Aachen University

Seminar LLR, Ecolè Polytechnique, Palaiseau (France) 14 October 2019

28/11/2019

L. Mastrolorenzo - Seminar LLR

CÉRN

- 3 families
- Quark u, d and electrons are the building brick of the ordinary matter
- The muon (μ) and tau (τ) are unstable leptons

CMS/

The Standard Model of Paricle Physics

 The SM is a non-abelian, locally gauge invariant, quantum field theory (QFT) symmetric under local gauge transformation of the group:

$$U(1)_{\gamma} \otimes SU(2)_{L} \otimes SU(3)$$

Standard Model

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \overline{\psi} \mathcal{B} \psi + h.c.$$

$$+ \psi_{i} \mathcal{Y}_{ij} \psi_{j} \phi + h.c. + D_{\mu} \phi |^{2} - \psi_{\phi}$$

No explicit mass term in the SM lagrangian

- > Adding by "hand" such terms (m $\Psi\overline{\Psi}$) would spoil the renormalizability of the SM
- > Particle can gain mass through the electroweak symmetry breaking mechanism

Assymetric Local Minimum

Introducing the "Higgs potential": $V(\Phi) = -\mu^2 \Phi \Phi + \lambda (\Phi \Phi)^2$

- > Invariant under local transformation $U(1)_{V} \otimes SU(2)_{T}$
- It must preserve Lorentz invariance \succ

> It breaks
$$U(1)_{\gamma} \otimes SU(2)_{L} \rightarrow U(1)_{em}$$

ocal Maxim

Meta-stable No mass

 $m_{W} = \frac{vg}{2}$ $m_{Z} = \frac{v\sqrt{g^{2} + g^{2}}}{2}$

- When the symmetry is spontaneously broken:
 - > The mass terms for the vector bosons naturally appear -
 - > A **new massive particle** emerges: the Higgs boson $\rightarrow m_{H} = \sqrt{2\lambda v}$
 - \succ Fermion mass generation \rightarrow Yukawa couplings

$$\begin{split} L_Y = f_l \overline{\chi}_L \phi l_R + f_u \overline{q}_L \tilde{\phi} u_R + f_d \overline{q}_L \phi d_R + \text{h.c.} & \phi = \begin{pmatrix} 0 \\ v+h \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix} \\ \\ L_Y = \frac{v f_l}{\sqrt{2}} \left(\overline{l}_L l_R + \overline{l}_R l_L \right) + \frac{v f_u}{\sqrt{2}} \left(\overline{u}_L u_R + \overline{u}_R u_L \right) + \frac{v f_l}{\sqrt{2}} \left(\overline{d}_L d_R + \overline{d}_R d_L \right) \\ \\ f_i = \frac{m_i}{v} \sqrt{2} \end{split}$$

The Yukawa couplings bring new non-gauge interactions! Represents something never probed before

The Higgs boson searches at the LHC

CERN

Main Higgs boson production mechanism at the LHC:

The SM Higgs boson decay channels

- At 125 GeV, the highest branching ratio is into H→bb (~60%), followed by the WW channel (~20%). Then, the other sensitive channels also studied at the LHC are ττ (~6%), ZZ and γγ
- > The most sensitive channels are $ZZ \rightarrow 4I$, $\gamma\gamma$, $WW \rightarrow IvIv$

Analysis in the main H decay channels

The CMS full combination in the five main decay modes 4.9σ m_{H} =125.3±0.6 GeV

So far, all measurements compatible with SM predictions!

- > H \rightarrow bb has the largest branching fraction (58%) for m_H=125 GeV
- > Unique final state to measure coupling with down-type quarks
- > Drives the uncertainty on the total Higgs boson width
- Limits the sensitivity to BSM contributions
- Not observed until this Summer

Many feature similar to searches for $H\rightarrow cc!$

• High BR

- Low mass resolution
- Low S/B

- Highly efficient b-jets identification
- Improved resolution on m(bb)
- Full event information to increase S/B

Higgs-Strahlung (Associated production)

- > 4% of Higgs production mechanism
- Benefit from leptons triggers
- Further reduce background requiring high V-p_T
- Provides the most sensitive channel

First $H \rightarrow bb$ searches started at LEP...

Physics Letters B 565 (2003) 61–75 Search for the Standard Model Higgs boson at LEP

ALEPH Collaboration¹ DELPHI Collaboration² L3 Collaboration³ OPAL Collaboration⁴

The LEP Working Group for Higgs Boson Searches⁵

PHYSICS LETTERS B

m_н > 114.4 GeV @ 95%CL

...and continued at Tevatron...

VH(bb) evidence at LHC established with 2016 data by both ATLAS and CMS

- > Detectors demonstrated ability to deal with very high PU
- For 2016 analyses used ~40fb⁻¹

Signal strength uncertainty ~40%

1.4σ
2.1σ
2.6σ
3.5σ
3.3σ

JHEP 01 (2015) 069
 JHEP 08 (2016) 045
 JHEP 08 (2016) 045
 JHEP 12 (2017) 024
 PLB 780 (2018) 501

The Compact Muon Solenoid (CMS) detector

Tracker:

- Length = 6m, diameter = 2.4 m
- Silicon detectors (100µm x 150µm x 250µm)
- Measure p_T of charged particles

Electromagnetic Calorimeter:

- PbWO₄ scintillator
- X₀=0.89cm, R_M=21.9mm
- Identification and energy measurement of e/γ

Hadron Calorimeter:

- Brass-scintillator sampling calorimeter
- Identification and reconstruction of hadrons

- **Forward Calorimeter:**
- Cherenkov detector
- Radiation-hard

The solenoid magnet

- 3.8 T at (η,Φ,r)=(0,0,0)
- Stored energy = $2.70 \times 10^9 \text{ J}$
- Circulating current ~ 20000 A
- bend charged particle trajectory

The muon detectors

- Embedded in the magnet return yoke
- Gas detectors (DT, CSC, RPC)
- Muon detection and p_T measurement

CMS trigger system

- CMS \rightarrow ~70Mpixel
- high resolution high speed photocamera
- 1 MB / event
- LHC bunch frequency: 40 MHz
- \Rightarrow 40 TB/s=> ~420 EB/year

We can't store all the events. We need to select the interesting picture on the fly!

