ION BEAM MONITORING USING BRMESSTRAHLUNG X-RAYS

F. Ralite1 ; C. Koumeir2 ; N. Servagent1 ; V. Métivier1

1Laboratoire de physique subatomique et des technologies associées : SUBATECH, Nantes, France
2GIP ARRONAX, Saint-Herblain, France

Contact : flavien.ralite@subatech.in2p3.fr
WORLDWIDE CANCER STATISTICS

- 17 million of new cases of cancer worldwide in 2018
 - Lung (2.09 million cases), Breast (2.09 million cases), Colorectal (1.80 million cases), Prostate (1.28 million cases), Skin cancer (1.04 million cases), Stomach (1.03 million cases)
- 9.6 million deaths in 2018
- 27.5 million of new cases expected in 2040

CANCER TREATMENT

- Surgery: Ablation of the tumour
- Chemotherapy: Treatment using chemical drugs
- Radiotherapy: Treatment using ionizing radiations

Therapeutic approaches can also mix the different technics

Figure 1: Fraction of treatment cancer technics in France during 2016.
RADIOThERAPY

External radiotherapy
- Ionizing radiations from particle accelerator
 - Photon beam
 - Electron beam
 - Ion beam

Brachytherapy
- Radioactive source in contact with the tumor

Internal Vectorized Radiotherapy
- Radionuclide coupled with chemical vector

Framework of our study

PROTON BEAM:
- High and localised deposited dose
 (Bragg peak)

PHOTON BEAM:
- Exponential attenuation of the deposited dose in the medium
 (Reference beam in radiotherapy)

Figure 2: Schematic view of the depth-dose profile for photon and proton beams.
The Spread-out Bragg Peak is the weighted sum of different Bragg in order to conform the deposited dose to the tumor thickness.

Figure 3: Spread-out Bragg Peak from proton beam of 68MeV.
Figure 4: Comparison of the dose distribution obtained with proton beams (left) and photon beams (right) for the treatment of ocular cancer

- Proton beams decrease the deposited dose outside the tumor
- Mostly used for pediatric, brain and eye cancer.
Interaction Proton/Matter:

- X-ray production
 - Ionisation / Excitation
 - Bremsstrahlung
- γ photon production
 - Gamma prompt production from nuclear interaction
 - Annihilation of positron from β⁺ emitter created by the radiation
- Magnitude of cross sections for photon production
 - Gamma prompt: ~ 10 mbarn
 - RX bremsstrahlung: ~ 10^2 mbarn

Figure 5: Schematic view of particles emitted from the irradiated medium after interaction with a proton beam.
NON-INVASIVE ONLINE BEAM MONITORING

Different approaches:
- Positron Emission Tomography
 - Online beam range verification
- Uncertainties on the beam range (several mm): delayed decay

- γ prompt measurement
 - Online beam range monitoring
 - Small delayed decay

 Testa, Rad. Env. Biophy., 2010

- X-ray bremsstrahlung
 - Beam imaging
 - Beam range monitoring

Figure 6: Schematic view of the different online beam monitoring approach.
Bremsstrahlung:
- X-ray emissions from the deceleration of the charged particles in the medium
- X-ray energy is proportional to the energy loss of the charged particles
- Continuous component of the X-ray spectrum

Composantes du Bremsstrahlung:
- QFEB: Quasi-Free Electron Bremsstrahlung
- SEB: Secondary Electron Bremsstrahlung
- AB: Atomic Bremsstrahlung
- NB: Nuclear Bremsstrahlung
- Cross section:

\[
\frac{d^2\sigma^i}{d\Omega d\omega} = F_1^i(E_p, Z_p, Z_T, h\omega) \cdot F_2^i(\theta) \quad [1]
\]

Pasher, Phys. Rev., 1990

Bremsstrahlung interest:
- Directly link to the deposited dose
- Significant cross sections
- Sensitive to the medium attenuation
 - Low energy: elementary composition of the medium
 - High energy: density of the medium

Figure 7: Schematic view of the bremsstrahlung X-rays emitted from different processes.
Method developed for radiobiology:
- Demonstrated for alpha particles
- Valid for homogeneous medium with a thin thickness

\[D [Gy] = \phi [cm^{-2}] \cdot LET \left[\frac{MeV.cm^2}{g} \right] \cdot 1.6 \times 10^{-10} \] [2]

In this state, not applicable in clinic:
- Heterogeneous medium
 - Impossibility to get the fluence and LET
 - Medium attenuation

Aim of the study
- Proof of feasibility to monitor proton beam using bremsstrahlung X-rays
- Cross section measurement
- Fundamental study to model the bremsstrahlung spectrum
- Extend the method to clinical application

\[N_X^{Br} = N_p \cdot \int_{E_p}^{E_p} \epsilon(hv) \cdot \frac{d\sigma^{Br}}{d\Omega dhv} (E_p, hv) \cdot A(hv) dhv dE_p \] [3]
EXPERIMENTAL SET-UP

H+ Beam:
- 17MeV/u
- 30MeV
- 40MeV
- 50MeV

Silicon detector:
- Promotes the detection of low energy photons (between 1 and 30keV)
- Minimise the target-detector distance
- Crystal thickness: 450µm

Carbon Target:
- Cross section measurement
- Single-element target

PMMA target:
- $Z_{eff} = 6.47 \approx Z_{eau} = 7.42$
- Close to biological medium

Beam stop:
- Measure of the beam fluence
- $N_p = \frac{Q}{Z_p \times e}$

Two acquisitions:
- Background: Measure of the ambiant activation and fluence with the beam stop
- Measure of the bremsstrahlung X-rays emitted by the PMMA target

Figure 8: Schematic view of the experimental set-up to measure bremsstrahlung spectra and cross sections

CONTEXT – BEAM MONITORING METHOD – RESULTS – CONCLUSION

Flavien RALITE

15th Rencontres du Vietnam - Quy Nhon - 01/08/2019
EXPERIMENTAL SET-UP

Figure 9: Photography of the experimental set-up.

