PET and PET/CT Principles and Instrumentation

D Visvikis

INSERM UMR 1101, LaTIM Brest, France

IEEE NPSS Nuclear and Plasma Sciences Society

PET detection basis

2 photons of 511 keV simultaneous (in coincidence) *almost* on a straight line that *almost* contains the point of the decay

Positron emitters: production process

Cyclotrons combine:

- a strong axial magnetic field
- a high frequency alternative electric field between two elements of a semi-circular form (known as dees)
- an ion source (protons ou deuterons (proton + neutron))
- a target

Cyclotron

Cyclotron

Nuclear Reactions of interest

$$
{}_{Z}X^{A} + p \rightarrow {}_{Z+1}Y^{A} + n \qquad X^{A}(p,n)Y^{A}
$$

 Z^X A + d \rightarrow Z_{+1} Y^{A+1} + n $X^A(d,n)$ Y^{A+1}

Examples:

 $N^{14}(d,v_e)O^{15}$ $O^{16}(p,\alpha)N^{13}$ $N^{14}(p,\alpha)C^{11}$ $O^{18}(p,v_e)F^{18}$

Isotopes

Isotopes

Energy distribution of protons

Isotopes

β^+ range

Radio-pharmaceutical in PET

₉F¹⁸ fluorodéoxyglucose

 $6^{\circ}C^{11}$ déoxyglucose

 $8^{0¹⁵}$ oxygène (gaz)

- HQ
- 6^{C11} dioxyde de carbone $8^{0¹⁵}$ dioxyde de carbone

Collimation électronique

Collimation physique

PET detection

Linear integral model

 $N_{\gamma-\gamma} = k \int_{L} \rho(x, y, z) dl$

- **• The activity distribution ρ(x,y,z) is measured in terms of projections (N**g**) along lines L**
- **• Each projection is obtained from the activity distribution with the line integral operator**
- **• Ideal model**

Simplest principle of tomographic image formation!

Data-Sorting into Sinogram

Each **projection** is entered as a row into a **sinogram**. A sinogram is an array which stores the number of coincidence events for each detector **position** and each **angle**.

Pair of detectors determine sampling paths (**Lines Of Response, LORs**)

Parallel Lines Of Response are sorted into a row of count numbers (**Projection**), representing the number of 511 keV photon pairs detected.

Coincidence Projections

Object Sinogram

Object Sinogram

Object Sinogram

Image Reconstruction

Sinogram

Image slice

PET Image reconstruction: filtered backprojection

Projection Backprojection

PET Image reconstruction

Filtered Backprojection FBP

PET Reconstruction

Data acquired

Filtered back projection as sinograms

1 angle 2 angles 4 angles 16 angles 128 angles

OR iterative reconstruction

What does iterative mean?

• **choose a number between 1 and 20**

Tomographic reconstruction: terminology

Maximum likelihood reconstruction (ML-EM)

Find the 'most likely' distribution of activity, given the set of measurements.

- assumes Poisson probability of emission; i.e. no negative values
- **EM** (expectation maximization) is the name of the algorithm normally used to find the 'most likely' solution
- **OS-EM** (ordered subsets EM) is an accelerated form of EM
- **MAP** (maximum a-posteriori) incorporates a prior or penalty term

Spatial Resolution

- How small an object can you see in **PET?**
- Ability to separate two objects close together: *Resolution*

Line profile of a point source (PSF)

- Full Width at Half Maximum (FWHM) is the measure of resolution (unit: mm).
- Depends on position and direction in the field.
- Typical PET resolution: FWHM \approx 5 mm.