<u>Trigger system – 2 levels</u>

- Hardware trigger (L1):
- decrease the rate down to O(100)KHz
- ~100GB/s → ~2000 computers
- Software trigger (HLT)
- further decrease the rate down to O(100)Hz
- 300MB/s (20Tb/day)

• Combines the information from the different CMS sub-detectors to identify all the stable particles in the event: e^{\pm} , μ^{\pm} , γ , h^{\pm} , h^{0}

Tipical data-analysis workflow

Template Analysis – Approach used in VHbb and VHcc analyses 1. Signal and Background samples are simulated with MC

Usually histograms filled with a uniform color

Template Analysis

- 2. Definition of **control region** or "side-bands" to evaluate the **backgrounds yields**
- 3. Fit MC samples to data and extract the best-fit values for the parameters,

Combination of VH(H→bb) measurement

			Signific	cance	$e(\sigma)$			
		Data set	Expected	Ob	served	Signal	strength	
		2017	3.1		3.3	1.08	± 0.34	
		Run 2	4.2		4.4	1.06	± 0.26	
		Run 1 + Run 2	4.9		4.8	1.01	± 0.23	
	5.1 fb	o ⁻¹ (7 TeV) + 18.9 fb ⁻¹ (8 TeV) + 77	7.2 fb ⁻¹ (13 TeV)	r	5.1 fb ⁻¹ (7	⁷ TeV) + 19.8 f	^{fb⁻¹(8 TeV) + 77.2 ft}	o⁻¹ (13 TeV
Entries	10 ⁷ CMS 10 ⁶ VH, H– 10 ⁵	→bb Data →bb VH,H→ Backgro Signal +	ound bb ound uncertainty - Background		CMS ∨H, H→bb̄		 Observe ±1σ (sta 2016 2017 ±1σ (system) 	ed ıt ⊕ syst) st)
	104	· · · · · · · · · · · · · · · · · · ·		Run 2	-	• - 1.($06 \pm 0.20 \text{ (stat)} \pm 0.00 \text{ (stat)}$).17 (syst)
	10 ³			2016 2017		•••••	1.1 1.0	9 ± 0.39 8 ± 0.34
				Run 1		 0.8	39 ± 0.38 (stat) ± 0	.24 (syst)
Data / Bkg	1.5			ombined		— 1.(01±0.17 (stat)±0	.14 (syst)

0

-0.5

 $\log_{10}(S/B)$

-1

0

0.5

1.5

1

2

0.5

-3

-2.5

-1.5

-2

CMS

4

3

2.5

3.5

Best fit µ

Combination of $H \rightarrow bb$ measurements

Combination of all CMS H→bb measurements

- > VH, boosted ggH, VBF, ttH
- Most sources of systematic uncertainty are treated as uncorrelated
- > Theory uncertainties are correlated between all processes and data sets

Search for the associated production of Higgs boson with W/Z decaying to Charms

- Objective: Probe Higgs couplings to up-type, 2nd-generation quarks
 - > Higgs-charm coupling can be significantly modified by the presence of BSM

Direct H→cc search:

 ATLAS in Z(LL)H channel [2016] UL(μ) < 110 (150) Obs (Exp)

Exclusive decay modes with $H \rightarrow J/\psi \gamma$

- ATLAS: 120 (100) x BR obs(exp)
- CMS: 220 (160) x BR obs(exp)

Indirect bounds:

- κc= yc/yc_{SM} from global fit to existing data: κc<6.2 results also from CMS
- H→cc: very challenging to hunt at the LHC
 - > Small BR: 2.9×10^{-2} + large backgrounds + H \rightarrow bb is a background in this search
- c-tagging more challenging than b-tagging

First search for direct $H \rightarrow cc$ decay in CMS

 \overline{c}

W/Z

Higgs boson produced in association with W/Z bosons

Low production cross section (~4% of tot x-sec)

mm

> Cleaner experimental signature

• 1 fat jet tagging boosted di-charm

→ c-tagging plays a crucial role

- Exploiting leptonic decays of W/Z
- Handle to trigger efficiently events
- W/Z boost to suppress background

Depending on the pT of the vector, two analysis strategies are deployed Resolved analysis \rightarrow regimes of moderate $p_T(H)$, H decays reconstructed in 2 AK4 jets **Boosted analysis** \rightarrow regimes of high $p_T(H)$, H decays reconstructed in 1 AK15 jets
VH(H→cc) candidate - Event Display

VH(H→cc) General Analysis Strategy

Channel	Resolved-jet	Merged-jet
Ζ(<i>νν</i>)Η(cc): 0L	p _T (Z) > 170 GeV	
W(ℓv)H(cc): 1L	p _T (W) > 100 GeV	p _T (V) > 200 GeV
Z(ℓℓ)H(cc): 2L	р _т (Z) > 50 GeV	

Resolved-jet topology

- Higgs decay products resolved in two AK4 (R=0.4) jets (di-jet)
- Probe larger fraction of the available signal cross-section (95% of events have p_T(V)<200 GeV)

Merged-jet topology

- ➤ A single AK15 (R=1.5) jet to reconstruct the H→cc decay
- Allows to better exploit the correlations between the two charms

Final results: combination of the two topologies to maximise the sensitivity

Heavy flavour tagger for AK15: DeepAK15

DeepAK15 tagger – cornerstone of the boosted VHcc analysis

- Reconstruction of moderately to largely boosted Higgs
- DeepAK15: good compromise between signal purity and acceptance p_T>200 GeV

Boosted jet tagger "DeepAK8" adapted on AK15 jets

More information \rightarrow Huilin talk

CMS-DP-2017-049

NIPS 2017 paper,

CMS-JME-18-002

- > DNN multiclassifier for top, W, Z, Higgs, and QCD jets
- Mass decorrelation techniques to mitigate mass sculpting
- > Validation in data using proxy jets from $g \rightarrow cc$

CMS.

