Medical Physics Part # 1 Introduction

<u>P. Le Dû</u>

patrickledu@me.com

DE LA RECHERCHE À L'INDUSTRIE

Cez

Experimental Physicist -CEA Saclay (1969-2008) -IN2P3-IPN Lyon (2009.

_NPSS ADCOM School Liaison

2

Goals of this presentation

■ Using my own experience during the last 50 years of working on Radiation detectors → try to give a flavor of what could be the application of the recent evolution and developments in various fields

AMU presentation

Outlines of this lecture

What is medical Physics ?

- A little bit of history
- Radiation effects units
- Basics of Radiology
- Fighting again cancer
- Radiotherapy basic
- Introduction to Nuclear medicine
 - tracers
 - Single Photon Computed Tomography (SPECT)

ICISE_School

Few words about Radiation Detectors

Radiation Instrumentation The Bible Glenn Knoll

AMU presentation

DID ON

RADIATION DETECTION AND MEASUREMENT

4 April 2018

Radiation detectors → Imaging what you cannot see

. or how the development of radiation instrumentation has been crucial for fundamental scientific discoveries and for

improvement of human life...

4 April 2018

AMU presentation

Introduction: Imaging radiation ... OLYMPUS Web cams Smart phones photo cameras machine vision, automotive, security etc... Medical imaging HEP x-ray crystallography cosmology 4 April 20 mass spectroscopy, optical tweezers especial presentations, electrons, TOF, SEM/TEM etc...8

What is radiation ?

Radiation can be defined as the propagation of energy through space or matter in the form of electromagnetic waves or energetic particles.

When radiation interacts with matter:

Non-ionizing

does not have enough energy to ionize atoms but in the material it interacts with. At high energy it becomes ionizing 4 April 2018 <u>AMU presentation</u>

Ionizing

has the ability to knock an electron from an atom, i.e. to ionize..

Main sources of ionizing radiation

Earth has been radioactive ever since its formation into a solid mass over $4\frac{1}{2}$ billion years ago. However, we have only known about radiation and radioactivity for just over one hundred years...

The detectors story

4 April 2018

History and evolution of radiation detectors tools of discovery

- 1906: Geiger Counter, H. Geiger, E. Rutherford
- 1910: Cloud Chamber, C.T.R. Wilson
- 1928: Geiger-Muller Counter, W. Muller
- 1929: Coincidence Method, W. Bothe
- 1930: Emulsion, M. Blau
- 1940-1950: Scintillator, Photomultiplier
- 1952: Bubble Chamber, D. Glaser
- 1962: Spark Chamber
- 1968: Multi Wire Proportional Chamber, C. Charpak
- 1970: Silicon era
- Etc. etc. etc.

 In blue = Nobel Prize

The prehistoric world the Bubble Chamber -1955-1975

Our Roots back to 'triggerless DAQ' 4 April 2018

the early Electronics image

Discovery of the W/Z boson (1983)

Carlo Rubbia Simon Van der Meer [Nobel prize 1984]

First Z⁰ particle seen by UA1

4 April 2018

4 April 2018

Some history

<u>1895</u> <u>W.C. Rontgen</u> <u>Discovery of X Ray</u>

Sulface Duck June & d. B. Pol

Papier nois - Caring De Carina Iminu -

linelye 'le 1: +m

Extent on till le 2). it at have liften to it.

How physics discoveries have impacted our life (1)

<u> 1896 - Discovery of the natural</u> <u>radioactivity by Henri Becquerel</u>

<u>First image of</u> <u>potassium uranyl</u> <u>disulfide</u>

RADIOACTIVITY

- 1898 Polonium Radium
- 1903 Nobel Prize together with Pierre
 1911 Nobel Prize allone

Tracer

<u>1898</u> <u>Pierre and Marie Curie</u> <u>the Radioactivity</u> <u>Polonium,Radium</u>

G.V.HEVESY 18

<u>1923 - The Tracer principle</u> <u>`G.V.Hevesy- the father of</u> <u>nuclear medicine</u>

presentation

4 April 2018

1916

1932 - The Invention of the cyclotron Production of radioisotopes discoveries impact our life (2)

Ernest O. Lawrence and his First cyclotron 1932

1934 - Artificial radioactivity Irène and Fréderic Jolio Curie The discovery of artificial radioactivity in combination with the cyclotron open the door to the production of useful radio indicators. Practically any element could be bombarded in the cyclotron to generate radioactive isotopes.