Spatial resolution issues: β^+ range

Spatial resolution issues: non-collinearity

Contribution to FWMH: $FWHM_{\Delta\theta} \approx \Delta\theta \times \frac{D}{4} = 0.0022D$

(1,7mm @ 80cm Æ **detector-ring !)**

• As a consequence, the two photons are not emitted at exactly 180, but they have an angular deviation from collinearity of ±**0.25**°

Spatial resolution issues: parallax error

Crystal pitch

The best spatial resolution achievable is also limited by other factors, i.e.,

- ▶ No information of the depth-of-interaction
- ▶ Crystal position readout coding
- Image reconstruction algorithm

Spatial resolution issues: detection system

When the crystal position is identified via ''light sharing'' technique, i.e., by calculating the centroid of the light spot emerging from the crystal with a high granularity position-sensitive photodetector, there is a nonnegligible, position-dependent error. The average contribution is usually called **"coding error".**
Spatial resolution limitations in PET

Scintillation detector

The ideal scintillation detector has

- High element no (Z)
- High density (ρ)

Good absorption \Rightarrow High sensitivity

PET Detector Scintillator Materials

Evolution of PET-detectors

Block-detector principle

Flood Histogram / Position Map

Anger Logic

"Crystal identification pattern"

Assembly of a PET scanner

Typical configuration

whole-body (patient port \varnothing ~70-85 cm; axial FOV~15-26 cm)

- scintillator crystals coupled to photomultiplier tubes (PMTs)
- cylindrical geometry
- ~12-52 rings of detector crystals
- hundreds of crystals/ring
- several millions of LORs (only a few are shown)

Types of "events"

"2D" and "3D" - nobody *uses* 2D anymore

2D mode (= with septa)

3D mode (= no septa)

In 2D, detector rings were handled separately

In the 3D mode there are no septa: photons from a larger number of incident angles are accepted, *increasing the sensitivity*.

The increase in sensitivity is *not uniform* (detailed in a later slide)

Note : *2D acquisition* mode still provides a full volume (*3D) of reconstructed images***!**

Types of "events"

Sensitivity in "3D" is position dependent

There is a large difference between center and edge slices due to the number of LORs that contribute

3D mode 3D mode

The "ideal" triangle is most often truncated like this:

(we are not allowing all angles)

- and therefore we need "overlap" in whole-body scanning

– more than just a coincidence...

$$
N_{\gamma-\gamma} = k \int_L \rho(x, y, z) dl
$$

$\Delta t \approx 2 - 4$ ns

– more than just a coincidence...

- **•** A way to improve the noise is to limit the extent of the line integral measuring the time difference Δt of the arrival time of the to photons
	- \rightarrow The displacement of the annihilation point from the center can be estimated as:

 ΔS

 $c \cdot \Delta t$

– more than just a coincidence...

Example: Time resolution 500ps

 \rightarrow possible to measure the point of annihilation with a accuracy of 75mm FWHM:

$$
\Delta S = \frac{3 \cdot 10^8 m \cdot 5 \cdot 10^{-10} s}{2 s}
$$

= 7,5 \cdot 10^{-2} m = 75 mm

- **•** Improved energy resolution \rightarrow reduce scatter
- **•** Small coincidence Window
	- \rightarrow reduce randoms
- Time of Flight feature \rightarrow Improvement of image quality

– more than just a coincidence...

- \blacksquare tried and abandoned in ancient PET times (~1985)
- \blacksquare idea commercially relaunched in 2006 by Philips

- \blacksquare More information available for image formation
- **n** Hypothesis: better image quality, or shorter scanning time, or less *i*njected activity

TOF

5 min scan , 35-cm cylinder

Photon attenuation in PET

• Attenuation of a single γ :

$$
A_i = \tau_i A_0
$$

$$
\mathcal{I}_i = e^{\int \mathcal{I} - \mu(x) dx}
$$

 τ i: probability of the photon transmission from 0 to i μ : linear attenuation coefficient (cm-1)

Photon attenuation in PET

$$
A_1 = \tau_1 A_0 = e^{\int_{0}^{1} -\mu(x)dx} A_0
$$

$$
A_2 = \tau_2 A_0 = e^{\int_0^2 -\mu(x)dx} A_0
$$

$$
A_c = \tau_1 \tau_2 A_0 \Rightarrow A_c = e^{\int_1^2 -\mu(x)dx} A_0 \Rightarrow \frac{A_0}{A_c} = e^{\int_1^2 \mu(x)dx}
$$

Photon attenuation in PET

$$
\frac{A_0}{A_c} = e^{\int_{1}^{2} \mu(x) dx} \implies \frac{A_0}{A_c} = e^{\int_{1}^{2} \mu(x)} \implies \frac{A_0}{A_c} = e^{\mu(x_2 - x_1)}
$$