28/11/2019

Heavy flavour tagger for AK4: DeepCSV

- Tagging c-jets is challenging → intermediate properties vs light- and b-jets
- DeepCSV: DNN architecture

- > Input variables go through 4 fully connected layers, each layer has 100 nodes
- > Output layer \rightarrow softmax activation function \rightarrow multiclassification
- > Returns 4 scores interpreted as a prob. for a given jet to be originated by a b, bb, c and l

Heavy flavour tagger for AK4: DeepCSV

Define two discriminants to separate c-jets from light and b-jets

Taggers working point used in the analysis allow for ~28% efficiency for charm jet while keeping the rate from b-jet ~15% and from light ~4%

CMS

L. Mastrolorenzo - Seminar LLR

Strategy in a nutshell

> Iterative fit to the CvsL-CvsB plane in 3 data samples enriched in different jet-flavours

Event Selections

- c-jet: OS-SS W+jets selection, looking to leptonic decay of the W boson + soft muon
- **b-jet:** Both semileptonic tt+jets (less pure) and dileptonic tt+jets (~5x less statistics)
- ▶ **light-jet:** leading jet in a DY+jets($Z \rightarrow \mu \mu$) selections

Strategy in a nutshell

> Iterative fit to the CvsL-CvsB plane in 3 data samples enriched in different jet-flavours

Event Selections

- c-jet: OS-SS W+jets selection, looking to leptonic decay of the W boson + soft muon
- **b-jet:** Both semileptonic tt+jets (less pure) and dileptonic tt+jets (~5x less statistics)
- ▶ **light-jet:** leading jet in a DY+jets($Z \rightarrow \mu \mu$) selections

Reshaping scale factor central values

$$w_i = \prod_{i=1}^{jets} sf_i(CvsL, CvsB)$$

Errors account for both statistical and systematics uncertainties

7

Higgs boson reconstruction

- ➢ Pair of jets with the highest CvsL-score → build Higgs candidate 4-vector
- Further require: CvsL(max) >0.4 & CvsB(min)>0.2 for the leading jet
- Final State Radiation (FSR) recovery
 - > Improve dijet invariant mass resolution by a few %
- Multivariate analysis for final signal extraction
 - BDT to further discriminate signal from backgrounds
 - > Dedicated training in each channel
 - Input variables: H properties, V boson properties, c-tagging discriminants, event kinematics & object correlations

0

0.2

0.4

0.6

Resolved-jet: Background estimation (I)

- Main backgrounds normalization (V+jets and tt+jets) estimated from data
 - > The shapes are taken from simulation (LO samples used for V+jets)
 - > 4 control regions are defined per each analysis category and channel
 - V+jets: split based on flavour composition (V+cc, V+bb/bc, V+bl/cl, V+udsg)

- The control region are fitted simultaneously with the SR
 - > The shape of the CvsB/CvsL is fitted in the control region

Resolved-jet: Background estimation (II)

CMS,

L. Mastrolorenzo - Seminar LLR

- H reconstruction: highest pT AK15 jet [pT>200 GeV, 50 < m(jet) < 250 GeV]
- Events classified into three mutually exclusive categories based on the three WPs of the cc-discriminant: [High / Medium / Low purity (HP, MP, LP)]

cc-discriminant	>0.72	>0.83	>0.91
ε(H→cc)	46%	35%	23%
ε (V+jets)	5%	2.5%	1%
ε(H→bb)	27%	17%	9%

- Event-level separation: BDT to suppress major backgrounds
 - > Use only event kinematics, NOT the intrinsic properties (flavour/mass) of H
 - Search region: BDT > 0.5 [same for all channels]

BUI largely uncorrelated with Higgs candidate mass and cc-discriminant

The variable used in the final fit is the m(H) = m(jet)

28/11/2019

Merged-jet: Background estimation

- Major backgrounds (i.e. V+jets and ttbar) estimated from data CRs
 - V+jets CR: low BDT score [i.e. BDT<0.5] + one overall normalization for V+jets (in each of the HP/MP/LP categories)
 - > ttbar CR: As the SR but invert N_{AK4} (NB: N_{AK4} < 2 requirement applied in SR)
- CRs are designed to have similar flavour composition as SRs
 - > same cc-tagging requirement as the corresponding SR

Full analysis validated in two data samples:

- \rightarrow Low $p_T(V)$
- ightarrow Low values of the cc-tagger

Systematic Uncertainties

Source	Туре	0-lepton	1-lepton	2-lepton
Size of simulated samples	shape	\checkmark	\checkmark	√
Jet energy scale	shape	\checkmark	\checkmark	\checkmark
Jet energy resolution	shape	\checkmark	\checkmark	\checkmark
MET unclustered energy	shape	\checkmark	\checkmark	
c tagging efficiency	shape	\checkmark	\checkmark	\checkmark
Lepton identification efficiency	shape (rate)		\checkmark	\checkmark
Pileup reweighting	shape	\checkmark	\checkmark	\checkmark
top $p_{\rm T}$ reweighting	shape	\checkmark	\checkmark	\checkmark
$p_{\rm T}({\rm V})$ reweighting	shape	\checkmark	\checkmark	\checkmark
PDF	shape	\checkmark	\checkmark	\checkmark
Renormalization and factorization scales	shape	\checkmark	\checkmark	\checkmark
VH: $p_{\rm T}({\rm V})$ NLO EWK correction	shape	\checkmark	\checkmark	\checkmark
Luminosity	rate	2.5%	2.5%	2.5%
MET trigger efficiency	rate	2%		
Lepton trigger efficiency	shape (rate)		\checkmark	\checkmark
Single top cross section	rate	15%	15%	15%
Diboson cross section	rate	10%	10%	10%
VH: cross section (PDF)	rate	\checkmark	\checkmark	\checkmark
VH: cross section (scale)	rate	\checkmark	\checkmark	\checkmark