1938-1942 Fission of Uranium

From discovery to first graphite miler in Chicago To the Production of long lived radio-isotopes

O.Hahn E. Fermi

1946 - R.R.Wilson The origin of particle therapy Using the Bragg peak discovery AMU presentation (1903)

Radiological Use of Fast Protons 805837 R, WILSON Betterh Laberder of Physics Hurned University Conductor, Manuchesita

Diverse ross deverses, the particle surgetive providence and a revelue via de Graff generates have to de de particle problems have the part of the particle to the particle problems have the particle of the particle to the particle problems have the particle of the particle to the particle of the particle the part to expective each on the particle to the particle of the particle of the particle to the particle of the particle of the particle the part to expective each on the particle of the particle the particle of the particle of the particle of the particle the particle of the particle of the particle of the particle the particle of the partic

4 April 2018

18 Nov, 1895 W.C. Rontgen discovers Xrays

W.C.Röntgens experiment in Würzburg

An early XXth century X-ray tube

Radiograph of Mrs.Röntgens hand, the first x-ray image ever taken, 22.Dec.1895, published in The New York Times January 16, 1896

1996 - Discovery of the natural radioactivity by Henri Becquerel

Paper sois - Coing De Caim time - Alter Colors inly ly 1. mm.

First image of potassium uranyl disulfide

1898 the Radioactivity

RADIOACTIVITY

1898 Polonium Radium

Nobel Prize 1903 together with Pierre **Nobel Prize** 1911 allone

1897 Becquerels friend, Pierre Curie, also Prof. of physics in Paris suggested to his young bride, Marie, that she study the phenomena discovered by H.Becquerel for her thesis. She found soon that some components of Uranium minerals were much more radioactive than Uranium itself. "We shall call the mysterious rays 'radioactivity'," she told to her husband Pierre, and the substances that produce the rays "radioelements".

1898 Pierre started to join Marie in the study of the mysterious rays. In July that year they reported the discovery of Polonium (210Po) and in December they announced the discovery of the July 2019 Andium (²²⁶Ra)

1923 - The Tracer principle

G.V.Hevesy: The Absorption and Translocation of Lead (ThB) by Plants [ThB = ²¹²Pb] Biochem.J. **17**, 439 (1923)

Measurements of the tracer's Radioactivity provided thousand fold increases in sensitivity and accuracy over existing chemical assays. The foundation and basic rationale of much of Hevesy visualized that a radioactive atom might be used as a "representative" tracer of stable atoms of the same element whenever and wherever it accompanied them in biological systems.

1943 Nobel Prize Chemistry

G.V.HEVESY the father of Nuclear Medicine

1932 - The Invention of the cyclotron How physics Production of radioisotopes discoveries impact our life (2)

1934 - Artificial radioactivity Irène and Fréderic Jolio Curie

1938-1942 Fission of Uranium

From discovery to first graphite miler in Chicago <u>To the Production of long lived</u> <u>radio-isotopes</u>

<u> 1946 - R.R.Wilson</u> The origin of particle therapy Using the Bragg ICISE_School peak discovery (1903)

July 2019

Ernest O. Lawrence and his

First cyclotron 1932

1932 - The Invention of the cyclotron

Ernest O. Lawrence and his First cyclotron 1932 E.O.Lawrence and M.S. Livingston "The production of high speed Light ions without the use of high voltages", A milestone in the production of usable quantities of radionuclides.

E.O Lawrence and M.S.Livingston with the 27-inch cyclotron at Berkeley 1933, the first cyclotron that produced radioisotopes

July 2019

1934 - Artificial radioactivity Irène & Frederic Joliot-Curie

ICISE School

1934 Nature, February 101935Nobel Prize

"Our latest experiments have shown a very striking fact: when aluminum foil is irradiated on a polonium preparation, the emission of positrons does not cease immideatly when the active preparation is removed. The foil remains radioactive and the emission of radiation decays exponentially as for an ordinary radioelement. We observed the same phenomena with boron and magnesium."