- \checkmark it does not depend on the location of the annihilation along the line of response
- \checkmark depends on the integral attenuation distance $x = (x_2-x_1)$
- \checkmark μ is constant for all positron emitters since the emission energy is 511keV
- need to know the density of the object

Attenuation effects in PET

- o More significant in PET compared to SPECT since there are two photons involved
- \circ Significant loss in sensitivity (a factor of 5 and 20 for brain and whole body imaging respectively)
- o Quantitative accuracy
- o Potentially higher impact for deep located lesions? (it has never been established in reality)

Attenuation effects in PET

Attenuation correction in PET

- \checkmark Attenuation independent of the position of the annihilation along the line of response
- \checkmark Need to know the distribution of the attenuation coefficients.
- \checkmark No need to know the activity distribution for the calculation of attenuation as it is the case in **SPECT**

Attenuation correction in PET

How to obtain the distribution of attenuation coeffs:

- \checkmark some sort of transmission scanning
- \checkmark need the attenuation coeffs at 511keV

Attenuation correction in PET

Radionuclide based AC

attenuation of photons structure / anatomy

distribution of tracer function / physiology

PET/CT scanner:

- combines two modalities in one gantry, common axis, common bed
- allows precise fusion of images
- provides structure + function in the same image
- can use CT for attenuation correction of PET /SPECT

Anatomical localisation of tracer – Attenuation correction

CT PET PET/CT

CT based PET Attenuation Correction

• Attenuation coefficient scaling method

$$
\sim
$$
70-80keV \longrightarrow 511keV

• Potential of misclassification of tissue types

contrast agents metallic implants

• Differences in the conditions of acquisition for PET and CT

D Visvikis, DC Costa, I Croasdale, et al; "CT based attenuation correction in the calculation of semi-quantitative indices of 18FDG uptake in PET" Eur J Nucl Med Mol Imag 2003, 30(3), 344-353, Nuclear Medicine Book of the Year 2003, ed. I Zubal, Elsevier

CT based PET Attenuation Correction

$$
\mu = \mu_{H2O} \frac{(HU + 1000)}{1000}
$$

$$
\mu = \mu_{H2O}^{PET} + HU \frac{\mu_{H2O}^{CT}(\mu_{bone}^{PET} - \mu_{H2O}^{PET})}{1000(\mu_{bone}^{CT} - \mu_{H2O}^{CT})}
$$

Metallic inserts: Pacemakers

H Schoder, et al, Eur J Nucl Med Mol Imag 2003, 1419

Respiratory motion effects

D Visvikis, DC Costa, I Croasdale, et al; "CT based attenuation correction in the calculation of semi-quantitative indices of 18FDG uptake in PET" Eur J Nucl Med Mol Imag 2003, 30(3), 344-353, Nuclear Medicine Book of the Year 2003, ed. I Zubal, Elsevier

CT based PET Attenuation Correction

• An improvement of $>20\%$ in image contrast

D Visvikis, DC Costa, I Croasdale, et al; "CT based attenuation correction in the calculation of semi-quantitative indices of 18FDG uptake in PET" Eur J Nucl Med Mol Imag 2003, 30(3), 344-353, Nuclear Medicine Book of the Year 2003, ed. I Zubal, Elsevier

PMT: Size:10-50 mm Gain: up to 10⁶ Rise time: 1 ns QE: 20 %

Shared PMTs versus 1 to 1 coupling

APD: (Avalanche Photo Diode)

LSO

Compact, no impact of magnetic fields Size:5x5 mm2 Gain: up to 103 Rise time: 5 ns QE: 60 %

SiPM: (Silicon Photomultiplier) Size:5x5 mm2 Gain: 105-106 Rise time: 1 ns QE: 30%

Matrix of n elements connected in parallel^{*} 10.5x20.7 mm2

3x3 Hamamatsu-APD based detector for mMR (Siemens)

no Time of Flight (TOF)

Hamamatsu SiPM based detector (GE)

Digital SiPM based detector (Philips)

TOF Higher Sensitivity Comparable spatial resolution

Even higher sensitivity Superior spatial resolution

TØF