Dominant sources:

statistical uncertainty, c/cc-tagging and MC modelling

35.9 fb⁻¹ (13 TeV) st 10¹¹ A10¹⁰ Data VZ(Z→cc̄) CMS VV+other Single top Resolved-jet l tt W+cc 1L (e) W+bb/bc W+b/c W+udsg Z+cc 10⁸ Z+bb/bc Z+b/c Signal Region Z+udsa VH(H \rightarrow c \overline{c}), μ =41 S+B uncertainty 10⁶ VH(H→bb) – VH(H→cc̄)x100 10⁴ 10² 1 10⁻² 2 1.5 Obs / Exp 1 0.5 0 0.2 0.8 0.4 0.6 0 **BDT** output

1-lepton – W($e\nu$)

2-leptons High-pT(V) – Z(ee)

Resolved- and Merged-jet results

■ Both the analysis have been validated measuring VZ(Z→cc)

> Same analysis as VH(H \rightarrow cc) but the VZ(Z \rightarrow cc) has been considered signal

Topology	$\mu_{\sf VZ(Z ightarrow cc)}$	Significance Obs. (Exp.)
Resolved-jet	1.35 ^{+0.94} -0.95	1.5 (1.2)
Merged-jet	0.69 ^{+0.89} -0.75	0.9 (1.3)

• <u>Results for VH(H \rightarrow cc):</u>

95% C.L Exclusion Limit on the signal strength

	Re	solved	-jet (in	clusive)	M	erged-j	et (inc	lusive)
	01	1L	2L	All Ch.	OL	1L	2L	All Ch.
Exp.	84	79	59	38	81	88	90	49
Obs.	66	120	116	75	74	120	76	71

 μ <75 obs. (38⁺¹⁶₋₁₁ exp.) μ <71 obs. (49⁺²⁴₋₁₅ exp.)

Best-fit signal strength

Topology	$\mu_{ ext{VH(H} ightarrow ext{cc})}$
Resolved-jet	41 ⁺²⁰ -20
Merged-jet	21 ⁺²⁶ -24

28/11/2019

CM?

VH(H→cc) Combination

- Combination: resolved-jet: p_T(V) < 300 GeV / merged-jet: p_T(V) > 300 GeV
 - > Systematics: correlated, but: c/cc-tagging efficiency & PDF, μ R, μ F for V+jets
- Validation with VZ(Z \rightarrow cc): $\mu_{VZ(Z\rightarrow cc)}$ = 0.55^{+0.86}-0.84 with 0.7 σ obs. (1.3 σ exp.)

		95% (C.L. Exclusio	on Limits		
	Resolved-jet	Boosted-jet		Со	mbination	
	p _T (V)<300 GeV	p _T (V)>300 GeV	OL	1L	2L	All. Ch.
Exp.	45 ⁺¹⁸ -13	73 ⁺³⁴ -22	79 ⁺³² -22	72 ⁺³¹ -21	57 ⁺²⁵ -17	37 ⁺¹⁶ (+35) -11 (-17)
Obs.	86	75	83	110	93	70

VH($H \rightarrow cc$) Combination

- Combination: resolved-jet: p_T(V) < 300 GeV / merged-jet: p_T(V) > 300 GeV
 - > Systematics: correlated, but: c/cc-tagging efficiency & PDF, μR, μF for V+jets
- Validation with VZ(Z \rightarrow cc) : $\mu_{VZ(Z\rightarrow cc)}$ = 0.55^{+0.86}-0.84 with 0.7 σ obs. (1.3 σ exp.)

■ <u>Direct search for H→cc decay (new in CMS!</u>)

- > Looking to VH production mode with 2016 only dataset
- > Two strategies: Resolved and Boosted, looking to different p_T(H) regimes
- > Improved results for VH(H \rightarrow cc): Exp. limits on μ ~37
- First H→cc analysis in CMS [HIG-18-031]

Main challenge: tagging charm quarks

- > Two different approaches in boosted and resolved analysis
- DeepAK15 for boosted and DeepCSV-based likelihoods for resolved
- > A new method to measure the c-tagger SFs from resolved

• <u>CMS search for $H \rightarrow \mu \mu$ decay</u>

- > Most recent CMS results from 2016 data analysis are shown [HIG-17-019]
- > Results are combined with Run-1, leading to measure μ =1.0±1.0 with an observed (expected) significance of 0.9 σ (1.0 σ)
- CMS plans for full Run-2: not only upgrade the dataset but also incorporate as many improvements as possible

- CMS has achieved a 5.6 σ observation of the H \rightarrow bb decay, with signal strength μ = 1.04 ± 0.20
 - ➤ Combination of several production channels, dominated by VH(H→bb)
 - Result contained in arXiv:1808.08242 and published in Physical Review Letter
- SM assumption on Yukawa coupling to b's is confirmed within uncertainty (~20%)
 All 3rd generation fermion couplings are now observed!
- Future is exiting and challenging: reduce systematics in 2017 analysis, exploit full MC statistics @NLO, include 2018 data → increase precision in H-b coupling
- DNN plays key role in the 2017 analysis: b-Reg, b-tagging, signal extraction
 b-Reg and b-tag in particular largely benefit from DNN
- Looking forward: prepare for HL-LHC: This analysis and the techniques developed to maximally increase the significance (b-reg, b-tag, kin.-fit,FSR-rec.,DNN) can represent a benchmark for other analysis looking to $H \rightarrow bb$, e.g $HH \rightarrow bbXX$ (X=b, τ)

■ <u>Direct search for H</u>→<u>cc decay</u> (new in CMS!)