 $^{27}Al(\alpha,n) \,^{30}P$ and $\,^{10}B(\alpha,n) \,^{13}N$

The ombination with the cyclotron open the door to the production of useful radio indicators. Practically any element could be bombarded in the cyclotron to generate radioactive isotopes.

 1935 Nature <u>136</u>, 754 O.Chievitz and G.V.Hevesy Radioactive indicators in the study of phosphorus metabolism in rats (³²P)
 1937 Radiology <u>28</u>, 178 J.G.Hamilton, R.S.Stone: The administration of radio-sodium (²⁴Na)

- 1938 Proc.Soc.Exp.Biol.Med. <u>38</u>, 510 S.Hertz, A.Roberts, R.D.Evans Radioactive iodine (¹²⁸I) – Study of thyroid physiology
- 1939 Proc.Soc.Exp.Biol.Med. <u>40</u>, 694, J.H.Lawrence, K.G.Scott: Metabolism of phosphorus (³²P) in normal and lymphomatous animals

1940 Am.J.Physiol. <u>131</u>, 135 J.G.Hamilton, M.H.Soley: Studies of **iodine** metabolism by thyroid in situ

- 1940 J.Biol.Chem. <u>134</u>, 543 J.F.Volker, H.C.Hodge, H.J.Wilson The adsorption of fluoride (¹⁸F) by enamel, dentine, bone and hydroxyapatite
- 1945 Am.J.Physiol. 145, 253 C.A.Tobias, J.H.Lawrence, F.Roughton The elimnination of 11-C-Carbon monoxide from the human body

1938–1942 Fission of Uranium

$^{235}U + n = [^{236}U] \longrightarrow ^{140}Ba + ^{94}Kr + 2n + \gamma + Energy$

Otto Hahn, 1944 Nobel Prize

From discovery to first graphite miler in Chicago
 Production of long lived radio-isotopes

July 2019

ICISE_School

1946 - The origin of particle therapy

R.R. Wilson, Radiology 47(1946), 487-491

The origin of particle therapy using the Bragg peak discovery (1903) July 2019
ICISE_School Radiological Use of Fast Protons ROBERT R. WILSON Research Laboratory of Physics, Harvard University Cambridge, Maszachuszetts

TYXEEPT FOR electrons, the particles L which have been accelerated to his energies by machines such as eveloty Van de Graaff generators have directly used therapeutic the neutrons, gamma radioactivities produced. tions of the primary par applied to medical problem. large part, been due to to penetration in tissue of proton. and alpha particles from press ators. Higher-energy machines under construction, however, and from them will in general b[Dose Distribution Curve] enough to have a range in

parable to body dimensions. It eccurred to many people that the lyes new become of egg entic interest. The obje

s to acquaint medical an 🖇

Absorbed Relat

path, or specific ionizais almost inversely with ton. Thus the specific rany times less where issue at high energy incter of the path

it possible to it possible to other of the beam is easily it is possible to other of the beam is easily other of well

Isotopes in medicine

DIAGNOSIS		THERAPY			
in vitro	in vivo	internal		external	
14 C	⁹⁹ Mo- ^{99m} Tc	systemic	sou	sources	
3H 125 others	201 T J 123J 111In 67Ga 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers 81Rb-81mKr 0thers	131,90Y 153 Sm,186 Re 188 W-188 Re 166 Ho,177 Lu, others 0 chers: 225 Ac-213 Bi 211 At, 223 Ra 149 Tb e ⁻ -emitters: 125 J	Sealed s ¹⁹² Ir, ¹⁸² Ta, many othe needles brachyth ¹⁰³ Pd, ¹²⁵ I many othe stands ³² P and oth seeds ⁹⁰ Sr or ⁹⁰ Y, applicate ¹³⁷ Cs, othe	Sources ¹³⁷ Cs ers for nerapy: ners others ors ers	60Co gamma knife ¹³⁷ Cs blood cell irradi- ation

July 2019

Effects of radiation on human body

What is a Curie, Bequerel, Seivert?

From Prof. Aurengo - Hopital de la Salpetriere - Paris

The Units - a bit of definition!