Figure 10: Photography of the beam line output with a silicon detector looking at the PMMA target.

Figure 11: Raw spectra of background and bremsstrahlung acquisitions.
Figure 12: Bremsstrahlung cross sections for a Carbon target bombarded with proton beams of 16.9MeV/u, 30.1MeV, 39.3MeV and 49.6MeV.

- **Significant agreement** between the experimental data and the model
- Cross section measured are closed to literature
 - Ishii: For proton beam of 20MeV at the photon energy of 7keV: **0.01 barn/keV.sr**
 - Measure: For proton beam of 16.9MeV at the photon energy of 7keV: **0.008 barn/keV.sr**

- The disagreement at high energy photon could be explained with the noise induced by the target

- Fundamental contributions of the spectrum
 - QFEB
 - SEB
Figure 13: Experimental (grey line) and simulated (black dashed line) bremsstrahlung spectra from the 1000µm PMMA thick target bombarded with proton beams of 16.9MeV/u, 30.1MeV, 39.3MeV and 49.6MeV.

- **PMMA target**: significant agreement between model and bremsstrahlung spectra
- **Signal measured** comes from bremsstrahlung
- **Shape of the spectra**:
 - Photon with an Energy > 15keV are attenuated because of the detector efficiency
 - Photon with an energy < 5keV are attenuated because of the air attenuation
Photon with an energy < 5keV are attenuated because of the target-detector distance and the detection efficiency.

Photon with an energy > 15keV are attenuated because of the detector efficiency.

Figure 13: Experimental (grey line) and simulated (black dashed line) bremsstrahlung spectra from the 1000µm PMMA thick target bombarded with proton beams of 16.9MeV/u, 30.1MeV, 39.3MeV and 49.6MeV.
Beam Energy Monitoring

- E_{mean} increases with the beam energy.
- FWHM increases with the beam energy.
- Fraction of high energy photon (>15keV) increases.

Table: Beam Energy vs. E_{mean} and FWHM

<table>
<thead>
<tr>
<th>Beam Energy (MeV)</th>
<th>E_{mean} (keV)</th>
<th>FWHM (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.9</td>
<td>6.167±0.200</td>
<td>4.160±0.200</td>
</tr>
<tr>
<td>30.1</td>
<td>6.676±0.200</td>
<td>7.667±0.200</td>
</tr>
<tr>
<td>39.3</td>
<td>7.154±0.200</td>
<td>8.238±0.200</td>
</tr>
<tr>
<td>49.6</td>
<td>8.023±0.200</td>
<td>8.745±0.200</td>
</tr>
</tbody>
</table>

- The bremsstrahlung spectrum hardening with the increase of the beam energy is explained with the bremsstrahlung cross sections variations.
- Proton beam energy can be monitored with the bremsstrahlung X-rays.
- Observation are only valid for this set-up because of the detector efficiency and medium attenuation.

Figure 14: Bremsstrahlung spectra from 1000µm PMMA thick target bombarded with 16.9MeV/U, 30.12MeV, 39.3MeV and 49.6MeV proton beams (energy at the target surface).
Bremsstrahlung yield grows with the proton beam energy.

Good agreement with the model.

Bremsstrahlung yield saturation.

Figure 15: Bremsstrahlung yield versus the PMMA thickness target bombarded with proton beam of 16.9MeV/U, 30.12MeV, 39.3MeV and 49.6MeV.

Target thickness can be monitored with the bremsstrahlung X-rays until the target thickness limit where the bremsstrahlung yield saturates.
Figure 15: Bremsstrahlung yield versus the PMMA thickness target bombarded with proton beam of 16.9MeV/U, 30.12MeV, 39.3MeV and 49.6MeV.

Target thickness can be monitored with the bremsstrahlung X-rays until the target thickness limit where the bremsstrahlung yield saturates.

Good agreement with the model
BEAM RANGE MONITORING WITH BREMSSTRAHLUNG X-RAYS
BREMSSTRAHLUNG SCAN

Figure 16: Experimental set-up of the bremsstrahlung scan for a water tank bombarded with proton beam of 68MeV.
BREMSSTRAHLUNG SCAN

Figure 17: Photographies of the experimental set-up of the bremsstrahlung scan for a water tank bombarded with proton beam of 68MeV.
Bremsstrahlung spectra evolve with the beam energy.

Link with the deposited dose should be investigated.

Figure 18: Depth-dose profile of the FLUKA simulation (Data were normalised). Bremstrahlung spectra at different depth are also presented.
CONCLUSION AND OUTSKIRTS

- **Ion beam monitoring using Bremsstrahlung X-rays**
 - Cross section measured on carbon target: proof of the **significant sensitivity** for the method
 - Bremsstrahlung **model validated** with the experimental data
 - **Beam energy can be monitored** with the bremsstrahlung for proton beams in the frame of radiobiology experiment
 - **Results are only valid for the set-up** used because of the detector efficiency and medium attenuation

- **Outskirts**
 - **Monte-Carlo simulations are required** to improve the set-up and to develop an X-ray camera
 - Link with the deposited dose should be investigate
• M. J. Berger et al, Stopping power and range tables for electrons, protons and helium ions, NIST standard reference database 124, (2017).