- > Looking to VH production mode with 2016 only dataset
- > Two strategies: Resolved and Boosted, looking to different p_T(H) regimes
- > Improved results for VHcc: Exp. limits on μ ~37 (ATLAS Exp. limits on μ ~150)
- First H→cc analysis in CMS [HIG-18-031]

Main challenging: tagging charm quarks

- > Two different approaches in boosted and resolved analysis
- > DeepAK15 for boosted and DeepCSV-based likelihoods for resolved
- A new method to measure the c-tagger SFs from resolved [AN-19-028]

What's next?

- > Energy regression for charm initiated jets started to be investigated + kin-fit
- Possible switch to DeepJet for Ak4 and further optimize DeepAK15
- Analyze the full Run-2 + optimize signal extraction methods
- > Very simple projection with 140fb⁻¹ ==> 95% CL. Exp. limits on μ <19

VH(H→cc) candidate - Event Display

Back-Up

- 3 channels with 0, 1, and 2 leptons and 2 b-tagged jets
 - To target Z(vv)H(bb), W(lv)H(bb) and Z(ll)H(bb) processes
- > Signal region designed to increase S/B
 - Large boost for vector boson
 - Multivariate analysis exploiting the most discriminating variables (m_{bb}, b-tag,...)
- Control regions to validate backgrounds and constrain normalizations
- Signal extraction: binned maximum likelihood fit of final MVA distribution performed simultaneously in all the channels of all the categories in SR and CRs

Event Selection+Categorization

SR efficiency

Efficiencies:

1-lep 5% signal - 0.5% bkg (TT)

Efficiency 1 ZHbb Signal MC 0.753558 WHbb Signal MC 0.55089 0.47068 0.392732 DY BKG MC 0.205727 0.194925 TT MC 0.124651 0.17955 10^{-1} 0.0944205 0.0896175 0.153655 0.110058 0.106974 10-1 0.0860326 0.0913614 0.0682636 0.0644147 0.0261762 0.023876 0.0573892 0.0537831 10⁻² 0.0062602 0.0144882 0.0118707 10-2 10⁻³ 0.0042262 0.000522074 0.000507669 di-jet + lepton kinematics PT(W) > 100 GeV abs(dPhi(ji, W))>2.5 PT(bb) \$ 100 GeV Wiep, MET) < 2.0 NAddJet<2 MassWind 75<mass(II)<105 90<mass(jj)<150 PT(11)>50 PT(11)>150 JetCSV3/00se δ q(V, H)>2.5 denom

2-lep ~10% signal – 0.005% bkg (DY)

Event Selection+Categorization

- Selections (jets, leptons, b-tagging)
 optimizd separately by channel
 - > 4 analysis categories:
 - 0-lepton: p_T(Z) > 170 GeV
 - 1-lepton: p_T(W) > 150 GeV
 - 2-lepton High-Vp_T: p_T(Z) > 150 GeV
 - 2-lepton Low-Vp_T: 50 GeV < p_T(Z) < 150 GeV

- Control regions designed to map closely each signal region
 - Inverted selections to enhance purity in targeted backgrounds:
 - tt, V+light flavor, and V+heavy flavor

[*] Number of additional jets in the event

28/11/2019

Improvements in VH($H \rightarrow$ bb) 2017 analysis

Improved mass resolution from:

- Better b-jet identification
 - → Thanks to improved b-tagger
 - →+ new pixel detector
- New b-jet energy regression
- FSR jet recovery
- Kinematic fit in 2-lepton channel

- Use of deep neural network (DNN) to discriminate:
 - Signal from background, in Signal Regions
 - Background components among each other, in Control Regions
- Combined effect: +O(5-10%) in the analysis sensitivity wrt 2016

State of the art b-jet identification

DeepCSV: Deep Neural Network architecture

- > Input variables go through 4 fully connected layers, each layer has 100 nodes
- ReLu activation function used in each of the hidden nodes
- > Output layer → softmax activation function → multiclassification

- > Three working points commissioned with data
- Available set of data/MC SF for full 2017 run

Tagger	Working point	$\varepsilon_{\rm b}$ (%)	ε _c (%)	$\varepsilon_{\rm udsg}$ (%)
	DeepCSV L	84	41	11
Deep combined secondary vertex	DeepCSV M	68	12	1.1
(DeepCSV) $P(b) + P(bb)$	DeepCSV T	50	2.4	0.1

Misidentification probability

Upgraded pixel detector

- Regression mainly recovers missing energy in the jet due to neutrino
 - Switch from Boosted Decision Trees to DNN algorithm
- Extended set of input variables now including lepton flavor (μ/e), jet mass and energy fractions in DR rings
- Significant m_{bb} resolution improvement without mass sculpting
 - > σ/peak down to 11.9% in 2017 wrt 13.2% in 2016 → + O(10%)
 - > dedicated calibration of b-jets with Z+b events + measure JER

FSR+Kinematic fit in 2-lepton channel

recoil

hi1

12

m(11)=910-

- **FSR-recovery:** additional jets in dR<0.8 cone with p_T >20GeV and $|\eta|$ <3.0
- No intrinsic missing energy in the Z(II)H(bb) process
 - Constrain di-lepton system to Z mass
 - Balance the ll+bb+(jet) system in the (p_x,p_y) plane
 - lepton and jet p_T's adjust within their experimental uncertainties with the constraint that the MET is 0 within resolution
 - > Improve m(bb) resolution up to 36%

Signal vs Background discriminator

To increase sensitivity, use DNN discriminator to extract signal

- > DNN outperforms BDT due to network depth
 - Same input variables as 2016 (b-jet properties, di-jet kinematics, event topology)
- Trained separately in each channel to discriminate VH(bb) from the weighted sum of all backgrounds
- > Parameters optimized to maximize the sensitivity in each channel