Activity = Number of decays per second - Becquerel Bg: 1 decay / second - Curie Ci: 37×10^9 Bq (37 GBq) Dose : specificity of radiation effects ionisation, modification of biogical activity - absorbed energy / mass unit - Gray Gy: 1 joule / kilogram Effective dose : indication of global risc = absorbed dose x WR* x WT** - Sievert Sv WR*= 1 pour RX, beta and gamma, p=5, α =20 WT** = 0.05 for thyroïd, 0.01 for skin

Effective dose values

10.000 mSv : high irradiation / rapid death 1.000 mSv : moderate irradiation / clinical visible signs (burn...) 5 mSv : annual irradiation in Clermont-Ferrand (volcanic soil) 2,5mSv : annual irradiation in Paris 1 mSv : legal limit irradiation in France 1 mSv : average annual medical irradiation in France

A simple exemple

a 'standard' Scintigraphy exam

 W_R W_T %RX : 100 mGy / 50 cm² skin10,0130 % ^{131}I : 10 mGy / thyroïde10,05100 %

Effect dose = $(100 \times 1 \times 0.01 \times 0.30) + (10 \times 1 \times 0.05 \times 1)$ = 0.8 mSv

Sv= Unit well adapted to radioprotection

However: why this official' limit of 1 mSV/ year is so low ?

- No sanitary argument : industrial irradiation :10 -15 μ Sv

- Interpretation of the 'low' absolute value might be controversial!

July 2019 Do not take into account debit and age ...an personal ICISE_School

Variation of natural radioactivity

0,25 mSv / year

Cosmic rays

- sea level
- Mexico (2240 m) 0,80 mSv / year
- La Paz (3900 m) 2,00 mSv / year

External exposure due to earth exposure

- average 0,9 mSv.

ICISE_School

- Espirito Santo (Bresil)
- Maximum (Iran)
- Marseille (France)
- Limousin (France)

0,9 mSv / year 35 mSv / year 250 mSv / year 0,20 mSv / year 1,20 mSv / year

Internal exposure due to water

- Evian water
 - St Alban water

0,03 mSv / year 1,25 mSv / year

Natural versus medical irradiation

36
Typical radiation doses

Radiology

Common tools & techniques

Radiology principle

The most common exam Transmission of X rays through tissue

$$I = I_0 \exp\left(-x \sum_{i=1}^n \mu_i\right)$$

$$\ln\frac{I_0}{I} = x \sum_{i=1}^n \mu_i$$

I_n

μ

μ,

μ,

Radiology problem = contrast

Detection techniques

The standard : film scren system
How to replace the film

- More sensitive --> better contrast
- Less dose
- Affordable?

Type of detector	Dynamic range	
film-screen system	30:1	
image intensifier	100:1	
CCD detector	1000:1	
flat panel detector	10,000:1	
computed radiography	40,000:1	

Radiology survey of electronically readable detectors				
Conversion :	Direct	Indirect		
X-ray interaction	X-ray photo- conductor (a-Se)	Scintillator visible	Scintillator	
Conversion to electric charge		Photodiode (a-Si)	(Optical coupling to CCD)	
Charge readout	TFT array Flat Pane	TFT array al Imagers		

Radiology: Flat panel direct detection

<u>Selenium</u>

Radiology : Flat panel indirect detection

Xray -->Light--> electron ---> electronic signal

State of the art : Computed Tomography (CT)

Nobel Price Physiologiy and Medecine 1979

Allan MacLeod **Cormack** Physicien Nucléaire Cape Town Harvard University Tufts University

Early Two-Dimensional Reconstruction (CT Scanning) and Recent Topics Stemming from It

Nabel Lecture, December 8, 1979

Alan M. Cormack

Sir Godfrey N. Hounsfield Electrical engineer EMI Research

From Hounfield units to image

July 2019

CT Scaner principle

Spatial resolution and speed

- 64 ... 320 detector rows
- Slice thickness 0.33 ... 0.6 mm
- Tube rotation time 0.3 s
 - Organ in a sec
 - Whole body < 10 sec</p>
- dual source (180° ightarrow 90°)
- Volume coverage with one rotation: 4 ...
 16 cm

48

Computed Tomography Basic method of Image reconstruction

- Take 1D profiles or 2D projection at discrete angle around the object
- Assume that each measured point = sum of activity elements along the Line of Response (LOR)

Raw data can be displayed as a 'sinogram'

Computed Tomography Basic method of Image reconstruction

Projection

Sinogram

Raw data can be displayed as a 'sinogram' Then a lot of corrections

July 2019

State o the art : 4D CT

Position influenced by the breathing motion

Exposure for radiological exams

Some exam	ples	
organ	dose skin mGy	effective dose mSv
Thorax, face	0,2 - 0,5	0,015 - 0,15
Lumbar region	4 - 28	1,5
Urography	40 - 60	3
Brain scan	7 - 78	1
Whole Body scan	30 - 60	4 - 10
Mammography	7 - 25	0,5 - 1

Image Noise Is Limited by Counting Statistics Cannot Increase too much Source Strength

July 2019

ICISE_School

< 0,4 sec/ rotation Organ in a sec (17 cm/sec) Whole body < 10 sec

20 to 50 mSv Standard radiography 0.1 mSv

Deacreasing the dose with HEP Gazeous detector

The Future?

Gas Detector History

<u>Multi Wires Proportional chambers MWPC</u>

CATH2049E

E. Gatti et al, Optimum geolocets for the strip cathodes ..., Nucl. Instr. and Meth. 163(1979)83 58

TWO-DIMENSIONAL LOCALIZATION

TWO-DIMENSIONAL LOCALIZATION FROM SIGNALS INDUCED ON CATHODE PLANES (Charpak & Fabio Sauli, ~1973)

LOW-DOSE DIGITAL RADIOGRAPHY WITH MWPC: CHARPAK'S HAND (2002):

The 1970's dream : Digital radiography with MWPC A tribute to George Charpak With 10 time less dose

X Ray imaging

Wire Chamber Radiography:

Position resolution ~ 250 μm

<u>A. Bressan et al, Nucl. Instr. and Meth. A 425(1999)254</u> <u>F. Sauli, Nucl. Instr. and Meth.A 461(2001)47</u> <u>G. Charpak, Eur. Phys. J. C 34, 77-83 (2004)</u> <u>F. Sauli, http://www.cern.ch/GDD</u> July 2019

GEM for 2D Imaging:

Using the lower GEM signal, the readout can be self-triggered with energy discrimination:

<u>9 keV absorption radiography of a</u> <u>small mammal</u> (image size ~ 60 x 30 mm²)

<u>Position resolution ~ 100 µm</u> ol <u>(limited by photoelectron range in the ga</u>g)

ICISE_School

From MWPC's to MGPD's

July 2019

MPGD

- From 1988-1998 Micro-technologies and etching techniques allowed development of Micro Patter Gaseous Detectors
 - MICROMEsh GAseous Structure
 - Thin gap Parallel Plate Chamber: micromesh stretched over readout electrode.

- Gas Electron Multiplier
 - Thin, metal-coated polymer foil with high density of holes, each hole acting as an individual proportional counter.

The Future : New Si detector and signal processing On the way to photon counting?

Medipix3

- 8 simultaneous energies
- 55 µm isometric resolution
- Excellent energy resolution
- 10⁸ photons per second per mm²

Exemple with GEM Detector

F.Sauli & al.

Thin, metal-clad polymer foil, chemically pierced by a high density of holes (70-80 µm diameter).
On application of a difference of potential between the two electrodes, electrons released by radiation in the gas on one side of the structure drift into the holes, multiply and transfer to a collection region.

Cascading several foils results in high multiplication factors.

Next \rightarrow INGRID

 InGrid :integrate the Micromegas/GEM concept on top of a MediPix pixel CMOS chip (Timepix)

- pixel size: 55 x 55 µm²
- per pixel: preamp shaper 2 discr. -
- Thresh. DAQ 14 bit counter

<u>metalized foil</u> ~100 μm ~1mm

66Cmos Medipix chip

■ Use → Large Trackers & Calorimeters

July 2019

ICISE_School

<u>Medipix-CT setup for detector</u> <u>investigations & material analysis</u> <u>Example → USB flash drive</u>

<u>TPX 110µm + CdTe 2mm</u> <u>8x2 tiles / mag. 1.5x</u> <u>65kV / 200µA</u> ICISE School