Variable	Description	0-lepton	1-lepton	2-lepton
M(jj)	dijet invariant mass	\checkmark	\checkmark	\checkmark
$p_{\mathrm{T}}(\mathbf{jj})$	dijet transverse momentum	\checkmark	\checkmark	\checkmark
$p_{\rm T}({ m j}_1), p_{\rm T}({ m j}_2)$	transverse momentum of each jet	\checkmark		\checkmark
$\Delta R(jj)$	distance in $\eta - \phi$ between jets			\checkmark
$\Delta \eta$ (jj)	difference in η between jets	\checkmark		\checkmark
$\Delta \varphi(\mathrm{jj})$	azimuthal angle between jets	\checkmark		
$p_{\mathrm{T}}(\mathrm{V})$	vector boson transverse momentum		\checkmark	\checkmark
$\Delta \phi(V, H)$	azimuthal angle between vector boson and dijet directions	\checkmark	\checkmark	\checkmark
$p_{\rm T}(jj) / p_{\rm T}({\rm V})$	p_{T} ratio between dijet and vector boson			\checkmark
M_Z	reconstructed Z boson mass			\checkmark
btag _{max}	value of the b-tagging discriminant (DeepCSV)	\checkmark		\checkmark
	for the jet with highest score			
btag _{min}	value of the b-tagging discriminant (DeepCSV)	\checkmark	\checkmark	\checkmark
	for the jet with second highest score			
btag _{add}	value of b-tagging discriminant for the additional jet	\checkmark		
	with highest value			
$E_{\rm T}^{\rm miss}$	missing transverse momentum	\checkmark	\checkmark	\checkmark
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\mathbf{j})$	azimuthal angle between $E_{\rm T}^{\rm miss}$ and closest jet with $p_{\rm T} > 30 {\rm GeV}$	\checkmark		
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\ell)$	azimuthal angle between $E_{\rm T}^{\rm miss}$ and lepton		\checkmark	
m_{T}	mass of lepton $\vec{p}_{\rm T}$ + $E_{\rm T}^{\rm miss}$		\checkmark	
$M_{\rm t}$	reconstructed top quark mass		\checkmark	
N_{aj}	number of additional jets		\checkmark	\checkmark
$p_{\rm T}({\rm add})$	transverse momentum of leading additional jet	\checkmark		
SA5	number of soft-track jets with $p_{\rm T} > 5 { m GeV}$	✓	✓	✓

0

CMS

Entries

10⁹

10⁸

10⁶

10⁴

10²

 10^{-2}_{-5}

0.5

Obs / Bkg

1

DNN output

0.8

1-lepton

41.3 fb⁻¹ (13 TeV)

0.5

0

0.2

0.4

0.6

- Performance optimization with blind analysis \geq
- Trained separately in each channel \succ

41.3 fb⁻¹ (13 TeV)

0-lepton

- Input variables: b-jet properties, di-jet kinematics, event topology, \triangleright carefully validated through data/MC comparison
- **DNN discriminator used to extract signal**

41.3 fb⁻¹ (13 TeV)

ggZHbb

VV+HF

Single top

— VH.H→bb

Z+b

0.8

DNN output

2-lepton

28/11/2019

0.2

0.4

0.6

L. Mastrolorenzo - Seminar LLR

0.4

0.6

0.8

DNN output

0.2

0
Heavy Flavor control region discriminators

- Reminder: leading systematic uncertainty from normalization of V+(b)b
- 2-lepton channel control region very pure
 - Fit **b-tag** shape (DeepCSV) to discriminate processes
- 0- and 1-lepton channel control regions less pure
 - Fit **DNN multi-categorizer** to distinguish among background components ≻
 - Use same input variables as Signal vs Background discriminator •

1-lepton

0-lepton

CMS

CMS

- MC shapes floated within constraints from systematic uncertainties through nuisance parameters in the final fit
- MC normalization truly float → fitted SFs in agreement with those measured in 2016 analysis

512	Process	$Z(\nu\nu)H$	$W(\ell\nu)H$	$Z(\ell\ell)H \text{ low-}p_T$	$Z(\ell\ell)H$ high- p_T
	W + udscg	1.04 ± 0.07	1.04 ± 0.07	-	-
	W + b	2.09 ± 0.16	2.09 ± 0.16	-	-
	$W + b\overline{b}$	1.74 ± 0.21	1.74 ± 0.21	_	_
	Z + udscg	0.95 ± 0.09	_	0.89 ± 0.06	0.81 ± 0.05
	Z + b	1.02 ± 0.17	-	0.94 ± 0.12	1.17 ± 0.10
	$Z + b\overline{b}$	1.20 ± 0.11	_	0.81 ± 0.07	0.88 ± 0.08
	tī	0.99 ± 0.07	0.93 ± 0.07	0.89 ± 0.07	0.91 ± 0.07

- Total uncertainty on μ~34%
- Major sources of systematic uncertainties:
 - background normalization
 - > background modeling
 - > b-tagging
 - MC sample size

Uncertainty source	$\Delta \mu$		
Statistical	+0.26	-0.26	
Normalization of backgrounds	+0.12	-0.12	
Experimental	+0.16	-0.15	
b-tagging efficiency and misid	+0.09	-0.08	
V+jets modeling	+0.08	-0.07	
Jet energy scale and resolution	+0.05	-0.05	
Lepton identification	+0.02	-0.01	
Luminosity	+0.03	-0.03	
Other experimental uncertainties	+0.06	-0.05	
MC sample size	+0.12	-0.12	
Theory	+0.11	-0.09	
Background modeling	+0.08	-0.08	
Signal modeling	+0.07	-0.04	
Total	+0.35	-0.33	

- Standalone evidence for H→bb with 2017 data
 - > Observed significance 3.3 σ , signal strength 1.08 ± 0.34
 - > O(5-10%) increase in analysis sensitivity wrt 2016, depending on channel
 - > Signal strengths extracted from each channels are compatible

Validation (VZ($Z \rightarrow bb$)) and Visualization (m_{ii})

- VZ analysis using Z(bb) standard candle
- Same "technology" as used for VH(bb)
 - Same DNN inputs and CRs
 - VH(bb) normalized to SM
 - > Larger m(bb) window in SR