July 2019

Hybrid Pixel detector principle

An ionising particle deposits charge in the silicon sensor The reverse biasing of the sensor diode structure drives the charge to the readout chip The charge is shaped and a threshold applied Digital processing occurs The data is read out off the chip

Medipix-Timepix family

PORTAL IMAGING

PORTAL IMAGING: VERY HIGH RATE GAMMA RAYS DETECTION ROYAL INSTITUTE OF TECHNOLOGY AND KAROLINSKA HOAPITAL (STOKHOLM)

C. lacobaeus et al, IEEE Trans. Nucl. Sci. NS-48 (2001)1496

29/10/2001

Radiotherapy

Common tools & techniques

July 2019

ICISE School

Cancer in Europe – a growing challenge

3.4 millions of new cases in Europe per year
About 50% will develop cancer at some point of their life
Main cause of death between the age of 45-65
Second most common cause of death
Fight again cancer - Radiotherapy

- Local irradiation to kill tumour \rightarrow 100 Gy = 90 % of sterilization
- Frequent treatment (2/3 of cases).
- Efficient treatment: cure \rightarrow 40 to 50% of recovery
- Allow good quality of life and tolerance
- non invasive, itinerant and without important physical effects.
- Cheap (< 10%) of the cancer budget (France)</p>
- Essentially X rays
 - (Linear accelerators) & photons (curietherapy)

About Cancer

France->around 230 000 new cases per year
 > Cure (35-40 %)
 Health budget = 130 Billions Euros
 CANCER = 10 Billions Euros
 Targeting 2030 -> Cure > 50 %

First step \rightarrow Improve diagnostics tools (imaging)Future \rightarrow screening possibility ?

CANCER DEATHS BY SITE

SITE	DEATHS
Lung	163,700
Colorectal	57,100
Breast	40,200
Prostate	28,900
Pancreatic	30,000
Female Reproductive	26,800
Lymphoma	24,700
Malignant Melanoma	9,800
Hodgkin's	1,300

<u>US statistics</u>

74

Radiatherapy X

- No substitute for RT in the near future
- Number of patient increasing
- Present limitation of RT \rightarrow 30 % of patients recurs
- Why Radiotherapy X is NOT 100 % efficient?
 - Complication < 5 %
 - Tolerance of saine tissue is the limiting factor
 - Close to Organ at Risk
 - Failures due to radioresistant tumors!
 - Second cancer 30 years after Radio Therapy (from recent statistics)
 - Adult : 1.1
 - Chidren: 6

→Particle therapy
→Around 25% of the case
My last lecture!

RT modern techniques

 Conformal RT
 Intensity Modulated (IMRT)
 Image guided (IGRT)
 Robotic Stereotactic

'standard' RT devices

Intensity Modulated (IMRT)

Conformal 3D radiotherapy

IGRT : Image guided

HI+ART System"

Sate of the art: Robotic Stereostatic RT Multiple beams High Precision 1 mm Dedicated & invasive (radiochirurgy)

July 2019

ICISE School

Some words about dosimetry

Curietherapy/Brachytherapy 1910 Today

Local (contact) deposit of the dose by needles or implants

ICISE_School

First cancer cure by brachy (ulcus rodens, basal cell carcinoma): Goldberg and London in Moscow, 1903

Originalarbeiten.

XXIV.

(Aus der Abteilung für allgemeine Pathologie des Kaiserlichen Instituts für experimentelle Medicin und aus dem Maximilian-Krankenhaus in St. Petersburg.)

Zur Frage der Beziehungen zwischen Bequerelstrahlen und Hautaffectionen').

Von

S. W. GOLDBERG und E. S. LONDON in St. Petersburg.

Die neueren Errungenschaften der Verwendung verschiedener Formen der strahlenden Energie in der dermatologischen Therapie, sowie die experimentellen Arbeiten von Giesel, P. Curie, Bequerel, Aschkinass, Freund, Doulos u. a. veranlassten uns, die Wirkung der Bequerelstrahlen bei Ulcus rodens auf die Probe zu stellen.

First brachy treatment, any disease, generally credited t

Henri Alexandre Danlos,

- Parisian dermatologist,
- exhibiting a woman who he
- successfully treated for
- Iupus vulgaris of the
- face. Pierre Curie loaned
- him the source and he

Note sur le traitement du lupus érythémateux par des applications de radium.