Fit to the m(jj):

- > Lower sensitivity
- direct visualization of the signal
- m(jj) distributions combined and weighted by S/(S + B)

28/11/2019

Process	0-lepton	1-lepton	2-lepton low- $p_{\rm T}({\rm V})$	2-lepton high- $p_{\rm T}({\rm V})$
W0b	1.14 ± 0.07	1.14 ± 0.07	_	_
W1b	1.66 ± 0.12	1.66 ± 0.12	- 20	16 –
W2b	1.49 ± 0.12	1.49 ± 0.12	—	
Z0b	1.03 ± 0.07	—	1.01 ± 0.06	1.02 ± 0.06
Z1b	1.28 ± 0.17		0.98 ± 0.06	1.02 ± 0.11
Z2b	1.61 ± 0.10		1.09 ± 0.07	1.28 ± 0.09
tī	0.78 ± 0.05	0.91 ± 0.03	1.00 ± 0.03	1.04 ± 0.05

Process	$Z(\nu\nu)H$	$W(\ell\nu)H$	$Z(\ell\ell)H \text{ low-}p_T$	$Z(\ell \ell)$ H high- $p_{\rm T}$
W+udscg	1.04 ± 0.07	1.04 ± 0.07	-	-
W + b	2.09 ± 0.16	2.09 ± 0.16	- 20	17 –
$W + b\overline{b}$	1.74 ± 0.21	1.74 ± 0.21	—	_
Z + udscg	0.95 ± 0.09	_	0.89 ± 0.06	0.81 ± 0.05
Z + b	1.02 ± 0.17	—	0.94 ± 0.12	1.17 ± 0.10
$Z + b\overline{b}$	1.20 ± 0.11	_	0.81 ± 0.07	0.88 ± 0.08
tī	0.99 ± 0.07	0.93 ± 0.07	0.89 ± 0.07	0.91 ± 0.07

0- and 1-lepton signal regions' DNN

2-lepton signal regions' DNN

L. Mastrolorenzo - Seminar LLR

Regression inputs

Optimized set of inputs

- Jet kinematics
 - jet p_T , η , and transverse mass
- PU information
 - nPVs or rho
- Jet energy fractions
- Jet leading track and soft lepton track
 - p_T component and distance relative to the jet axis of the soft-lepton candidate
- Secondary vertex
 - p_T, mass and # of charged tracks associated to the secondary vertex, decay length and uncertainty of the secondary vertex

What's new?

Optimized set of inputs

- Jet kinematics → **uncorrected 4-vector**
- Pile-Up information
- Jet energy fractions
- Leading track, soft lepton track, SV

- New inputs :
 - Jet shape: energy fractions in rings of dR, energy spread (p_TD)
 - Multiplicity of jet constituents
 - Lepton ID (e/μ)
 - Jet p_T rel wrt to lepton, jet mass

Jet energy rings

Validation on data

- **p**_T^{reco} i.e. the TARGET is a "*MC variable*"
 - L123 jet energy corrections are used, but no resolution scale factor is applied
 - Resolution to be compared in MC and data after the regression, as a function of p_T , η , ...
- Aim of this effort is reducing the JES uncertainty
 - B-jets are better measured thanks to the regression
 - We may be able to reduce the JER scale factor and the uncertainty (not in 2017 data)

<u>Validation on data for $H \rightarrow b\overline{b}$ </u>

- Performance in data evaluated with p_T balance in Z→µµ/ee+b-jet topology
 - Leading jet collinear with Z ($|d\Phi|>2.8$)
 - NO Additional activity: ($\alpha = p_T 2^{nd}$ jet / $p_T Z > 0.3$) and α binning

 \rightarrow Extrapolation in α to estimate JER scale factor, as prescribed by JME (CMS AN-2011/004, JME-10-014), truncated RMS used

– leading jet p_T and $|\eta|$ fiducial region

 $p_T > 100 \text{ GeV}, |\eta| < 2.0$

- b-jet enriched region → b-tagged leading jet, (deepCSV medium WP)

Leading Jet \rightarrow b tagged

Validation on data for H \rightarrow b\overline{b}

- Performance in well balanced events (extra jets $p_T < 15 \text{ GeV}$) not used in extrapolation:
 - Truncated (98.5%) mean consistent in MC and data (0.9 \rightarrow 0.94)
 - Truncated (98.5%) RMS improvement in MC and data
 - ~10% JER scale factor needed to account for the different resolution
 - \rightarrow same as standard JER scale factor provided by JME

Goals

- Minimize theory systematics in measurements
 - Clearer and systematically improvable treatment at interpretation level
- Minimize model dependence in measurements
 - Decouples measurements from assumption of underlying physics model (SM, (non)linear EFT, BSM models)
- Measurements stay long-term useful
- Allows easy further (re)interpretation with different theory inputs/assumptions
 - Improved theory predictions/uncertainties
 - μ_i, κ_i , anomalous couplings, EFT coefficients, specific BSM scenarios

< 🗗 >

	Frank Tackmann (DESY)	Simplified Template Cross Sections: Status and Plans	2016-10-12	1 / 16
28/0	8/2018	L. Mastrolorenzo – Seminar LLR		86

STXS for VH - short intro

Stage-1 bin split mostly based on VH(bb) analysis categories / variables

- "VH" bins include leptonic VH (H undecayed)
- $qq \rightarrow V(qq)H$ as part of "VBF" bins
- gg \rightarrow Z(qq)H as part of "ggF"
- Feedback on the bin split is still welcome, not set in stone!

STXS ≠ fiducial XS (and complementary) [fid/diff XS minimize theory dependence and acceptance corrections, decayed Higgs, ...]

- optimized for analysis sensitivity (e.g. in this case driven by VH(bb) categorization)
- reducing dominant theory dependence in the measurement (by moving it to the interpretation stage)
- reduced residual theory uncertainties within the measurement of each bin (if residual th. uncertainties become large in the exp. acceptance for a bin, the bin the be further split in sub-categories)

(reference from LesHouches2017)

Talk at the VH LHC Higgs XSWG soubgroup

Signals targeted

Main backgrounds:

> Z/W+jets, tt+jets, single-top

Vector bosons and Higgs boson reconstruction

- Same flavor lepton with pT > 20 GeV and 75 < m(Z) < 105 GeV</p>
- Single lepton with pT > 25 GeV, pT(W) > 100 GeV
- > PF MET > 170 GeV
- <u>RESOLVED</u>: Reconstructed from the two leading CvsL jets + FSR <u>AN-18-275</u>
- <u>BOOSTED</u>: Reconstructed from highest-score-fatJet <u>AN-18-243</u>

Why two strategies?

- Quickly falling p_T(V) spectrum of both signal and background
- > Around 200 GeV, similar efficiency of resolved and merged in AK15
- Maximize analysis sensitivity

Categorization of events

- > According to the number of leptons in final state: 0-, 1- and 2-lepton category
- Further categorization according to charm-tagger score
 - > A further split into 3 more categories is performed based on the c-tagger score
 - > Improve the sensitivity isolating regions with jets with higher c-tagger score
- Signal region and control region definition
 - > A kinematic-BDT, orthogonal to charm tagger score, is trained
 - Signal and control regions are defined cutting on the Kinematic-BDT score
- Final fit
 - Binned max. lik. fit in all the categories/channels in CRs + SRs
 - > The **fat-jet invariant mass** shape is fitted in the SRs and in the CRs

Heavy flavour tagger for AK15: DeepAK15

DeepAK15 tagger – cornerstone of the boosted VHcc analysis

- Reconstruction of moderately to largely boosted Higgs
- > DeepAK15: good compromise between signal purity and acceptance >200 GeV

Boosted jet tagger "DeepAK8" adapted on AK15 jets

- > DNN multiclassifier for top, W, Z, Higgs, and QCD jets
- Mass decorrelation techniques to mitigate mass sculptinG

CMS-DP-2017-049 NIPS 2017 paper, CMS-JME-18-002

CMS

Heavy flavour tagger for AK15: DeepAK15

DeepAK15: DNN architecture

> cc -tagging discriminant defined as:

$$\frac{score(Z \rightarrow c\bar{c}) + score(H \rightarrow c\bar{c})}{score(Z \rightarrow c\bar{c}) + score(H \rightarrow c\bar{c}) + score(QCD)}$$

> Performance evaluated with MC simulation

> Validation in data using proxy jets from $g \rightarrow cc$

CMS,

🖉 A new method to measure charm-tagger SFs 💬

Selections

- c-jet: OS-SS events after W+jets is selected, looking to leptonic decay of the W boson and to the presence of a soft muon inside the jet
- b-jet: Attempts have been made looking to semileptonic tt+jets (less pure) and to dileptonic tt+jets (~5x less statistics) → at the end an inclusive region has been considered
- > **light-jet:** leading jet in a DY+jets($Z \rightarrow \mu \mu$) selections

Reshaping scale factor central values

- Events with CvsL and CvsB = -1 are considered in the normalization and in the fit
- > The central values have been then used to define an event-by-event weight
- Such a weight is finally used to reshape the tagger distribution

$$w_i = \prod_{i=1}^{jets} sf_i(CvsL, CvsB)$$

Errors account for both statistical and systematics uncertainties

Systematics considered in the scale factor derivation:

- Lepton ID/Iso
- Pile-Up weight
- Renormalization and factorization scale
- > Inclusive JES
- > JER
- Cross-sections up/down variation (assumed fully uncorrelated among the processes)
- MC statistics
- > Data statistics

Documentation:

- SFs have been approved by BTV
- > The whole method is fully detailed in <u>AN-19-028</u>

28/11/2019

Control Region – VH resolved

2-lepton Low-p_T(V)

Signal Region – VH resolved

Very challenging channel... lead improve analysis techniques

- possibility to improve many tools, e.g. c-taggers
- > $Z \rightarrow cc$ analysis possible with ~0 changes to the $H \rightarrow cc$ analysis:
 - Targeting VZ($Z \rightarrow cc$) evidence with full Run-2 (would be 1st time at had. coll.)

Full Run-2 "rule of thumb" prediction:

- > Lumi. 2016:2017:2018=36:41:80 + assuming 1./Exp. L scale in quadrature
- > Assuming no improvement in the analysis neither on the c-taggers side
 - Projection on 95% CL. Exp. Limit on $\mu \sim 18$
- > Working also on ggH($H \rightarrow cc$): possibility to combine
- > With full Run-2, sensitivity to $H \rightarrow cc$ can be in the O(sensitivity on HH)

• $H \rightarrow cc$ as a probe for new physics

Potentially sensitive to BSM modification to H-charm coupling

Possible improvement to the current analysis

- > C-jet energy regression (work in progress)
- Kinematic fit in the 2-lepton categories
- Study what's the gain in deploying DeepJet
- > Add 2017 and 2018 dataset

Possible benefits from interplay with VHbb

- Fit simultaneously VHbb and VHcc
- > How correlate the systematics?
 - Different flavour splitting for V+jets \rightarrow different rate parameters
- > Open discussion...

DNN architecture and training

- > Relying on the ETH training for b-jet energy regression (thanks Nadya!)
- > The regression is trained on 2.3 millon of c-jets from hadronic tt+jets
- > Preselections: p_T >15GeV && 1 GeV<gen- p_T <6 TeV && $|\eta|$ <2.5
- > DNN Input variables same as in b-jet energy regression
- Frainig with a batch size of 1024. This NN I have trained over 100 epochs

Preliminary Performance

Improvement on single jet energy resolution:

- >10% in pT range [30, 120]
- 5%-10% in pT range [120, 250]

Looking forward to assess improvements on mjj