Par MM. DANLOS et P. BLOCH.

Le 2 mars 1896, M. H. Becquerel, dans une communication à l'Institut, indiquait que tous les sels d'uranium et l'uranium métallique émettent, sans cause excitatrice et d'une manière incessante, un rayonnement qui traverse les corps opaques pour la lumière et impressionne les plaques photographiques. L'étude de ces rayons, dits aussi rayons uraniques ou rayons de Becquerel, a été l'origine

BRT (typically 10-20% of patients)

- 1) Radiation sources placed in the tumor, ergo less toxicity
- 2) Dose homogeneity in the target not an issue
- 3) Conformal treatment without complicated technological
- tools
- 4) Generally invasive (except intracavitary)
- 5) In BRT timing is critical
- 6) Overall risk of a second cancer is claimed to be lower for
 brachy
- A. The actual dose delivered can be precisely known (a
- double-edged sword...)
- **B.** Full QC (operator-independent treatment)
- C. Ideal for focal therapy (radiobiology not needed)

Nuclear medicine

What is Nuclear medicine ? Definition

- Use in vivo of radioactive elements (tracers) injected to the patient orally or by blood injection to image the function of the body
 Functional and metabolic (scintigraphy)
 In vivo biochemistry
 Study of a radioactive molecule in a living
 - organism
 - Images are Static 2D/3D (x,y,z)
 - Or 4D (+time) --> dynamic
 - Or 5D (+ Energy) --> Multisotopes /multitracers

Medical Imaging Modalities

The	various	types	(mo	dalities) a	of imaging
	<u>Organ</u>		Fu	nction	<u>Cell</u>
	<u>Anatomy</u>	Physio	logy	<u>Metabolism</u>	Molecular
PET,SPECT					
<u>NMR/MRI*</u>					
<u>X ray (CT)</u>					
<u>Ultrasounds</u>					
<u>Optical</u>					

Complementary ! Depends on what you want to see

<u>MRI/MMR* = Magnetic resonnance</u>

TOMSK-#2

Application	Requirement	Isotope
DIAGNOSIS In vivo SPECT	single photons no particles biogenic behavior $T_{1/2}$ = moderate	99mTC, 123J, 111Jn, 201TJ,
DIAGNOSIS in vivo PET		11C, ¹³ N, ¹⁵ O, ¹⁸ F

Anger Camera

<u>Anger camera</u> <u>invented in 1957</u>

<u>First camera had</u> <u>7 PMTs</u>

First commercial Anger camera was delivered by Nuclear Chicago to W. Myers, Ohio State 1962

Clinical Images mid-1960's

<u>Image quality comparable</u> <u>to rectilinear scanner</u> <u>Limitations include:</u> <u>Small field-of-view</u> <u>Poor spatial resolution</u>

<u>In 1960's the primary application was not</u> <u>clear: Tc-99m generators developed mid 60's,</u> <u>first kits available in 1970</u>

The first gamma camera (Hanger, 1956)

SPECT Gamma camera components

Collimator

- Ability to localize the photon sourse in the patient (6-12 mm)
- Detection system
 - Ability of the large NaI scintillator and photomultiplier to localize the photon interaction in the crystal
- Problem :
 - only few useful photons
 - 1:100 000

Improvements to Anger Camera

- Intrinsic spatial resolution in 1970's: (13 mm to < 4 mm) increased to 37 PMTs, improved QE (biakali photocathodes) improved collimator technology (4000 holes to >80,000 holes)
- Field of view (to 15 inch) 1979
- <u>Rectangular detectors 1985</u>
- Uniformity, linearity and energy correction improvements through digital processing

Non-linear preamplifier: 1971

Distortion removal: invented 1970, in practice 1980 with digital technology

ICISE_School

Single Photon Emission Computed Tomography (SPECT)

Two ways

Tc ⁹⁹ tracer and a gamma camera
Positron emitting tracers with positron camera

SPECT with Anger cameras

Single head

<u>Searle: 1974 - 1976</u>

<u>Searle: 1977 - 1979</u>

SPETCT images

Hearth

Multiview skeleton with Tc99

ICISE_School

Modern SPECT camera

July 2019

End of this lecture

0

